Application of Non-Parametric and Forecasting Models for the Sustainable Development of Energy Resources in Brazil
Abstract
:1. Introduction
2. Literature Review
2.1. Predictive Models Using Machine Learning Techniques
2.2. Econometric Models: ARIMA and SARIMA
2.3. Comparative of Machine Learning and Classical Econometric Forecasting Models
3. Materials and Methods
4. Database Consolidation
5. Estimation of Energy Efficiency
5.1. Data Envelopment Analysis (DEA)
5.2. Bootstrap Method for Outlier Removal
- Calculate the efficiency scores of all by the classical model [39], generating a set of efficiencies given by ;
- Randomly select a subset K with corresponding to 10% of the original sample of , which results in a set of ;
- Calculate the efficiency scores of all selected by bootstrap resampling B times, where B takes values from ;
- Assesses the impact using a statistical measure to analyze if there were significant changes in the efficiency scores through the leverage of each selected in B, storing the leverage information in ;
- Repeat Steps 2, 3, and 4 S times with ;
- Calculate the local leverage from the sum of the leverages of divided by , which corresponds to approximately ;
- Calculate the global leverage through the standard deviation of the efficiency measures before and after removing the data; for more details on calculating leverage, please refer to the provided reference [36].
5.3. Confidence Interval Construction with Bootstrap
- For each observation , calculate the corresponding DEA efficiency score using linear programming;
- Draw a dataset from the original sample randomly using bootstrap, generating a random sample of size P, where P is the same size as the original sample. For this sample, obtain ;
- From this random sample , construct , where for with orientation input and for with orientation output with ;
6. Identification of Parameters (p,d,q)
6.1. Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal (SARIMA)
6.2. Transforming Variables into Time Series
6.3. Time Series Seasonality Test
6.4. Parameters Test with Auto Arima
7. Diagnostic Checking
8. Results and Discussion
8.1. Energy Efficiency Analysis
8.2. SARIMA Forecasting
8.3. Implications
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | autoregressive |
MA | moving average |
I | integrated |
ARIMA | autoregressive integrated moving average |
SARIMA | seasonal autoregressive integrated moving average |
GDP | gross domestic product |
ACF | autocorrelation function |
PACF | partial autocorrelation function |
ML | machine learning |
CNNs | convolutional neural networks |
CRFs | conditional random fields |
ANNs | artificial neural networks |
SG | smart grids |
SMI | smart metering infrastructure |
DEA | data envelopment analysis |
DMUs | decision-making units |
CRS | constant return scale |
VRS | variable return scale |
sfa | stochastic frontier analysis |
KPSS | Kwiatkowski Phillips Schmidt Shin |
DF | Dickey–Fuller |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
MSE | mean square error |
RMSE | root mean square error |
MASE | mean absolute scaled error |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
AICc | corrected Akaike information criterion |
EPE | Energy Research Company |
IPEA | Institute of Applied Economic Research |
Appendix A
SDG Target | Description | Actions Taken by Brazil |
---|---|---|
7.1: Universal access to affordable, reliable, and modern energy services | Ensure everyone has access to clean and sustainable energy. |
|
7.2: Increase the share of renewable energy in the global energy mix | Promote clean energy sources. |
|
7.3: Double the global rate of improvement in energy efficiency | Reduce energy consumption without compromising economic activity. |
|
7.4: Enhance international cooperation for clean energy research and technology | Collaborate with other countries on clean energy development. |
|
7.5: Expand infrastructure for sustainable energy services in developing countries | Assist developing nations in accessing clean energy solutions. |
|
Date | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|---|---|---|---|
January | - | 0.697 | 0.728 | 0.573 | 0.553 | 0.733 | 0.583 | 0.529 | 0.573 | 0.556 |
February | - | 0.837 | 0.594 | 0.581 | 0.549 | 0.734 | 0.548 | 0.556 | 0.543 | 0.547 |
Marchch | - | 0.727 | 0.579 | 0.535 | 0.546 | 0.623 | 0.525 | 0.534 | 0.512 | 0.574 |
April | 0.735 | 0.591 | 0.556 | 0.467 | 0.582 | 0.608 | 0.520 | 0.552 | 0.519 | 0.583 |
May | - | 0.771 | 0.794 | 0.560 | 0.571 | 0.766 | 0.584 | 0.614 | 0.608 | 0.598 |
June | - | 0.840 | 0.769 | 0.636 | 0.658 | 0.830 | 0.605 | 0.650 | 0.621 | 0.640 |
July | - | 0.865 | 0.805 | 0.691 | 0.656 | 0.777 | 0.657 | 0.637 | 0.689 | 0.663 |
August | 0.994 | 0.765 | 0.674 | 0.611 | 0.555 | 0.664 | 0.599 | 0.590 | 0.624 | 0.607 |
September | 0.744 | 0.618 | 0.628 | 0.516 | 0.548 | 0.619 | 0.563 | 0.530 | 0.554 | 0.589 |
October | 0.703 | 0.695 | 0.656 | 0.544 | 0.539 | 0.613 | 0.592 | 0.572 | 0.597 | 0.593 |
November | 0.798 | 0.700 | 0.628 | 0.504 | 0.531 | 0.606 | 0.625 | 0.613 | 0.560 | 0.570 |
December | 0.757 | 0.680 | 0.639 | 0.532 | 0.674 | 0.590 | 0.570 | 0.596 | 0.599 | 0.597 |
Date | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
January | 0.543 | 0.549 | 0.677 | 0.684 | 0.693 | 0.654 | 0.718 | 0.688 | 0.795 | 0.889 |
February | 0.489 | 0.533 | 0.662 | 0.692 | 0.698 | 0.660 | 0.725 | 0.786 | 0.868 | 0.908 |
March | 0.552 | 0.629 | 0.666 | 0.655 | 0.652 | 0.676 | 0.725 | 0.760 | 0.831 | 0.890 |
April | 0.588 | 0.614 | 0.616 | 0.679 | 0.669 | 0.764 | 0.858 | 0.778 | 0.878 | 0.899 |
May | 0.617 | 0.677 | 0.701 | 0.787 | 0.720 | 0.741 | 0.963 | 0.872 | 0.947 | 0.976 |
June | 0.661 | 0.737 | 0.805 | 0.802 | 0.836 | 0.848 | - | 0.897 | - | - |
July | 0.693 | 0.795 | 0.819 | 0.853 | 0.820 | 0.901 | 0.940 | 0.951 | - | - |
August | 0.649 | 0.711 | 0.793 | 0.816 | 0.786 | 0.863 | 0.839 | 0.903 | 0.975 | - |
September | 0.631 | 0.718 | 0.712 | 0.706 | 0.747 | 0.821 | 0.790 | 0.852 | 0.948 | 0.912 |
October | 0.602 | 0.677 | 0.745 | 0.720 | 0.728 | 0.762 | 0.704 | 0.831 | 0.986 | 0.887 |
November | 0.564 | 0.672 | 0.739 | 0.719 | 0.730 | 0.719 | 0.775 | 0.889 | 0.971 | 0.873 |
December | 0.623 | 0.713 | 0.776 | 0.764 | 0.770 | 0.782 | 0.766 | 0.849 | 0.951 | - |
Month | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |
---|---|---|---|---|---|---|---|
January | 45,223.43 | 46,442.76 | 47,464.77 | 48,527.26 | 49,613.77 | 50,724.61 | 51,860.32 |
February | 44,885.43 | 46,019.91 | 47,037.97 | 48,090.97 | 49,167.71 | 50,268.56 | 51,394.06 |
March | 46,702.57 | 47,694.36 | 48,753.33 | 49,844.79 | 50,960.80 | 52,101.80 | 53,268.34 |
April | 45,577.83 | 46,511.62 | 47,546.96 | 48,611.44 | 49,699.84 | 50,812.61 | 51,950.29 |
May | 44,254.19 | 45,233.10 | 46,241.76 | 47,277.05 | 48,335.57 | 49,417.79 | 50,524.24 |
June | 43,446.27 | 44,366.31 | 45,356.86 | 46,372.36 | 47,410.62 | 48,472.13 | 49,557.41 |
July | 43,354.12 | 44,422.76 | 45,415.42 | 46,432.24 | 47,471.84 | 48,534.72 | 49,621.40 |
August | 44,459.96 | 45,466.72 | 46,483.31 | 47,524.05 | 48,588.10 | 49,675.97 | 50,788.20 |
September | 45,265.66 | 46,200.20 | 47,233.62 | 48,291.16 | 49,372.38 | 50,477.82 | 51,608.00 |
October | 46,496.98 | 47,352.26 | 48,411.76 | 49,495.68 | 50,603.87 | 51,736.88 | 52,895.26 |
November | 46,648.16 | 47,442.90 | 48,504.64 | 49,590.64 | 50,700.96 | 51,836.14 | 52,996.74 |
December | 46,200.65 | 47,209.60 | 48,266.27 | 49,346.94 | 50,451.80 | 51,581.41 | 52,736.30 |
Month | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 |
---|---|---|---|---|---|---|---|
January | 894,130.7 | 976,779.9 | 1,065,062.3 | 1,160,704.3 | 1,264,826.2 | 1,378,243.9 | 1,501,813.5 |
February | 898,594.8 | 975,965.6 | 1,063,101.4 | 1,158,260.6 | 1,262,037.6 | 1,375,153.7 | 1,498,425.1 |
March | 972,345.1 | 1,045,097.5 | 1,139,144.1 | 1,241,412.9 | 1,352,764.2 | 1,474,063.1 | 1,606,221.8 |
April | 949,898.1 | 1,024,401.4 | 1,115,918.2 | 1,215,828.3 | 1,324,772.7 | 1,443,515.7 | 1,572,916.8 |
May | 956,952.5 | 1,035,981.0 | 1,129,154.4 | 1,230,504.7 | 1,340,868.8 | 1,461,097.3 | 1,592,092.1 |
June | 966,061.6 | 1,050,497.1 | 1,144,394.5 | 1,246,874.4 | 1,358,608.9 | 1,480,388.1 | 1,613,096.0 |
July | 991,411.8 | 1,080,793.6 | 1,177,950.5 | 1,283,661.4 | 1,398,785.3 | 1,524,203.6 | 1,660,854.9 |
August | 993,631.4 | 1,079,827.0 | 1,176,389.2 | 1,281,751.8 | 1,396,619.0 | 1,521,808.2 | 1,658,230.4 |
September | 972,186.6 | 1,057,416.6 | 1,152,433.2 | 1,255,838.2 | 1,368,460.2 | 1,491,156.9 | 1,624,844.3 |
October | 1,016,733.6 | 1,106,198.2 | 1,205,156.1 | 1,313,110.6 | 1,430,794.5 | 1,559,049.6 | 1,698,811.3 |
November | 1,024,990.2 | 1,115,216.2 | 1,215,391.6 | 1,324,431.4 | 1,443,198.9 | 1,572,594.3 | 1,713,581.9 |
December | 1,038,563.0 | 1,132,211.8 | 1,233,529.5 | 1,344,038.9 | 1,464,500.1 | 1,595,778.8 | 1,738,834.1 |
References
- Ang, T.Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Weschenfelder, F.; de Novaes Pires Leite, G.; Araújo da Costa, A.C.; de Castro Vilela, O.; Ribeiro, C.M.; Villa Ochoa, A.A.; Araújo, A.M. A review on the complementarity between grid-connected solar and wind power systems. J. Clean. Prod. 2020, 257, 120617. [Google Scholar] [CrossRef]
- Brazilian Energy Research Company National Energy Balance. 2023. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2023 (accessed on 1 April 2024).
- Yasmeen, R.; Yao, X.; Ul Haq Padda, I.; Shah, W.U.H.; Jie, W. Exploring the role of solar energy and foreign direct investment for clean environment: Evidence from top 10 solar energy consuming countries. Renew. Energy 2022, 185, 147–158. [Google Scholar] [CrossRef]
- Shyu, C.W. A framework for ‘right to energy’ to meet UN SDG7: Policy implications to meet basic human energy needs, eradicate energy poverty, enhance energy justice, and uphold energy democracy. Energy Res. Soc. Sci. 2021, 79, 102199. [Google Scholar] [CrossRef]
- Caldeira, A.A.; Wilbert, M.D.; Moreira, T.B.S.; Serrano, A.L.M. Brazilian State debt sustainability: An analysis of net debt and primary balance; [Sustainability of Brazilian state debt: An analysis of the relationship between net debt and primary result]; [Sustainability of the debt of the Brazilian states: An analysis of the net debt and the primary balance]. Public Adm. Mag. 2016, 50, 285–306. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. A review on machine learning forecasting growth trends and their real-time applications in different energy systems. Sustain. Cities Soc. 2020, 54, 102010. [Google Scholar] [CrossRef]
- Serrano, A.L.M.; Rodrigues, G.A.P.; Martins, P.H.d.S.; Saiki, G.M.; Filho, G.P.R.; Gonçalves, V.P.; Albuquerque, R.d.O. Statistical Comparison of Time Series Models for Forecasting Brazilian Monthly Energy Demand Using Economic, Industrial, and Climatic Exogenous Variables. Appl. Sci. 2024, 14, 5846. [Google Scholar] [CrossRef]
- Bispo, G.D.; Vergara, G.F.; Saiki, G.M.; Martins, P.H.d.S.; Coelho, J.G.; Rodrigues, G.A.P.; Oliveira, M.N.d.; Mosquéra, L.R.; Gonçalves, V.P.; Neumann, C.; et al. Automatic Literature Mapping Selection: Classification of Papers on Industry Productivity. Appl. Sci. 2024, 14, 3679. [Google Scholar] [CrossRef]
- Arnob, S.S.; Arefin, A.I.M.S.; Saber, A.Y.; Mamun, K.A. Energy Demand Forecasting and Optimizing Electric Systems for Developing Countries. IEEE Access 2023, 11, 39751–39775. [Google Scholar] [CrossRef]
- Lins, M.E.; Oliveira, L.B.; Da Silva, A.C.M.; Rosa, L.P.; Pereira, A.O., Jr. Performance assessment of alternative energy resources in Brazilian power sector using data envelopment analysis. Renew. Sustain. Energy Rev. 2012, 16, 898–903. [Google Scholar] [CrossRef]
- Costa, M.A.; Salvador, C.V.M.; da Silva, A.V. Stochastic data envelopment analysis applied to the 2015 Brazilian energy distribution benchmarking model. Decis. Anal. J. 2022, 3, 100061. [Google Scholar] [CrossRef]
- Camioto, F.d.C.; Rebelatto, D.A.d.N.; Rocha, R.T. Energy efficiency analysis of BRICS countries: A study using Data Envelopment Analysis. G&P 2015, 23, 192–203. [Google Scholar]
- Chaturvedi, S.; Rajasekar, E.; Natarajan, S.; McCullen, N. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 2022, 168, 113097. [Google Scholar] [CrossRef]
- Rafayal, S.; Cevik, M.; Kici, D. An empirical study on probabilistic forecasting for predicting city-wide electricity consumption. In Proceedings of the 35th Canadian Conference on Artificial Intelligence, Toronto, ON, Canada, 30 May–3 June 2022. [Google Scholar]
- Riady, S.R.; Apriani, R. Multivariate time series with Prophet Facebook and LSTM algorithm to predict the energy consumption. In Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), Jakarta, Indonesia, 16 February 2023; pp. 805–810. [Google Scholar] [CrossRef]
- Al-Haija, Q.A.; Mohamed, O.; Elhaija, W.A. Predicting global energy demand for the next decade: A time-series model using nonlinear autoregressive neural networks. Energy Explor. Exploit. 2023, 41, 1884–1898. [Google Scholar] [CrossRef]
- Thangavel, A.; Govindaraj, V. Forecasting Energy Demand Using Conditional Random Field and Convolution Neural Network. Elektron. Elektrotechnika 2022, 28, 12–22. [Google Scholar] [CrossRef]
- Gundu, V.; Simon, S.P. Pso–lstm for short term forecast of heterogeneous time series electricity price signals. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 2375–2385. [Google Scholar] [CrossRef]
- Verwiebe, P.A.; Seim, S.; Burges, S.; Schulz, L.; Müller-Kirchenbauer, J. Modeling Energy Demand—A Systematic Literature Review. Energies 2021, 14, 7859. [Google Scholar] [CrossRef]
- Sengar, S.; Liu, X. Ensemble approach for short term load forecasting in wind energy system using hybrid algorithm. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5297–5314. [Google Scholar] [CrossRef]
- Gujarati, D.N.; Porter, D.C. Econometria Básica-5; Amgh Editora: Porto Alegre, Brazil, 2011. [Google Scholar]
- Martinello, L.M.; Rodrigues, S.B.; Hickmann, T.; Corrêa, J.M.; Teixeira, L.L. Comparative study between ARIMA and ETS forecasting models for temporal data on milk production in Brazil. J. Inst. Laticín. Cândido Tostes 2021, 76, 12–27. [Google Scholar] [CrossRef]
- Kontopoulou, V.I.; Panagopoulos, A.D.; Kakkos, I.; Matsopoulos, G.K. A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet 2023, 15, 255. [Google Scholar] [CrossRef]
- Dimri, T.; Ahmad, S.; Sharif, M. Time series analysis of climate variables using seasonal ARIMA approach. J. Earth Syst. Sci. 2020, 129, 149. [Google Scholar] [CrossRef]
- Shadab, A.; Ahmad, S.; Said, S. Spatial forecasting of solar radiation using ARIMA model. Remote. Sens. Appl. Soc. Environ. 2020, 20, 100427. [Google Scholar] [CrossRef]
- Yamak, P.T.; Yujian, L.; Gadosey, P.K. A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting. In Proceedings of the Association for Computing Machinery, ACAI ‘19, New York, NY, USA, 7 February 2020; pp. 49–55. [Google Scholar] [CrossRef]
- Rundo, F.; Trenta, F.; di Stallo, A.L.; Battiato, S. Machine Learning for Quantitative Finance Applications: A Survey. Appl. Sci. 2019, 9, 5574. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, R.; Liu, H.; Xin, L.; Zhong, J.; Zhang, H.; Qi, J.; Wang, Y.; Zhu, Z. Prediction of ionic liquid surface tension via a generalized interpretable Structure-Surface Tension Relationship model. AIChE J. 2024, 11, e18558. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, W.Y.; Hu, T.; Wu, C.H. Comparison of Time Series Forecasting Based on Statistical ARIMA Model and LSTM with Attention Mechanism. J. Phys. Conf. Ser. 2020, 1631, 012141. [Google Scholar] [CrossRef]
- ArunKumar, K.; Kalaga, D.V.; Mohan Sai Kumar, C.; Kawaji, M.; Brenza, T.M. Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alex. Eng. J. 2022, 61, 7585–7603. [Google Scholar] [CrossRef]
- Rosano-Pena, C.; De Almeida, C.A.R.; Rodrigues, E.C.C.; Serrano, A.L.M. Spatial dependency of eco-efficiency of agriculture in São Paulo. Braz. Bus. Rev. 2020, 17, 328–343. [Google Scholar] [CrossRef]
- Marques Serrano, A.L.; Saiki, G.M.; Rosano-Penã, C.; Rodrigues, G.A.P.; Albuquerque, R.d.O.; García Villalba, L.J. Bootstrap Method of Eco-Efficiency in the Brazilian Agricultural Industry. Systems 2024, 12, 136. [Google Scholar] [CrossRef]
- Saiki, G.; Serrano, A.; Rodrigues, G.; Rosano, C.; Pompermayer, F.; Albuquerque, P. An Analysis of the Eco-Efficiency of the Agricultural Industry in the Brazilian Amazon Biome. Sustainability 2024, 16, 5731. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef]
- Stošić, B.D.; de Sousa, M.d.C.S. Jackstrapping DEA scores for robust efficiency measurement. An. XXV Encontro Bras. Econom. SBE 2003, 23, 1525–1540. [Google Scholar]
- Saiki, G.M. Sustainable Development of the Brazilian Energy Sector. 2024. Available online: https://figshare.com/articles/dataset/Non-Parametric_Methods_Application_and_Forecast_Model_Towards_Sustainable_Development_of_the_Brazilian_Energy_Sector/25714932/2?file=45984321 (accessed on 15 October 2024).
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, G.; Liu, K. Regional differences in the industrial water use efficiency of China: The spatial spillover effect and relevant factors. Resour. Conserv. Recycl. 2021, 167, 105239. [Google Scholar] [CrossRef]
- Bogetoft, P.; Otto, L. Benchmarking with Dea, Sfa, and R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 157. [Google Scholar]
- Matsumoto, K.; Chen, Y. Industrial eco-efficiency and its determinants in China: A two-stage approach. Ecol. Indic. 2021, 130, 108072. [Google Scholar] [CrossRef]
- Boczar, P.; Błażejczyk-Majka, L. Economic Efficiency versus Energy Efficiency of Selected Crops in EU Farms. Resources 2024, 13, 123. [Google Scholar] [CrossRef]
- Liu, X.; Guo, P.; Guo, S. Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: Emergy and data envelopment analysis. J. Clean. Prod. 2019, 206, 1101–1109. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Mocholi-Arce, M.; Maziotis, A.; Molinos-Senante, M. The carbon and production performance of water utilities: Evidence from the English and Welsh water industry. Struct. Chang. Econ. Dyn. 2023, 64, 292–300. [Google Scholar] [CrossRef]
- Antunes, J.J.M.; Neves, J.C.; Elmor, L.R.C.; Araujo, M.F.R.D.; Wanke, P.F.; Tan, Y. A new perspective on the U.S. energy efficiency: The political context. Technol. Forecast. Soc. Change 2023, 186, 122093. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D. Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms. Resources 2016, 5, 8. [Google Scholar] [CrossRef]
- Sousa, M.D.C.D.; Stosic, B. Technical Efficiency of the Brazilian Municipalities. J. Product. Anal. 2005, 24, 157–181. [Google Scholar] [CrossRef]
- Wilson, P.W. FEAR: A software package for frontier efficiency analysis with R. Socio-Econ. Plan. Sci. 2008, 42, 247–254. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Younes, M.K.; Kim, J. Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry 2019, 11, 240. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM. arXiv 2019, arXiv:1911.09512. [Google Scholar] [CrossRef]
- Da Silva, A.V.; de Oliveira Ribeiro, C.; Rego, E.E. A data envelopment analysis approach to measuring socio-economic efficiency due to renewable energy sources in Brazilian regions. Braz. J. Chem. Eng. 2023. [Google Scholar] [CrossRef]
- Brazilian Institute for Applied Economic Research Electricity 2024. Analysis and Forecast to 2026. 2023. Available online: https://www.ipea.gov.br/portal/categorias/45-todas-as-noticias/noticias/14833-ipea-preve-crescimento-de-3-2-do-pib-neste-ano-e-mantem-em-2-0-a-estimativa-para-2024 (accessed on 25 April 2024).
- Lucena, A.F.; Hejazi, M.; Vasquez-Arroyo, E.; Turner, S.; Köberle, A.C.; Daenzer, K.; Rochedo, P.R.; Kober, T.; Cai, Y.; Beach, R.H.; et al. Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil. Energy 2018, 164, 1161–1177. [Google Scholar] [CrossRef]
- Lucena, A.F.; Clarke, L.; Schaeffer, R.; Szklo, A.; Rochedo, P.R.; Nogueira, L.P.; Daenzer, K.; Gurgel, A.; Kitous, A.; Kober, T. Climate policy scenarios in Brazil: A multi-model comparison for energy. Energy Econ. 2016, 56, 564–574. [Google Scholar] [CrossRef]
- PROGRAM, E.T. Carbon Neutrality 2050: Scenarios for an Efficient Transition in Brazil. 2023. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-726/PTE_RelatorioFinal_EN_5JUN.pdf (accessed on 9 October 2024).
- of Economy, M. Brazil’s Green Monitor. 2022. Available online: https://www.gov.br/mdic/pt-br/assuntos/assuntos-economicos-internacionais/acompanhamento-economico/brazil-green-monitor/brazil_green_monitor-2022-04.pdf (accessed on 4 September 2024).
- Gugler, K.; Haxhimusa, A.; Liebensteiner, M. Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables. J. Environ. Econ. Manag. 2021, 106, 102405. [Google Scholar] [CrossRef]
- Rituraj, R.; Ecker, D.; Annamaria, V.K. Smart and Sustainable Grids Using Data-Driven Methods; Considering Artificial Neural Networks and Decision Trees. In Proceedings of the 2022 IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 15–17 September 2022; pp. 409–416. [Google Scholar] [CrossRef]
Reference | Year | Targeted Country | ARIMA/SARIMA | DEA |
---|---|---|---|---|
[11] | 2012 | Brazil | ✗ | ✓ |
[13] | 2015 | BRICS | ✗ | ✓ |
[14] | 2022 | India | ✓ | ✗ |
[8] | 2024 | Brazil | ✓ | ✗ |
This work | 2024 | Brazil | ✓ | ✓ |
Model | Strengths | Limitations | Gaps in the Literature |
---|---|---|---|
ARIMA | Enables the measurement of promising results in the forecasted values of the variable (). It outperforms the autoregressive and moving average (ARMA) model. Considers autoregressive (AR), integrated (I), and moving average (MA) terms to account for lags in non-stationary time series. | ARIMA models will only deal with non-stationary time series through differentiation. Does not consider seasonal factors in time series. | Explain the future with past knowledge and are subject to inaccuracies caused by events outside the norm, which have a strong impact on the values (). |
SARIMA | Considers not only the previous period for future forecasting but also a seasonality term (s). Considers autoregressive (AR), integrated (I), and moving average (MA) terms with seasonality (). It outperforms ARIMA when seasonality is present. | Challenges with irregular seasonal components. | Instability of seasonal measures of supply and demand, as the concept of seasonality assumes that the seasonality term (s) is standardized and represents a specific time period. |
Demand (GWh) | GDP (Millions of R$) | |
---|---|---|
Min | 26,508 | 142,861 |
1st Qu. | 32,234 | 267,691 |
Median | 37,866 | 459,337 |
mean | 36,622 | 457,192 |
3rd Qu | 40,269 | 582,831 |
Max | 46,407 | 954,063 |
Demand (GWh) | GDP (Millions of R$) | |
---|---|---|
Min | 27,657 | 156,954 |
1st Qu. | 32,480 | 273,200 |
Median | 37,867 | 458,517 |
mean | 36,722 | 452,982 |
3rd Qu | 40,078 | 573,219 |
Max | 46,407 | 950,791 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | |
---|---|---|---|---|---|---|
No correction | 0.4703 | 0.5971 | 0.6813 | 0.6987 | 0.7823 | 1.0000 |
With correction | 0.4672 | 0.5933 | 0.6770 | 0.6942 | 0.7773 | 0.9936 |
Max. 95% | 0.4702 | 0.5970 | 0.6813 | 0.6986 | 0.7822 | 0.9999 |
Min. 95% | 0.4593 | 0.5832 | 0.6655 | 0.6825 | 0.7641 | 0.9768 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | |
---|---|---|---|---|---|---|
Demand | 10.19 | 10.38 | 10.54 | 10.50 | 10.60 | 10.75 |
GDP | 11.87 | 12.50 | 13.04 | 12.92 | 13.28 | 13.77 |
Variable | SARIMA | AIC | AICc | BIC |
---|---|---|---|---|
Demand | (1,1,1) (0,1,2) | −1164.68 | −1164.41 | −1147.56 |
(1,1,1) (1,1,1) | −1164.68 | −1164.41 | −1147.56 | |
GDP | (1,1,3) (0,1,2) | −1079.2 | −1078.69 | −1055.23 |
(0,1,2) (2,1,1) | −1078.71 | −1078.33 | −1058.16 |
Variable | SARIMA | RMSE | MAE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|
Demand | (1,1,1) (0,1,2) | 0.0174 | 0.0132 | 0.1253 | 0.3928 | 0.0041 |
(1,1,1) (1,1,1) | 0.0173 | 0.0132 | 0.1250 | 0.3917 | 0.0062 | |
GDP | (1,1,3) (0,1,2) | 0.0206 | 0.0154 | 0.1192 | 0.1686 | −0.0011 |
(0,1,2) (2,1,1) | 0.0208 | 0.0157 | 0.1209 | 0.1710 | −0.0076 |
Variable | ARIMA | RMSE | MAE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|
Demand | (1,1,1) | 0.0231 | 0.0184 | 0.1749 | 0.5478 | −0.0404 |
GDP | (1,1,3) | 0.0359 | 0.0287 | 0.2235 | 0.3136 | −0.1028 |
(0,1,2) | 0.0372 | 0.0302 | 0.2346 | 0.3292 | −0.1340 |
SARIMA | X-Squared | df | |
---|---|---|---|
(1,1,1) (0,1,2) | 0.0040 | 1 | 0.9494 |
(1,1,3) (0,1,2) | 0.0003 | 1 | 0.9869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiki, G.M.; Serrano, A.L.M.; Rodrigues, G.A.P.; Bispo, G.D.; Gonçalves, V.P.; Neumann, C.; Albuquerque, R.d.O.; Bork, C.A.S. Application of Non-Parametric and Forecasting Models for the Sustainable Development of Energy Resources in Brazil. Resources 2024, 13, 150. https://doi.org/10.3390/resources13110150
Saiki GM, Serrano ALM, Rodrigues GAP, Bispo GD, Gonçalves VP, Neumann C, Albuquerque RdO, Bork CAS. Application of Non-Parametric and Forecasting Models for the Sustainable Development of Energy Resources in Brazil. Resources. 2024; 13(11):150. https://doi.org/10.3390/resources13110150
Chicago/Turabian StyleSaiki, Gabriela Mayumi, André Luiz Marques Serrano, Gabriel Arquelau Pimenta Rodrigues, Guilherme Dantas Bispo, Vinícius Pereira Gonçalves, Clóvis Neumann, Robson de Oliveira Albuquerque, and Carlos Alberto Schuch Bork. 2024. "Application of Non-Parametric and Forecasting Models for the Sustainable Development of Energy Resources in Brazil" Resources 13, no. 11: 150. https://doi.org/10.3390/resources13110150
APA StyleSaiki, G. M., Serrano, A. L. M., Rodrigues, G. A. P., Bispo, G. D., Gonçalves, V. P., Neumann, C., Albuquerque, R. d. O., & Bork, C. A. S. (2024). Application of Non-Parametric and Forecasting Models for the Sustainable Development of Energy Resources in Brazil. Resources, 13(11), 150. https://doi.org/10.3390/resources13110150