Characterization of Yield and Physico-Chemical Parameters of Selected Wild Indigenous Fruits in Rwanda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Method
2.2. Fruit Yield Evaluation
2.3. Fruit Collection and Processing
2.4. Morphological Characterization of Myrianthus holstii and Garcinia buchananii Fruits
2.5. Determination of Proximate Content in the Fruits
2.6. Determination of the Mineral Composition in the Fruits
2.7. Determination of β-Carotene and Vitamin C Content in the Fruits
3. Statistical Analysis
4. Results and Discussion
4.1. Yield and Morphological Characterization of Fruits from Selected Indigenous Wild Fruit Trees
4.2. Proximate Analysis
4.3. Vitamins and Minerals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsutsunashvili, A.; Aránega, A.Y.; Urueña, R.C. Challenged global economics amids conflict in warring countries. Sustain. Technol. Entrep. 2024, 3, 100068. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security And Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum; FAO: Rome, Italy, 2023; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/8b27c570-2f8b-4350-8d5a-8e82432e6db7/content (accessed on 14 January 2024).
- Mokria, M.; Gebretsadik, Y.; Birhane, E.; McMullin, S.; Ngethe, E.; Hadgu, K.M.; Hagazi, N.; Tewolde-Berhan, S. Nutritional and ecoclimatic importance of indigenous and naturalized wild edible plant species in Ethiopia. Food Chem: Mol. Sci. 2022, 4, 100084. [Google Scholar] [CrossRef] [PubMed]
- Akombi, B.J.; Agho, K.E.; Merom, D.; Renzaho, A.M.; Hall, J.J. Child malnutrition in sub-Saharan Africa: A meta-analysis of demographic and health surveys (2006–2016). PLoS ONE. 2017, 12, e0177338. [Google Scholar] [CrossRef] [PubMed]
- Mannar, V.; Micha, R.; Allemandi, L.; Afshin, A.; Baker, P.; Battersby, J.; Bhutta, Z.; Corvalan, C.; Di Cesare, M.; Chen, K. 2020 Global Nutrition Report: Action on Equity to End Malnutrition. 2020. Available online: https://repository.mdx.ac.uk/item/89022 (accessed on 27 January 2024).
- Weffort, V.R.S.; Lamounier, J.A. Hidden hunger—A narrative review. J. Pediatr. 2023, 100, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M. Micronutrient Deficiency. 2017. Available online: https://ourworldindata.org/micronutrient-deficiency (accessed on 1 January 2024).
- Talukdar, N.R.; Choudhury, P.; Barbhuiya, R.A.; Singh, B. Importance of non-timber forest products (NTFPs) in rural livelihood: A study in Patharia Hills Reserve Forest, northeast India. Trees For. People 2021, 3, 100042. [Google Scholar] [CrossRef]
- Vedeld, P.; Angelsen, A.; Bojö, J.; Sjaastad, E.; Berg, G.K. Forest environmental incomes and the rural poor. For. Policy Econ. 2007, 9, 869–879. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga-Corral, M.; García-Oliveira, P.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Carpena, M.; Otero, P.; Gullón, P.; Prieto, M.A.; Simal-Gandara, J. Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits. Food Funct. 2020, 11, 8493–8515. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.C.; Kumar, P.; Kumar, R.; Das, S.; Misra, T.K.; Dey, D. Nutritional composition and antioxidant properties of the wild edible fruits of Tripura, Northeast India. Sustainability 2022, 14, 12194. [Google Scholar] [CrossRef]
- Heilpern, S.A.; DeFries, R.; Fiorella, K.; Flecker, A.; Sethi, S.A.; Uriarte, M.; Naeem, S. Declining diversity of wild-caught species puts dietary nutrient supplies at risk. Sci. Adv. 2021, 7, eabf9967. [Google Scholar] [CrossRef]
- Kalaba, F.K.; Chirwa, P.W.; Prozesky, H. The contribution of indigenous fruit trees in sustaining rural livelihoods and conservation of natural resources. J. Hortic. For. 2009, 1, 1–6. [Google Scholar]
- Mapongmetsem, P.M.; Kapchie, V.N.; Tefempa, B.H. Diversity of local fruit trees and their contribution in sustaining the rural livelihood in the northern Cameroon. Ethiop. J. Environ. Stud. Manag. 2012, 5, 32–36. [Google Scholar] [CrossRef]
- Stadlmayr, B.; Charrondière, U.R.; Eisenwagen, S.; Jamnadass, R.; Kehlenbeck, K. Nutrient composition of selected indigenous fruits from sub-Saharan Africa. J. Sci. Food Agric. 2013, 93, 2627–2636. [Google Scholar] [CrossRef] [PubMed]
- Bvenura, C.; Sivakumar, D. The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Res. Int. 2017, 99, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Amin, M.; Khan, M.E.H.; Jones, D.A. Assessment of variability in nutritional quality of wild edible fruit of Monotheca buxifolia (Falc.) A. DC. Along the altitudinal gradient in Pakistan. Saudi J. Biol. Sci. 2023, 30, 103489. [Google Scholar] [CrossRef] [PubMed]
- Leakey, R.R.B.; Greenwell, P.; Hall, M.N.; Atangana, A.R.; Usoro, C.; Anegbeh, P.O.; Fondoun, J.M.; Tchoundjeu, Z. Domestication of Irvingia gabonensis: 4. Tree-to-tree variation in food-thickening properties and in fat and protein contents of dika nut. Food Chem. 2005, 90, 365–378. [Google Scholar] [CrossRef]
- Ndabikunze, B.K.; Mugasha, A.G.; Chcimshama, S.A.D.; Tiisekwa, B.P.M. Nutritive, value of selected forest/woodland edible fruits, seeds and nuts in Tanzania. Tanzan. J. Agric. Sci. 2006, 7, 27–33. Available online: https://www.ajol.info/index.php/tjags/article/view/109926 (accessed on 12 December 2023).
- Prasad, K.N.; Hassan, F.A.; Yang, B.; Kong, K.W.; Ramanan, R.N.; Azlan, A.; Ismail, A. Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. Peels. Food Chem. 2011, 128, 1121–1127. [Google Scholar] [CrossRef]
- Ruffo, C.K.; Birnie, A.; Tengnäs, B. Edible Wild Plants of Tanzania. 2002. Available online: https://agris.fao.org/search/en/providers/122621/records/647396b768b4c299a3fb6a61 (accessed on 1 January 2024).
- Minzangi, K.; Kaaya, A.N.; Kansiime, F.; Tabuti, J.R.; Samvura, B. Oil content and physicochemical characteristics of some wild oilseed plants from Kivu region Eastern Democratic Republic of Congo. Afr. J. Biotechnol. 2011, 10, 189–195. [Google Scholar]
- FAO. Fruit Specific Preservation Technologies in Fruit and Vegetable Processing; FAO Corporate Document Repository: Rome, Italy, 2014. [Google Scholar]
- Bigirimana, C.; Omujal, F.; Isubikalu, P.; Bizuru, E.; Obaa, B.; Malinga, M.; Agea, J.G.; Lamoris, J.B. Utilisation of indigenous fruit tree species within the Lake Victoria Basin, Rwanda. Agric. Sci. Int. J. 2016, 1, 1–3. [Google Scholar]
- Van den Bilcke, N.; Alaerts, K.; Ghaffaripour, S.; Simbo, D.J.; Samson, R. Physico-chemical properties of tamarind (Tamarindus indica L.) fruits from Mali: Selection of elite trees for domestication. Genet. Resour. Crop Evol. 2014, 61, 537–553. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Nishimwe, G.; Okoth, E.M.; Rimberia, F.K. Evaluation of Physicochemical, Nutritional and Sensory Quality Characteristics of New Papaya Hybrids Fruits Developed in JKUAT. 2019. Available online: https://www.academia.edu/download/71511418/883279d824785c1dc83c8c54b7659b0521b2.pdf (accessed on 23 November 2023).
- AOAC. Official Methods of Analysis AOAC International, 15th ed; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Horwitz, W.; Latimer, G.W. Official Methods of AOAC International, 18th ed; Association of Official Analytical Chemistry International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- James, G.S. Analytical Chemistry of Foods; Blackie Academic and Professional: London, UK, 1995. [Google Scholar]
- Okullo, J.B.L.; Omujal, F.; Agea, J.G.; Vuzi, P.C.; Namutebi, A.; Okello, J.B.A.; Nyanzi, S.A. Proximate and mineral composition of shea (Vitellaria paradoxa CF Gaertn) fruit pulp in Uganda. Afr. J. Food Agric. Nutr. Dev. 2010, 10. Available online: https://www.ajol.info/index.php/ajfand/article/view/64286 (accessed on 20 November 2023).
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics—A Biometric Approach, 3rd ed.; McGraw-Hill: Toronto, Canada, 1997; ISBN 9780070610286. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://cir.nii.ac.jp/crid/1370298755636824325 (accessed on 25 January 2024).
- Omondi, M.; Rimberia, F.K.; Wainaina, C.M.; Mukundi, J.B.N.; Orina, J.; Gebauer, J.; Kehlenbeck, K. Fruit morphological diversity and productivity of baobab (Adansonia digitata L.) in coastal and lower eastern Kenya. For. Trees Livelihood. 2019, 28, 266–280. [Google Scholar] [CrossRef]
- Andrew, S.M.; Kombo, S.A.; Chamshama, S.A. Diversity in fruit and seed morphology of wooden banana (Entandrophragma bussei Harms ex Engl.) populations in Tanzania. Trees For. People 2021, 5, 100095. [Google Scholar] [CrossRef]
- Shahbazi, F.; Rahmati, S. Mass modeling of fig (Ficus carica L.) fruit with some physical characteristics. Food Sci. Nutr. 2013, 1, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Mkwezalamba, I.; Munthali, C.R.; Missanjo, E. Phenotypic variation in fruit morphology among provenances of Sclerocarya birrea (A. Rich.) Hochst. Int. J. For. Res. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- De Smedt, S.; Alaerts, K.; Kouyaté, A.M.; Van Damme, P.; Potters, G.; Samson, R. Phenotypic variation of baobab (Adansonia digitata L.) fruit traits in Mali. Agrofor. Syst. 2011, 82, 87–97. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Study of the Organic Acids Composition of Quince (Cydonia oblonga Miller) Fruit and Jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [Google Scholar] [CrossRef]
- Cogoi, L.; Giacomino, M.S.; Pellegrino, N.; Anesini, C.; Filip, R. Nutritional and phytochemical study of Ilex paraguariensis fruits. J. Chem. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances, 10th ed.; National Academies Press (US): Washington, DC, USA, 1989. [Google Scholar] [PubMed]
- Saura-Calixto, F.; Canellas, J. Mineral Composition of Almond Varieties (Prunus amygdalus). Z. Lebensm. -Unters. -Forsch. 1982, 174, 129–131. [Google Scholar] [CrossRef]
District | Administrative Sector | Sampled Trees | Latitude (S) | Longitude (E) | Altitude (m.a.s.l) |
---|---|---|---|---|---|
Bugesera | Juru | T1 | 2°6′36″ | 30°12′6″ | 1458.4 |
Bugesera | Juru | T2 | 2°5′38″ | 30°13′57″ | 1602.9 |
Bugesera | Juru | T3 | 2°4′52″ | 30°14′5″ | 1489.9 |
Bugesera | Nyamata | T1 | 2°9′46″ | 30°6′22″ | 1495.5 |
Bugesera | Nyamata | T2 | 2°11′4″ | 30°4′34″ | 1504.1 |
Bugesera | Nyamata | T3 | 2°9′42″ | 30°4′31″ | 1422.6 |
Bugesera | Musenyi | T1 | 2°11′15″ | 30°3′18″ | 1520.4 |
Bugesera | Musenyi | T2 | 2°11′18″ | 30°1′56″ | 1422.9 |
Bugesera | Musenyi | T3 | 2°10′58″ | 30°1′44″ | 1422.5 |
Nyamagabe | Kitabi | T1 | 2°31′10″ | 29°25′17″ | 2341.6 |
Nyamagabe | Kitabi | T2 | 2°31′38″ | 29°26′20″ | 2274.1 |
Nyamagabe | Kitabi | T3 | 2°32′45″ | 29°27′35″ | 2220.5 |
Nyamagabe | Musebeya | T1 | 2°24’49″ | 29°26’50″ | 2194 |
Nyamagabe | Musebeya | T2 | 2°23′34″ | 29°26′13″ | 1991.4 |
Nyamagabe | Musebeya | T3 | 2°24′12″ | 29°27′12″ | 2255.9 |
Nyamagabe | Nkomane | T1 | 2°18′19″ | 29°24′31″ | 2132.1 |
Nyamagabe | Nkomane | T2 | 2°17′54″ | 29°24′12″ | 2226.3 |
Nyamagabe | Nkomane | T3 | 2°17′48″ | 29°24′1″ | 2210.3 |
Location | Fruit Length (cm) | Fruit Width (cm) | Fruit Weight (g) | Number of Seed/Fruit | Seed Weight/Fruit | Seed Length | Seed Width | Pulp% | |
---|---|---|---|---|---|---|---|---|---|
Garcinia buchanannii | Juru | 2.39 ± 0.23 a | 2.47 ± 0.11 a | 8.25 ± 1.3 a | 2.7 ± 0.17 a | 2.21 ± 0.18 a | 1.26 ± 0.040 a | 0.84 ± 0.02 a | 44.6 ± 5.79 a |
Musenyi | 2.25 ± 0.2 a | 2.28 ± 0.15 a | 7.59 ± 1.27 a | 3.13 ± 0.15 a | 2.37 ± 0.54 a | 1.25 ± 0.11 a | 0.83 ± 0.07 a | 40.2 ± 3.24 a | |
Nyamata | 2.21 ± 0.38 a | 3.03 ± 0.78 a | 6.96 ± 1.93 a | 2.63 ± 0.32 a | 2.42 ± 0.24 a | 1.22 ± 0.055 a | 0.783 ± 0.04 a | 38.7 ± 4.12 a | |
p-value | 0.793 | 0.145 | 0.719 | 0.109 | 0.792 | 0.897 | 0.494 | 0.461 | |
Myrianthus holstii | Kitabi | 5.67 ± 1.97 b | 5.48 ± 1.68 b | 180 ± 67.9 b | 18.9 ± 5.55 a | 17.3 ± 9.43 b | 1.34 ± 0.46 a | 0.867 ± 0.27 a | 71.9 ± 23.9 a |
Musebeya | 9.81 ± 0.95 a | 8.32 ± 0.59 a | 314 ± 47.4 a | 23.6 ± 5.44 a | 41.7 ± 11.7 b | 1.8 ± 0.02 a | 1.27 ± 0.19 a | 84.6 ± 2.32 a | |
Nkomane | 8.9 ± 0.2 a | 6.85 ± 0.49 ab | 227 ± 39.2 b | 25.9 ± 2.2 a | 18 ± 4.4 b | 1.63 ± 0.06 a | 1.12 ± 0.11 a | 88.9 ± 0.75 a | |
p-value | 0.014 * | 0.024 * | 0.005 ** | 0.135 | 0.024 * | 0.208 | 0.194 | 0.373 |
Fruit Length | Fruit Width | Fruit Weight | No of Seed | Seed Weight | Seed Length | Seed Width | Pulp% | |
---|---|---|---|---|---|---|---|---|
Fruit Length | 1.00 | |||||||
Fruit Width | −0.54 | 1.00 | ||||||
Fruit Weight | 0.89 ** | −0.57 | 1.00 | |||||
No of Seed | 0.22 | −0.68 * | 0.19 | 1.00 | ||||
Seed Weight | −0.02 | 0.31 | 0.14 | −0.11 | 1.00 | |||
Seed Length | 0.33 | −0.36 | 0.55 | −0.02 | 0.36 | 1.00 | ||
Seed Width | 0.41 | −0.34 | 0.61 | −0.03 | 0.11 | 0.79 *** | 1.00 | |
Pulp% | 0.61 | −0.41 | 0.76 * | −0.11 | −0.31 | 0.24 | 0.55 | 1.00 |
Fruit Length | Fruit Width | Fruit Weight | No of Seed | Seed Weight | Seed Length | Seed Width | Pulp% | |
---|---|---|---|---|---|---|---|---|
Fruit Length | 1.00 | |||||||
Fruit Width | 0.92 *** | 1.00 | ||||||
Fruit Weight | 0.85 ** | 0.94 *** | 1.00 | |||||
No of Seed | 0.79 * | 0.72 * | 0.63 | 1.00 | ||||
Seed Weight | 0.71 * | 0.77 * | 0.87 ** | 0.32 | 1.00 | |||
Seed Length | 0.89 ** | 0.91 *** | 0.75 * | 0.72 * | 0.65 | 1.00 | ||
Seed Width | 0.84 ** | 0.81 ** | 0.73 * | 0.47 | 0.76 * | 0.88 ** | 1.00 | |
Pulp% | 0.73 * | 0.65 | 0.41 | 0.71 * | 0.27 | 0.87 ** | 0.67 * | 1.00 |
Location | pH | TTA | TSS | Moisture | Fibers | Ash | Protein | Fat | |
---|---|---|---|---|---|---|---|---|---|
G. buchanannii | Juru | 2.99 ± 0.006 a | 3.61 ± 0.007 a | 13.7 ± 0.084 ab | 80.4 ± 0.017 c | 19.6 ± 0.051 a | 2.98 ± 0.023 a | 9.24 ± 0.11 a | 1.01 ± 0.014 a |
Musenyi | 2.97 ± 0.015 a | 3.66 ± 0.033 a | 13.7 ± 0.032 b | 80.5 ± 0.023 b | 18.8 ± 0.038 b | 2.67 ± 0.184 b | 7.81 ± 0.11 b | 0.91 ± 0.011 b | |
Nyamata | 3.00 ± 0.0321 a | 3.48 ± 0.044 b | 13.8 ± 0.02 a | 82.7 ± 0.032 a | 18.4 ± 0.017 c | 2.59 ± 0.007 b | 7.99 ± 0.063 b | 0.78 ± 0.010 c | |
p-value | 0.118 | 0.004 ** | 0.023 * | <0.001 *** | <0.001 *** | 0.020 * | <0.001 *** | <0.001 *** | |
M. holstii | Kitabi | 3.36 ± 0.01 b | 2.71 ± 0.005 a | 15.5 ± 0.02 b | 91.8 ± 1.21 a | 25 ± 0.033 a | 3.02 ± 0.014 a | 9.64 ± 0.063 b | 0.81 ± 0.026 c |
Musebeya | 3.71 ± 0.101 a | 2.55 ± 0.024 c | 15.5 ± 0.015 c | 85.1 ± 0.049 b | 25 ± 0.064 b | 2.92 ± 0.045 a | 9.39 ± 0.063 c | 2.92 ± 0.045 a | |
Nkomane | 3.44 ± 0.015 b | 2.62 ± 0.016 b | 15.6 ± 0.015 a | 91.8 ± 1.2 a | 24.8 ± 0.019 a | 2.85 ± 0.098 a | 9.75 ± 0.063 a | 1.02 ± 0.035 b | |
p-value | 0.004 ** | <0.001 *** | 0.004 ** | <0.001 *** | 0.032 * | 0.090 | < 0.001 *** | <0.001 *** |
K | Fe | Ca | Na | Cu | Zn | β Carotene | Vitamin C | ||
---|---|---|---|---|---|---|---|---|---|
G. buchanannii | Juru | 262 ± 2.41 a | 14.7 ± 0.225 a | 15.0 ± 0.073 b | 7.32 ± 0.002 a | 0.0411 ± 0.001 a | 2.27 ± 0.001 a | 0.95 ± 0.001 a | 34.8 ± 0.02 a |
Musenyi | 251 ± 2.85 b | 12.7 ± 0.01 b | 15.3 ± 0.047 a | 6.45 ± 0.004 b | 0.0365 ± 0.001 a | 2.15 ± 0.002 b | 0.78 ± 0.001 b | 34.1 ± 0.015 b | |
Nyamata | 245 ± 0.954 c | 12.6 ± 0.025 b | 14.9 ± 0.062 b | 6.23 ± 0.002 c | 0.0385 ± 0.001 a | 1.89 ± 0.002 c | 0.56 ± 0.003 c | 33.8 ± 0.02 c | |
p-value | <0.001 *** | <0.001 *** | <0.001 ** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | |
M. holstii | Kitabi | 164 ± 1.8 b | 15.6 ± 0.28 a | 10.1 ± 0.238 a | 10.1 ± 0.372 a | 0.568 ± 0.001 b | 2.32 ± 0.174 a | 0.93 ± 0.001 b | 19.2 ± 0.02 c |
Musebeya | 169 ± 0.442 a | 16 ± 0.093 a | 10.1 ± 0.216 a | 9.81 ± 0.082 a | 0.581 ± 0.002 a | 2.32 ± 0.082 a | 0.932 ± 0.001 a | 19.9 ± 0.01 a | |
Nkomane | 166 ± 0.582 b | 15.7 ± 0.156 a | 9.95 ± 0.621 a | 9.69 ± 0.16 a | 0.561 ± 0.001 c | 2.32 ± 0.001 a | 0.92 ± 0.002 c | 19.7 ± 0.015 b | |
p-value | 0.011 * | 0.267 | 0.823 | 0.291 | <0.001 *** | 1 | <0.001 ** | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimwe, G.; Augustino, S.; Dahlin, A.S.; Niyitanga, F. Characterization of Yield and Physico-Chemical Parameters of Selected Wild Indigenous Fruits in Rwanda. Resources 2024, 13, 101. https://doi.org/10.3390/resources13070101
Nishimwe G, Augustino S, Dahlin AS, Niyitanga F. Characterization of Yield and Physico-Chemical Parameters of Selected Wild Indigenous Fruits in Rwanda. Resources. 2024; 13(7):101. https://doi.org/10.3390/resources13070101
Chicago/Turabian StyleNishimwe, Gaudence, Suzana Augustino, Anna Sigrun Dahlin, and Fidèle Niyitanga. 2024. "Characterization of Yield and Physico-Chemical Parameters of Selected Wild Indigenous Fruits in Rwanda" Resources 13, no. 7: 101. https://doi.org/10.3390/resources13070101
APA StyleNishimwe, G., Augustino, S., Dahlin, A. S., & Niyitanga, F. (2024). Characterization of Yield and Physico-Chemical Parameters of Selected Wild Indigenous Fruits in Rwanda. Resources, 13(7), 101. https://doi.org/10.3390/resources13070101