Post-Extractivism and Bioeconomy: An Experimental Analysis of Combustion and Pyrolysis Processes as Alternatives to Add Value to Agro-Residues (Coffee Husks) Generated in Farmer Cooperatives of the Ecuadorian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Collection of Coffee Husks
2.2. Thermochemical Conversion Processes
2.2.1. Combustion Process: Retort Burner
2.2.2. Pyrolysis Process: Pilot-Scale Auger-Type Pyrolysis Reactor
2.3. Sampling, Proximal, and Elemental Characterization of Carbonized Coffee Husks
2.4. Process Monitoring: Flue Gas Composition and Temperature Profiles
2.5. Comparative SWOT Analysis: Combustion and Pyrolysis Processes
3. Results and Discussion
3.1. Combustion and Pyrolysis Processes in the Context of Farmers’ Cooperatives
3.2. Proximal and Elemental Characterization of Carbonized Coffee Husks
3.3. Flue Gas Composition Observed during the Experiments
3.4. Comparative SWOT Analysis of Combustion and Pyrolysis Processes: A Paradigm for the Early Adoption of the Bioeconomy in Farmers’ Cooperatives?
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viteri, O.; Ramos-martín, J.; Lomas, P.L. Livelihood Sustainability Assessment of Coffee and Cocoa Producers in the Amazon Region of Ecuador Using Household Types. J. Rural Stud. 2018, 62, 1–9. [Google Scholar] [CrossRef]
- Branthomme, A.; Merle, C.; Kindgard, A.; Lourenço, A.; Ng, W.-T.; D’Annunzio, R.; Shapiro, A. How Much Do Large-Scale and Small-Scale Farming Contribute to Global Deforestation? Results from a Remote Sensing Approach; FAO: Rome, Italy, 2023; ISBN 9789251378427. [Google Scholar]
- Somarriba, E.; Lopez, A. Coffee and Cocoa Agroforestry Systems: Pathways to Deforestation, Reforestation, and Tree Cover Change, 1st ed.; PROFOR: Turrialba, Costa Rica, 2018. [Google Scholar]
- Vasco, C.; Torres, B.; Pacheco, P.; Griess, V. The Socioeconomic Determinants of Legal and Illegal Smallholder Logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 2017, 78, 133–140. [Google Scholar] [CrossRef]
- Salazar, O.V.; Ramos-Martín, J. Organizational Structure and Commercialization of Coffee and Cocoa in the Northern Amazon Region of Ecuador. Rev. NERA 2017, 35, 266–287. [Google Scholar] [CrossRef]
- Bacon, C.M.; Sundstrom, W.A.; Flores Gómez, M.E.; Ernesto Méndez, V.; Santos, R.; Goldoftas, B.; Dougherty, I. Explaining the “Hungry Farmer Paradox”: Smallholders and Fair Trade Cooperatives Navigate Seasonality and Change in Nicaragua’s Corn and Coffee Markets. Glob. Environ. Chang. 2014, 25, 133–149. [Google Scholar] [CrossRef]
- Tennhardt, L.; Lazzarini, G.; Weisshaidinger, R.; Schader, C. Do Environmentally-Friendly Cocoa Farms Yield Social and Economic Co-Benefits? Ecol. Econ. 2022, 197, 107428. [Google Scholar] [CrossRef]
- Heredia Salgado, M.A.; Säumel, I.; Cianferoni, A.; Tarelho, L.A. Potential for Farmers’ Cooperatives to Convert Coffee Husks into Biochar and Promote the Bioeconomy in the North Ecuadorian Amazon. Appl. Sci. 2021, 11, 4747. [Google Scholar] [CrossRef]
- Vivien, F.D.; Nieddu, M.; Befort, N.; Debref, R.; Giampietro, M. The Hijacking of the Bioeconomy. Ecol. Econ. 2019, 159, 189–197. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Coffee Processing Solid Wastes: Current Uses and Future Perspectives; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; ISBN 9781607413059. [Google Scholar]
- Oliveira, L.S.; Franca, A.S. An Overview of the Potential Uses for Coffee Husks. In Coffee in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 281–291. ISBN 9780124095175. [Google Scholar]
- Saenger, M.; Hartge, E.; Werther, J. Combustion of Coffee Husks. Renew. Energy 2001, 23, 103–121. [Google Scholar] [CrossRef]
- Flammini, A.; Brundin, E.; Grill, R.; Zellweger, H. Supply Chain Uncertainties of Small-Scale Coffee Husk-Biochar Production for Activated Carbon in Vietnam. Sustainability 2020, 12, 8069. [Google Scholar] [CrossRef]
- Draper, K. The Potential for Biochar to Improve Sustainability in Coffee Cultivation and Processing: A White Paper; Freiburg: Breisgau, Germany, 2018. [Google Scholar]
- Setter, C.; Silva, F.T.M.; Assis, M.R.; Ataíde, C.H.; Trugilho, P.F.; Oliveira, T.J.P. Slow Pyrolysis of Coffee Husk Briquettes: Characterization of the Solid and Liquid Fractions. Fuel 2020, 261, 116420. [Google Scholar] [CrossRef]
- Afessa, M.M.; Debiagi, P.; Ferreiro, A.I.; Mendes, M.A.A.; Faravelli, T.; Ramayya, A.V. Experimental and Modeling Investigation on Pyrolysis of Agricultural Biomass Residues: Khat Stem and Coffee Husk for Bio-Oil Application. J. Anal. Appl. Pyrolysis 2022, 162, 105435. [Google Scholar] [CrossRef]
- The European Commission. COMMISSION REGULATION (EU) 2015/1189: Implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Solid Fuel Burners. Off. J. Eur. Union 2015, L193/100, 8–15. [Google Scholar]
- Sandeep, T.N.; Channabasamma, B.B.; Gopinandhan, T.N.; Nagaraja, J.S. The Effect of Drying Temperature on Cup Quality of Coffee Subjected to Mechanical Drying. J. Plant. Crop. 2021, 49, 35–41. [Google Scholar] [CrossRef]
- Heredia Salgado, M.A.; Coba S, J.A.; Cianferoni, A.; Säumel, I.; Tarelho, L.A. Conversion of Quinoa and Lupin Agro-Residues into Biochar in the Andes: An Experimental Study in a Pilot-Scale Auger-Type Reactor. Front. Bioeng. Biotechnol. 2022, 10, 1087933. [Google Scholar] [CrossRef]
- Heredia Salgado, M.A. Biomass Thermochemical Conversion in Small Scale Facilities. Doctoral Thesis, Aveiro University, Aveiro, Portugal, 2020. [Google Scholar]
- Schmidt, H.P.; Bucheli, T.; Kammann, C.; Glaser, B.; Abiven, S.; Leifeld, J. European Biochar Foundation Guidelines for a Sustainable Production of Biochar v4.5E. Eur. Biochar Found. (EBC) 2018, 4, 1–22. [Google Scholar] [CrossRef]
- Heredia Salgado, M.A.; Tarelho, L.A.C.; Matos, M.A.A.; Rivadeneira, D.; Narváez C, R.A. Palm Oil Kernel Shell as Solid Fuel for the Commercial and Industrial Sector in Ecuador: Tax Incentive Impact and Performance of a Prototype Burner. J. Clean. Prod. 2019, 213, 104–113. [Google Scholar] [CrossRef]
- Heredia Salgado, M.A.; Coba S, J.A.; Tarelho, L.A.C. Simultaneous Production of Biochar and Thermal Energy Using Palm Oil Residual Biomass as Feedstock in an Auto-Thermal Prototype Reactor. J. Clean. Prod. 2020, 266, 121804. [Google Scholar] [CrossRef]
- Vieites, Y.; Andretti, B.; Weiss, M.; Jacob, J.; Hallack, M. Effectively Communicating the Removal of Fossil Energy Subsidies: Evidence from Latin America. Glob. Environ. Change 2023, 81, 102690. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Rodriguez, D.T.; Fontanilla, C.A.; Ramirez, N.E.; Silva Lora, E.E.; Frear, C.S.; Stockle, C.; Amonette, J.; Garcia-Perez, M. Evaluation of Alternatives for the Evolution of Palm Oil Mills into Biorefineries. Biomass Bioenergy 2016, 95, 310–329. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Qiu, G. Testing of Flue Gas Emissions of a Biomass Pellet Boiler and Abatement of Particle Emissions. Renew. Energy 2013, 50, 94–102. [Google Scholar] [CrossRef]
- Pio, D.T.; Tarelho, L.A.C.; Matos, M.A.A. Characteristics of the Gas Produced during Biomass Direct Gasification in an Autothermal Pilot-Scale Bubbling Fluidized Bed Reactor. Energy 2017, 120, 915–928. [Google Scholar] [CrossRef]
- Bieri, L.; Classen, M.; Gutzwiller, S.; Lukacs, A.; Schmid, M. Pulpa Pyro Peru Generacion de Biocarbono y Energia de Pulpa de Cafe En Peru; Ökozentrum: Zurich, Switzerland, 2012. [Google Scholar]
- Chagnon, C.W.; Durante, F.; Gills, B.K.; Sophia, E.; Hokkanen, S.; Kangasluoma, S.M.J.; Konttinen, H.; Kröger, M.; Lafleur, W.; Ollinaho, O.; et al. From Extractivism to Global Extractivism: The Evolution of an Organizing Concept. J. Peasant Stud. 2022, 49, 760–792. [Google Scholar] [CrossRef]
- Espinoza, V.S.; Fontalvo, J.; Martí-Herrero, J.; Miguel, L.J.; Mediavilla, M. Analysis of Energy Future Pathways for Ecuador Facing the Prospects of Oil Availability Using a System Dynamics Model. Is Degrowth Inevitable? Energy 2022, 259, 124963. [Google Scholar] [CrossRef]
- Avcı, D.; Fernández-Salvador, C. Territorial Dynamics and Local Resistance: Two Mining Conflicts in Ecuador Compared. Extr. Ind. Soc. 2016, 3, 912–921. [Google Scholar] [CrossRef]
- Valladares, C.; Boelens, R. Mining for Mother Earth. Governmentalities, Sacred Waters and Nature’s Rights in Ecuador. Geoforum 2019, 100, 68–79. [Google Scholar] [CrossRef]
- Carbon Trust. Biomass Heating: A Practical Guide for Potential Users, 2nd ed.; Carbon Trust: London, UK, 2009; ISBN 9781903287866. [Google Scholar]
- Polonini, L.F.; Petrocelli, D.; Lezzi, A.M. The Effect of Flue Gas Recirculation on CO, PM and NOx Emissions in Pellet Stove Combustion. Energies 2023, 16, 954. [Google Scholar] [CrossRef]
- Vicente, E.D.; Duarte, M.A.; Tarelho, L.A.C.; Alves, C.A. Efficiency of Emission Reduction Technologies for Residential Biomass Combustion Appliances: Electrostatic Precipitator and Catalyst. Energies 2022, 15, 4066. [Google Scholar] [CrossRef]
- Kusuma, R.T.; Hiremath, R.B.; Rajesh, P.; Kumar, B.; Renukappa, S. Sustainable Transition towards Biomass-Based Cement Industry: A Review. Renew. Sustain. Energy Rev. 2022, 163, 112503. [Google Scholar] [CrossRef]
- Pradhan, P.; Gadkari, P.; Arora, A.; Mahajani, S.M. Economic Feasibility of Agro Waste Pelletization as an Energy Option in Rural India. Energy Procedia 2019, 158, 3405–3410. [Google Scholar] [CrossRef]
- Campion, L.; Bekchanova, M.; Malina, R.; Kuppens, T. The Costs and Benefits of Biochar Production and Use: A Systematic Review. J. Clean. Prod. 2023, 408, 137138. [Google Scholar] [CrossRef]
- Karan, S.K.; Woolf, D.; Azzi, E.S.; Sundberg, C.; Wood, S.A. Potential for Biochar Carbon Sequestration from Crop Residues: A Global Spatially Explicit Assessment. GCB Bioenergy 2023, 15, 1424–1436. [Google Scholar] [CrossRef]
- Ithaka Institute. Removing Carbon and Empowering Local Biochar Projects for Win of Artisanal Communities: The Win–CDR Buyers; Ithaka Institute: Berlin, Germany, 2023. [Google Scholar]
- Schmidt, H.-P.; Kammann, C.; Hagemann, N. EBC-Guidelines for the Certification of Biochar Based Carbon Sinks V2.1; Ithaka Institute for Carbon Strategies: Arbaz, Switzerland, 2020. [Google Scholar]
- Ithaka Institute. Global Artisan C-Sink: Guidelines for Carbon Sink Certification for Artisan Biochar Production; Ithaka Institute: Arbaz, Switzerland, 2022; Volume 1.0. [Google Scholar]
- Ministerio del Ambiente Agua y Transición Ecológica. Esquema de Compensación de Emisiones de Gases de Efecto Invernadero Del Ecuador; Acuerdo Ministerial 053: Quito, Ecuador, 2023.
- Forte, B.; Coleman, M.; Metcalfe, P.; Weaver, M. The Case for the PYREG Slow Pyrolysis Process in Improving the Efficiency and Profitability of Anaerobic Digestion Plants in the UK. Available online: http://www.wrap.org.uk/sites/files/wrap/DIADINeueAgfeasibilityreport.pdf (accessed on 15 March 2023).
- UNIDO. Supporting Adopters of the PPV300 PYROLYSIS Technology Strengthen Their Business Cases; UNIDO: Vienna, Austria, 2021. [Google Scholar]
Coffee Husks | Carbonized Coffee Husks | |
---|---|---|
Proximate Analysis (%wt, wet basis) | ||
Moisture | 9.4 | 9.8 |
Volatile matter | 67.6 | 12.9 |
Ash | 7.1 | 15.1 |
Fixed carbon a | 15.9 | 62.2 |
Ultimate Analysis (%wt, dry basis) | ||
Ash | 7.6 | 17.6 |
C | 41.8 | 67.4 |
H | 10.7 | 3.3 |
N | 1.9 | 2.4 |
S b | nd | nd |
O a | 38.0 | 9.3 |
Lower Heating Value (MJ/kg, dry basis) | 17.8 | 27.8 |
Molar ratios (biochar) | ||
H/Corg | -- | 0.6 |
O/Corg | -- | 0.1 |
Location | Temperature (°C) | ||
---|---|---|---|
Mean | Standard Deviation | Max. Allowed Fluctuation | |
Combustion chamber, TP1 | 448.1 | 45.1 | 89.6 |
Combustion chamber, TP2 | 451.1 | 51.7 | 90.2 |
Combustion chamber, TP3 | 546.6 | 76.5 | 109.3 |
Combustion flue gas, TP4 | 422.6 | 37.1 | 84.5 |
Pyrolysis chamber outlet, TP5 | 432.6 | 23.6 | 86.5 |
Pyrolysis chamber inlet, TP6 | 350.6 | 23.9 | 70.1 |
Pyrolysis vapors, TP7 | 293.8 | 6.9 | 58.8 |
CO * | O2 | HC | CO2 | |
---|---|---|---|---|
mg/Nm3, dry gas, at 11% O2, dry gas | %vol, dry gas | ppm, dry gas | %vol, dry gas | |
Combustion | 11,029.4 | 13.5 | 60.7 | 7.6 |
Pyrolysis: co-combustion regime | 458.3 | 5.8 | 3.3 | 14.8 |
Pyrolysis: autothermal regime | 1912.6 | 10.7 | 9.2 | 10.7 |
Strengths | Weaknesses | Opportunities | Threats | |
---|---|---|---|---|
Combustion | - Feedstock available in the facility with already low moisture content. - Low capital and operational expenditure. - Low complexity operation and easy maintenance. - Promote energy independence in the cooperative. - Avoid consumption of fossil fuels (diesel). | - Cooperatives do not have a formal financial control mechanism to estimate the decrease in drying costs that result from the use of coffee husks as a solid fuel. - Complex technology is required to improve the combustion process and decrease the release of atmospheric pollutants. - Low cost of diesel (subsidized) disincentivizes extended adoption of alternative fuels. | - Replace fossil fuels used in thermal energy production. - A subsidy reform that promotes the replacement of diesel with solid biofuels derived from agro-residues. - Implement pelletization processes and specialize in the provision of solid biofuels for other sectors. | - High emissions during combustion (smoke). - Although easy, poor maintenance protocols at the level of cooperatives. - Cooperatives governance is in general weak, with internal tensions between members and constant changes in directives board. - Potential corrosion issues linked to the presence of alkali elements in the ash (Na, K). |
Pyrolysis | - Abundant feedstock in the cooperative and nearby (e.g., palm oil waste). - Process with low emissions. - Process complies with international standards concerning emissions and biochar quality. - Carbon sequestration services using technology are regulated by a local standard (AM 053). | - Uncertainty concerning capital and operational expenditure. - Artisanal carbon sink standards are tied to low-cost and low-complexity/low-efficiency technologies. - Measurement, report, and verification (MRV) standards may require the use of smartphones and demand internet connection. - Informality in the financial management of the organization. | - Income from the sale and distribution of biochar. - Income from the trade of carbon removal certificates. -Emergence of new jobs in the rural sector linked to technology (operation and maintenance, logistics and management, carbon credits monitoring and reporting). Potential increase in agronomic outputs in farms. Long-term soil health. | - Operation and maintenance processes require proper training. - Prices of carbon credits are volatile, like commodities. - Intermediaries (project developers) required access to carbon removal marketplaces. - All relevant documentation about biochar standards is in the English language. - Biochar does not yet have a local market niche. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, M.A.H.; Säumel, I.; Tarelho, L.A.C. Post-Extractivism and Bioeconomy: An Experimental Analysis of Combustion and Pyrolysis Processes as Alternatives to Add Value to Agro-Residues (Coffee Husks) Generated in Farmer Cooperatives of the Ecuadorian Amazon. Resources 2024, 13, 142. https://doi.org/10.3390/resources13100142
Salgado MAH, Säumel I, Tarelho LAC. Post-Extractivism and Bioeconomy: An Experimental Analysis of Combustion and Pyrolysis Processes as Alternatives to Add Value to Agro-Residues (Coffee Husks) Generated in Farmer Cooperatives of the Ecuadorian Amazon. Resources. 2024; 13(10):142. https://doi.org/10.3390/resources13100142
Chicago/Turabian StyleSalgado, Mario A. Heredia, Ina Säumel, and Luís A. C. Tarelho. 2024. "Post-Extractivism and Bioeconomy: An Experimental Analysis of Combustion and Pyrolysis Processes as Alternatives to Add Value to Agro-Residues (Coffee Husks) Generated in Farmer Cooperatives of the Ecuadorian Amazon" Resources 13, no. 10: 142. https://doi.org/10.3390/resources13100142
APA StyleSalgado, M. A. H., Säumel, I., & Tarelho, L. A. C. (2024). Post-Extractivism and Bioeconomy: An Experimental Analysis of Combustion and Pyrolysis Processes as Alternatives to Add Value to Agro-Residues (Coffee Husks) Generated in Farmer Cooperatives of the Ecuadorian Amazon. Resources, 13(10), 142. https://doi.org/10.3390/resources13100142