Sources Affecting Microplastic Contamination in Mountain Lakes in Tatra National Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Site Description
2.2. Morphometric Characteristics of Lakes
2.3. Sample Collection and Preparation
2.4. MP Identification
2.5. Statistical Analyses
3. Results
3.1. Numbers, Length Fractions, and Colors of MPs
3.2. Relationships Between MP Fiber Content and Lake Characteristics
3.3. Differences in MP Contamination Between Study Areas
3.4. Percentage Share of MP Length Classes and Fiber Colors in Study Areas
3.5. Identified Polymers of MP Fibers
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lake Abbreviation | Lake Name | Elevation a.s.l (m) | Lake Area (ha) | Coastline Length (m) | Maximum Depth (m) | Mean Depth (m) | Lake Volume × 103 (m3) | Lake Catchment Area (ha) | Tourist Access Section Length (m) | Relative Tourist Access Section Length (%) | Visitors Number Index | Tourism Pressure Index | Geographic Coordinates of Samples |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The Rybi Potok Valley | |||||||||||||
MS | Morskie Oko | 1392.8 | 35.28 | 2550 | 50.8 | 28.4 | 9935 | 623 | 308 | 12.08 | 5 | 5 | N 49.201056, E 20.070998 |
CS | Czarny Staw pod Rysami | 1579.5 | 20.36 | 1790 | 76.4 | 37.6 | 7762 | 183 | 252 | 14.08 | 4 | 3 | N 49.190197, E 20.074173 |
ZMS | Zadni Mnichowy Staw | 2070.0 | 0.028 | 103 | 1.1 | 0.8 | 0.22 | 2 | 1 | 1.00 | 2 | 2 | N 49.190110, E 20.051732 |
The Five Polish Lakes Valley | |||||||||||||
PW | Wielki Staw Polski | 1664.6 | 34.35 | 2660 | 79.3 | 37.7 | 12967 | 579 | 26 | 1.00 | 3 | 2 | N 49.209998, E 20.036954 |
PP | Przedni Staw Polski | 1668.3 | 7.707 | 1207 | 34.6 | 14.6 | 1130 | 104 | 251 | 20.79 | 4 | 4 | N 49.212102, E 20.046714 |
PZ | Zadni Staw Polski | 1889.6 | 6.919 | 1189 | 31.6 | 14.2 | 918 | 55 | 1 | 0.08 | 1 | 1 | N 49.211788, E 20.014047 |
PC | Czarny Staw Polski | 1722.1 | 12.74 | 1616 | 50.4 | 22.2 | 2826 | 49 | 23 | 1.42 | 1 | 2 | N 49.205472, E 20.030196 |
The Gąsienicowa Valley | |||||||||||||
SG | Czarny Staw Gąsienicowy | 1619.6 | 17.70 | 1961 | 51.0 | 21.1 | 3798 | 211 | 255 | 13.00 | 4 | 3 | N 49.232428, E 20.015093 |
DG | Długi Staw Gąsienicowy | 1783.5 | 1.455 | 596 | 10.6 | 5.1 | 81 | 69 | 1 | 0.17 | 1 | 1 | N 49.226642, E 20.008316 |
Z | Zielony Staw Gąsienicowy | 1671.7 | 3.786 | 885 | 15.1 | 6.8 | 260 | 44 | 132 | 14.92 | 3 | 3 | N 49.229044, E 20.000606 |
ZG | Zadni Staw Gąsienicowy | 1851.9 | 0.483 | 391 | 8.0 | 2.9 | 15 | 30 | 1 | 0.26 | 1 | 2 | N 49.224033, E 20.009763 |
Intercept | Slope | SE | t | P | |
---|---|---|---|---|---|
Lake area (ha) | |||||
FN | 42.5672 | 2.1560 | 0.8886 | 2.426 | 0.0382 |
FL | 43.5439 | 2.2818 | 0.7922 | 2.880 | 0.0182 |
FN | 24.4625 | 0.0336 | 0.0132 | 2.540 | 0.0317 |
FL | 27.3765 | 0.0334 | 0.0125 | 2.676 | 0.0252 |
Lake volume × 103 (m3) | |||||
FN | 46.9524 | 0.0064 | 0.0024 | 2.705 | 0.0242 |
FL | 48.1017 | 0.0068 | 0.0021 | 3.305 | 0.0093 |
FN | 46.9147 | 0.1312 | 0.0504 | 2.604 | 0.0286 |
FL | 47.0577 | 0.1449 | 0.0420 | 3.444 | 0.0075 |
Elevation a.s.l. (m) | |||||
FN | 201.1097 | −0.0762 | 0.0780 | −0.976 | 0.3544 ns |
FL | 195.5231 | −0.0714 | 0.0755 | −0.945 | 0.3689 ns |
Tourist access section length (m) | |||||
FN | 67.8686 | 0.0202 | 0.1144 | 0.177 | 0.8638 ns |
FL | 72.2603 | 0.0055 | 0.1102 | 0.050 | 0.9609 ns |
Relative tourist access section length (%) | |||||
FN | 68.8560 | 0.1829 | 1.8730 | 0.100 | 0.9244 ns |
FL | 75.8620 | −0.4130 | 1.7970 | −0.230 | 0.8233 ns |
Visitors number index | |||||
FN | 49.6420 | 7.785 | 9.3840 | 0.830 | 0.4282 ns |
FL | 53.4340 | 7.3680 | 9.0300 | 0.816 | 0.4356 ns |
Tourism pressure index | |||||
FN | 61.4830 | 3.4100 | 11.9930 | 0.284 | 0.7825 ns |
FL | 66.1540 | 2.6440 | 11.5530 | 0.229 | 0.8241 ns |
Lake Abbreviation | Lake Name | Min. | 1st Quartile | Median | Mean | 3rd Quartile | Max. | |
---|---|---|---|---|---|---|---|---|
The Rybi Potok Valley | ||||||||
MS | Morskie Oko | |||||||
FN | FN | 29.8 | 52.1 | 69.4 | 80.4 | 79.4 | 198.4 | |
FL | FL | 18.6 | 69.2 | 109.0 | 98.2 | 126.5 | 192.9 | |
MO | Morskie Oko | |||||||
FN | 29.8 | 49.6 | 64.5 | 86.3 | 106.7 | 198.4 | ||
FL | 19.8 | 32.0 | 71.3 | 104.2 | 144.1 | 374.8 | ||
CS | Czarny Staw pod Rysami | |||||||
FN | 9.9 | 42.2 | 49.6 | 59.5 | 67.0 | 129.0 | ||
FL | 2.0 | 12.9 | 44.0 | 59.7 | 98.0 | 152.2 | ||
ZMS | Zadni Mnichowy Staw | |||||||
FN | 0.0 | 19.8 | 19.8 | 24.8 | 37.2 | 49.6 | ||
FL | 4.5 | 8.9 | 33.4 | 37.6 | 62.2 | 84.2 | ||
The Five Polish Lakes Valley | ||||||||
PW | Wielki Staw Polski | |||||||
FN | 89.3 | 91.8 | 173.6 | 178.6 | 245.5 | 337.3 | ||
FL | 68.7 | 79.8 | 141.2 | 181.2 | 229.7 | 519.0 | ||
PP | Przedni Staw Polski | |||||||
FN | 19.8 | 62.0 | 79.4 | 110.1 | 143.8 | 267.9 | ||
FL | 5.0 | 49.2 | 65.2 | 87.2 | 125.4 | 195.4 | ||
PZ | Zadni Staw Polski | |||||||
FN | 0.0 | 64.5 | 89.3 | 91.3 | 106.7 | 178.6 | ||
FL | 33.5 | 39.9 | 125.3 | 97.7 | 133.4 | 170.2 | ||
PC | Czarny Staw Polski | |||||||
FN | 19.8 | 22.3 | 39.7 | 51.6 | 67.0 | 129.0 | ||
FL | 10.0 | 19.0 | 35.7 | 44.8 | 67.8 | 90.1 | ||
The Gąsienicowa Valley | ||||||||
SG | Czarny Staw Gąsienicowy | |||||||
FN | 19.8 | 29.8 | 39.7 | 47.6 | 62.0 | 99.2 | ||
FL | 10.8 | 16.4 | 38.5 | 50.3 | 85.5 | 114.6 | ||
DG | Długi Staw Gąsienicowy | |||||||
FN | 9.9 | 19.8 | 44.6 | 47.6 | 57.0 | 129.0 | ||
FL | 1.1 | 20.2 | 26.8 | 52.1 | 67.9 | 218.8 | ||
Z | Zielony Staw Gąsienicowy | |||||||
FN | 9.9 | 32.2 | 39.7 | 41.7 | 49.6 | 69.4 | ||
FL | 1.2 | 23.2 | 33.6 | 46.1 | 59.5 | 136.9 | ||
ZG | Zadni Staw Gąsienicowy | |||||||
FN | 9.9 | 29.8 | 39.7 | 38.7 | 47.1 | 69.4 | ||
FL | 10.4 | 23.1 | 41.7 | 46.7 | 65.3 | 112.7 |
References
- Arthur, C.; Baker, J.; Bamford, H. In Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, Tacoma, WA, USA, 9–11 September 2008. NOAA technical memorandum NOS-OR&R-48 530.
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, R.; Azzoni, R.S.; Pittino, F.; Diolaiuti, G.; Franzetti, A.; Parolini, M. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ. Pollut. 2019, 253, 297–301. [Google Scholar] [CrossRef] [PubMed]
- González-Pleiter, M.; Velázquez, D.; Edo, C.; Carretero, O.; Gago, J.; Barón-Sola, Á.; Hernández, L.E.; Yousef, I.; Quesada, A.; Leganés, F.; et al. Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci. Total Environ. 2020, 20, 137904. [Google Scholar] [CrossRef] [PubMed]
- Balestra, V.; Vigna, B.; De Costanzo, S.; Bellopede, R. Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. J. Contam. Hydrol. 2003, 252, 104117. [Google Scholar] [CrossRef] [PubMed]
- Padha, S.; Kumar, R.; Dhar, A.; Sharma, P. Microplastic pollution in mountain terrains and foothills: A review on source, extraction, and distribution of microplastics in remote areas. Environ. Res. 2022, 207, 112232. [Google Scholar] [CrossRef]
- Pastorino, P.; Elia, A.C.; Pizzul, E.; Bertoli, M.; Renzi, M.; Prearo, M. The old and the new on threats to high-mountain lakes in the Alps: A comprehensive examination with future research directions. Ecol. Indicat. 2024, 160, 111812. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Zhang, K.; Su, J.; Xiong, X.; Wu, X.; Wu, C.; Liu, J. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ. Pollut. 2016, 219, 450–455. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, T.; Kang, S.; Allen, S.; Luo, X.; Allen, D. Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics. Sci. Total Environ. 2021, 758, 143634. [Google Scholar] [CrossRef] [PubMed]
- Kaliszewicz, A.; Panteleeva, N.; Karaban, K.; Runka, T.; Winczek, M.; Beck, E.; Poniatowska, A.; Olejniczak, I.; Boniecki, P.; Golovanova, E.V.; et al. First evidence of microplastic occurrence in the marine and freshwater environments in a remote polar region of the Kola peninsula and a correlation with human presence. Biology 2023, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Tabor, S. Microplastic on Mountain Trails—A Case Study from the Carpathian and Sudetes Mountains in Poland. Water Air Soil Pollut. 2023, 234, 612. [Google Scholar] [CrossRef]
- Feng, S.; Lu, H.; Tian, P.; Xue, Y.; Lu, J.; Tang, M.; Feng, W. Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities. Sci. Total Environ. 2020, 739, 140087. [Google Scholar] [CrossRef]
- Godoy, V.; Calero, M.; González-Olalla, J.M.; Martín-Lara, M.A.; Olea, N.; Ruiz-Gutierrez, A.; Villar-Argaiz, M. The human connection: First evidence of microplastics in remote high mountain lakes of Sierra Nevada, Spain. Environ. Pollut. 2022, 311, 119922. [Google Scholar] [CrossRef]
- Mirek, Z. The Tatra Mountains and the Tatra National Park—General information. In Nature of the Tatra National Park; Mirek, Z., Ed.; Tatra National Park: Kraków, Poland, 1996; pp. 17–26. [Google Scholar]
- Adamczyk, A.D. Characteristics of strong and very strong winds in Poland. J. Inst. Geogr. Spat. Manag. PAS 1996, 37, 5–42. [Google Scholar]
- Łajczak, A. Hydrology. In Nature of the Tatra National Park; Mirek, Z., Ed.; Tatra National Park: Kraków, Poland, 1996; pp. 169–196. [Google Scholar]
- Kaliszewicz, A.; Winczek, M.; Karaban, K.; Kurzydłowski, D.; Górska, M.; Koselak, W.; Romanowski, J. The contamination of inland waters by microplastic fibres under different anthropogenic pressure: Preliminary study in Central Europe (Poland). WM&R 2020, 38, 1231–1238. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, H.; Chen, H.; Wang, S.; Sun, X.; Zou, Q.; Zhang, Y.; Lin, H.; Cai, S.; Huang, J. Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Sci. Total Environ. 2019, 650, 1913–1922. [Google Scholar] [CrossRef]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; Sage Publications: London, UK, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Andreassen, E. Infrared and Raman spectroscopy of polypropylene. In Polypropylene: An A-Z Reference; Kluwer Publishers: Dordrecht, The Netherlands, 1999; pp. 320–328. [Google Scholar]
- Phan, S.; Padilla-Gamiño, J.L.; Luscombe, C.K. The effect of weathering environments on microplastic chemical identification with Raman and IR spectroscopy: Part I. polyethylene and polypropylene. Polym. Test. 2022, 116, 107752. [Google Scholar] [CrossRef]
- Ciera, L.W.; Beladjal, L.; Almeras, X.; Gheysens, T. Morphological and material properties of polyethyleneterephthalate (PET) Fibres with Spores Incorporated. FTEE 2014, 22, 29–36. [Google Scholar]
- Peñalver, R.; Zapata, F.; Arroyo-Manzanares, N.; López-García, I.; Viñas, P. Raman spectroscopic strategy for the discrimination of recycled polyethylene terephthalate in water bottles. J. Raman Spectrosc. 2023, 54, 107–112. [Google Scholar] [CrossRef]
- Mazilu, M.; De Luca, A.C.; Riches, A.; Herrington, C.S.; Dholakia, K. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Opt. Express 2010, 18, 11382. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.X.; Liu, R.; Hao, L.-T.; Liu, J.-F. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta 2021, 221, 121552. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, B.; Huang, H.; Xue, R.; Chen, L.; Wang, F. Experimental Evidence of the Interaction Between Polyacrylonitrile and Ethylene Carbonate Plasticizer by Raman Spectroscopy. J. Raman Spectrosc. 1996, 27, 609–613. [Google Scholar] [CrossRef]
- Kuang, Y.; He, H.; Chen, S.; Wu, J. Adsorption behavior of CO2 on amine-functionalized polyacrylonitrile fiber. Adsorption 2019, 25, 693–701. [Google Scholar] [CrossRef]
- Sato, H.; Shimoyama, M.; Kamiya, T.; Amari, T. Raman spectra of high-density, low-density, and linear low-density polyethylene pellets and prediction of their physical properties by multivariate data analysis. J. Appl. Polym. Sci. 2002, 86, 443–448. [Google Scholar] [CrossRef]
- Cabrales, L.; Abidi, N.; Manciu, F. Characterization of Developing Cotton Fibers by Confocal Raman Microscopy. Fibers 2014, 2, 285–294. [Google Scholar] [CrossRef]
- Wu, C.M.L.; Wetzel, N.A.; Howe, C.A. Raman Spectroscopy Applied to Cellulose Materials. Rev. Analyt. Chem. 2017, 36, 109–135. [Google Scholar]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A global perspective on microplastics. J. Geophys. Res. Oceans 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Jain, Y.; Govindasamy, H.; Kaur, G.; Ajith, N.; Ramasamy, K.; Robin, R.S.; Ramachandran, P. Microplastic pollution in high-altitude Nainital lake, Uttarakhand, India. Environ. Pollut. 2024, 346, 123598. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, S.; Zhang, Y.; Luo, X.; Kang, Q.; Chen, P.; Guo, J.; Hu, Z.; Yang, Z.; Zheng, H.; et al. Microplastics in glaciers of Tibetan Plateau: Characteristics and potential sources. Sci. Total Environ. 2024, 954, 176370. [Google Scholar] [CrossRef]
- Malygina, N.; Mitrofanova, E.; Kuryatnikova, N.; Biryukov, R.; Zolotov, D.; Pershin, D.; Chernykh, D. Microplastic pollution in the surface waters from plain and mountainous lakes in Siberia, Russia. Water 2021, 13, 2287. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Baladima, F.; Phoenix, V.R.; Thomas, J.L.; Le Roux, G.; Sonke, J.E. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun. 2021, 12, 7242. [Google Scholar] [CrossRef]
- Velasco, A.D.J.N.; Rard, L.; Blois, W.; Lebrun, D.; Lebrun, F.; Pothe, F.; Stoll, S. Microplastic and fibre contamination in a remote mountain lake in Switzerland. Water 2020, 12, 2410. [Google Scholar] [CrossRef]
- Han, X.; Pan, B.; Li, D.; Liu, X.; Liu, X.; Hou, Y.; Li, G. Heterogenization of microplastic communities in lakes of the Qinghai-Tibetan Plateau driven by tourism and transport activities. J. Hazard. Mater. 2024, 477, 135255. [Google Scholar] [CrossRef]
- Sighicelli, M.; Pietrelli, L.; Lecce, F.; Iannilli, V.; Falconieri, M.; Coscia, L.; Di Vito, S.; Nuglio, S.; Zampetti, G. Microplastic pollution in the surface waters of Italian Subalpine Lakes. Environ. Pollut. 2018, 236, 645–651. [Google Scholar] [CrossRef]
- Mehboob, M.; Dris, R.; Tassin, B.; Gasperi, J.; Khan, M.U.; Malik, R.N. Microplastic assessment in remote and high mountain lakes of Gilgit Baltistan, Pakistan. Chemosphere 2024, 365, 143283. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, P.; Anselmi, S.; Esposito, G.; Bertoli, M.; Pizzul, E.; Barceló, D.; Elia, A.C.; Dondo, A.; Prearo, M.; Renzi, M. Microplastics in biotic and abiotic compartments of high-mountain lakes from Alps. Ecol. Indic. 2023, 150, 110215. [Google Scholar] [CrossRef]
- Ohno, H.; Iizuka, Y. Microplastics in snow from protected areas in Hokkaido, the northern island of Japan. Sci. Rep. 2023, 13, 9942. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.T.; Chiu, M.C.; Kuo, M.H. Effects of anthropogenic activities on microplastics in deposit–feeders (Diptera: Chironomidae) in an urban river of Taiwan. Sci. Rep. 2021, 11, 400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiełtyk, P.; Karaban, K.; Poniatowska, A.; Bryska, A.; Runka, T.; Sambor, Z.; Radomski, P.; Zwijacz-Kozica, T.; Kaliszewicz, A. Sources Affecting Microplastic Contamination in Mountain Lakes in Tatra National Park. Resources 2024, 13, 152. https://doi.org/10.3390/resources13110152
Kiełtyk P, Karaban K, Poniatowska A, Bryska A, Runka T, Sambor Z, Radomski P, Zwijacz-Kozica T, Kaliszewicz A. Sources Affecting Microplastic Contamination in Mountain Lakes in Tatra National Park. Resources. 2024; 13(11):152. https://doi.org/10.3390/resources13110152
Chicago/Turabian StyleKiełtyk, Piotr, Kamil Karaban, Agnieszka Poniatowska, Angelika Bryska, Tomasz Runka, Zuzanna Sambor, Piotr Radomski, Tomasz Zwijacz-Kozica, and Anita Kaliszewicz. 2024. "Sources Affecting Microplastic Contamination in Mountain Lakes in Tatra National Park" Resources 13, no. 11: 152. https://doi.org/10.3390/resources13110152
APA StyleKiełtyk, P., Karaban, K., Poniatowska, A., Bryska, A., Runka, T., Sambor, Z., Radomski, P., Zwijacz-Kozica, T., & Kaliszewicz, A. (2024). Sources Affecting Microplastic Contamination in Mountain Lakes in Tatra National Park. Resources, 13(11), 152. https://doi.org/10.3390/resources13110152