Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biorefinery Modelling
Comparison with Other Vinasse Treatment Alternatives
- Scenario E + L: The vinasse is sent to lagoons with a concentration of chemical oxygen demand (COD) of around 40 g·L−1 at 35 °C. The removal efficiency of biodegradable COD in lagoons was assumed to be 99% [27]. In this scenario, methane and carbon dioxide are emitted directly into the atmosphere, while the liquid effluent is pumped for fertigation of agricultural or green areas. Additionally, sludge is produced for use as a bulk biological fertiliser. For this purpose, two pumps were considered with a flow capacity of 122 m3·h−1. The land required for this treatment was estimated at 7.8 ha. The process design is shown in Figure 2.
- Scenario E + C: It was designed as an individual forced aerated windrow with a total solid concentration of 40%. The volume of the pile was estimated considering the vinasse flow rate for continuous operation and the residence time required to complete the aerobic degradation of organic matter. The land required for this activity was estimated at 4.8 ha.
2.2. Techno-Economic Analysis
2.2.1. Estimation of Total Capital Investment
2.2.2. Estimation of Manufacturing Costs
2.2.3. Costs Externalities
2.2.4. Economic Analysis and TEA Indicators
2.3. Life Cycle Assessment
2.3.1. Aim and Scope of the Study
2.3.2. Life Cycle Inventory
2.3.3. Life Cycle Impact Assessment (LCIA)
2.4. Eco-Efficiency Assessment
3. Results and Discussion
3.1. Tecno-Economic Results
3.1.1. Fixed Capital Investment and Manufacturing Cost
3.1.2. Minimum Selling Price
3.1.3. TEA Indicators at the Optimum Plant Capacity
3.1.4. Comparison of TEA Results with the Literature
3.1.5. Comparison of Scenarios for Vinasse Treatment
3.2. Environmental Performance of 2G Apple Bagasse-Based Bioethanol
3.3. Eco-Efficiency Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Narisetty, V.; Nagarajan, S.; Gadkari, S.; Ranade, V.V.; Zhang, J.; Patchigolla, K.; Bhatnagar, A.; Awasthi, M.K.; Pandey, A.; Kumar, V. Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach. Energy Convers. Manag. 2022, 266, 115784. [Google Scholar] [CrossRef]
- Costa, J.M.; Ampese, L.C.; Ziero, H.D.D.; Sganzerla, W.G.; Forster-Carneiro, T. Apple pomace biorefinery: Integrated approaches for the production of bioenergy, biochemicals, and value-added products—An updated review. J. Environ. Chem. Eng. 2022, 10, 108358. [Google Scholar] [CrossRef]
- Santiago, B.; Moreira, M.T.; Feijoo, G.; González-García, S. Environmental comparison of banana waste valorisation strategies under a biorefinery approach. Waste Manag. 2022, 142, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Kumar, D.; Singh, B.; Sachan, P.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 2021, 4, 100036. [Google Scholar] [CrossRef]
- Joseph, A.M.; Tulasi, Y.; Shrivastava, D.; Kiran, B. Techno-economic feasibility and exergy analysis of bioethanol production from waste. Energy Convers. Manag. X 2023, 18, 100358. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, G. Greenhouse gas emissions of corn–ethanol production in China. Ecol. Model. 2013, 252, 176–184. [Google Scholar] [CrossRef]
- Yu, S.; Tao, J. Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China. Energy 2009, 34, 476–484. [Google Scholar] [CrossRef]
- Wietschel, L.; Messmann, L.; Thorenz, A.; Tuma, A. Environmental benefits of large-scale second-generation bioethanol production in the EU: An integrated supply chain network optimization and life cycle assessment approach. J. Ind. Ecol. 2021, 25, 677–692. [Google Scholar] [CrossRef]
- Larnaudie, V.; Ferrari, M.D.; Lareo, C. Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability. Renew. Sustain. Energy Rev. 2022, 158, 112115. [Google Scholar] [CrossRef]
- Kongkeitkajorn, M.B.; Sae-Kuay, C.; Reungsang, A. Evaluation of napier grass for bioethanol production through a fermentation process. Processes 2020, 8, 567. [Google Scholar] [CrossRef]
- Pieragostini, C.; Aguirre, P.; Mussati, M.C. Life cycle assessment of corn-based ethanol production in Argentina. Sci. Total. Environ. 2014, 472, 212–225. [Google Scholar] [CrossRef]
- Zhao, L.; Ou, X.; Chang, S. Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives. Energy 2016, 115, 303–313. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, Y.; Pan, S.; Wang, X.; Dong, C. A comparative life cycle analysis of wheat straw utilization modes in China. Energy 2020, 194, 116914. [Google Scholar] [CrossRef]
- Ding, N.; Yang, Y.; Cai, H.; Liu, J.; Ren, L.; Yang, J.; Xie, G.H. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China. J. Clean. Prod. 2017, 161, 335–344. [Google Scholar] [CrossRef]
- Singh, A.; Singhania, R.R.; Soam, S.; Chen, C.-W.; Haldar, D.; Varjani, S.; Chang, J.-S.; Dong, C.-D.; Patel, A.K. Production of bioethanol from food waste: Status and perspectives. Bioresour. Technol. 2022, 360, 127651. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Ferreira, J.A.; Sirohi, R.; Sarsaiya, S.; Khoshnevisan, B.; Baladi, S.; Sindhu, R.; Binod, P.; Pandey, A.; Juneja, A.; et al. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. Renew. Sustain. Energy Rev. 2021, 143, 110972. [Google Scholar] [CrossRef]
- Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple pomace as a potential valuable resource for full-components utilization: A review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Iriarte, A.; Yáñez, P.; Villalobos, P.; Huenchuleo, C.; Rebolledo-Leiva, R. Carbon footprint of southern hemisphere fruit exported to Europe: The case of Chilean apple to the UK. J. Clean. Prod. 2021, 293, 126118. [Google Scholar] [CrossRef]
- Hernández, D.; Rebolledo-Leiva, R.; Fernández-Puratich, H.; Quinteros-Lama, H.; Cataldo, F.; Muñoz, E.; Tenreiro, C. Recovering apple agro-industrial waste for bioethanol and vinasse joint production: Screening the potential of Chile. Fermentation 2021, 7, 203. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Moreira, M.T.; González-García, S. Environmental assessment of the production of itaconic acid from wheat straw under a biorefinery approach. Bioresour. Technol. 2022, 345, 126481. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Yang, Y.; Zhang, X.; Wang, N.; Zheng, Y.; Tian, Y.; Xie, K. Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study. Appl. Energy 2022, 312, 118791. [Google Scholar] [CrossRef]
- Zimmermann, A.; Wunderlich, J.; Buchner, G.; Müller, L.; Armstrong, K.; Michailos, S.; McCord, S.; Zaragoza, A.V.; Naims, H.; Cremonese, L.; et al. Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization; University of Michigan Library: Ann Arbor, MI, USA, 2018. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization Standardization: Geneva, Switzerland, 2006.
- Intelligen Inc. SuperPro Designer Overview 2023. Available online: https://www.intelligen.com/products/superpro-overview/ (accessed on 29 November 2023).
- Estévez, S.; Rebolledo-Leiva, R.; Hernández, D.; González-García, S.; Feijoo, G.; Moreira, M.T. Benchmarking composting, anaerobic digestion and dark fermentation for apple vinasse management as a strategy for sustainable energy production. Energy 2023, 274, 127319. [Google Scholar] [CrossRef]
- Barrera, E.L.; Rosa, E.; Spanjers, H.; Romero, O.; De Meester, S.; Dewulf, J. A comparative assessment of anaerobic digestion power plants as alternative to lagoons for vinasse treatment: Life cycle assessment and exergy analysis. J. Clean. Prod. 2016, 113, 459–471. [Google Scholar] [CrossRef]
- Dheskali, E.; Michailidi, K.; de Castro, A.M.; Koutinas, A.A.; Kookos, I.K. Optimal design of upstream processes in biotransformation technologies. Bioresour. Technol. 2017, 224, 509–514. [Google Scholar] [CrossRef]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Turton, R.; Shaeiwitz, J.; Bhattacharyya, D.; Whiting, W. Analysis, Synthesis, and Design of Chemical Processes, 5th ed.; Prentice Hall: Saddle River, NJ, USA, 2018. [Google Scholar]
- Dheskali, E.; Koutinas, A.A.; Kookos, I.K. A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochem. Eng. J. 2020, 154, 107462. [Google Scholar] [CrossRef]
- Ioannidou, S.M.; Filippi, K.; Kookos, I.K.; Koutinas, A.; Ladakis, D. Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. Bioresour. Technol. 2022, 348, 126295. [Google Scholar] [CrossRef]
- Davis, R.; Tao, L.; Tan, E.C.D.; Biddy, M.J.; Beckham, G.T.; Scarlata, C.; Jacobson, J.; Cafferty, K.; Ross, J.; Lukas, J.; et al. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons; National Renewable Energy Lab.: Golden, CO, USA, 2013. [Google Scholar] [CrossRef]
- Ulrich, G.D.; Vasudevan, P.T. Chemical Engineering: Process Design and Economics; a practical guide; Process Publ.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- The Bruyn, S.; Ahdour, S.; Bijleveld, M.; de Graaff, L.; Schep, E.; Schroten, A.; Vergeer, R. Environmental Prices Handbook 2017 Methods and Numbers for Valuation of Environmental Impacts; CE Delft: Delft, The Netherlands, 2018. [Google Scholar]
- Statista. Evolution of the Annual Average of the Exchange Rate of the Euro to the US Dollar from 1999 to 2022. 2023. Available online: https://es.statista.com/estadisticas/606660/media-anual-de-la-tasa-de-cambio-de-euro-a-dolar-estadounidense/ (accessed on 25 March 2023).
- Kookos, I. Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs). Resour. Conserv. Recycl. 2018, 134, 156–164. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a full circular economy in biogas plants: Sustainable management of digestate for growing biomass feedstocks and use as biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- ISO 14044; Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- CNE. Electricity Stadistics 2022. Available online: https://www.cne.cl/normativas/electrica/consulta-publica/electricidad/ (accessed on 15 December 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, Q.; Yu, J. Life cycle assessment of concentrated apple juice production in China: Mitigation options to reduce the environmental burden. Sustain. Prod. Consum. 2022, 32, 15–26. [Google Scholar] [CrossRef]
- ODEPA. Panorama Nacional e Internacional de Jugo de Frutas y Hortalizas 2013. Available online: https://bibliotecadigital.odepa.gob.cl/handle/20.500.12650/2778 (accessed on 30 March 2023).
- PRé Consultants. SimaPro Database Manual—Methods Library; Methods Library PRé Consultants: Amersfoort, The Netherlands, 2020. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Humbert, S.; Jungbluth, N.; Köllner, T.; LoerincikL, Y.; et al. Implementation of Life Cycle Impact Assessment Methods, Data v2.2; Swiss Centre for Life Cycle Inventories: Geneva, Switzerland, 2010. [Google Scholar]
- Entrena-Barbero, E.; Rebolledo-Leiva, R.; Vásquez-Ibarra, L.; Fernández, M.; Feijoo, G.; González-García, S.; Moreira, M.T. Water-Energy-Food nexus index proposal as a sustainability criterion on dairy farms. Sci. Total. Environ. 2023, 874, 162507. [Google Scholar] [CrossRef]
- Mangili, P.V.; Junqueira, P.G.; Santos, L.S.; Prata, D.M. Eco-efficiency and techno-economic analysis for maleic anhydride manufacturing processes. Clean Technol. Environ. Policy 2019, 21, 1073–1090. [Google Scholar] [CrossRef]
- Saber, Z.; van Zelm, R.; Pirdashti, H.; Schipper, A.M.; Esmaeili, M.; Motevali, A.; Nabavi-Pelesaraei, A.; Huijbregts, M.A. Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustain. Prod. Consum. 2021, 27, 1021–1029. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Prommuak, C. Net energy analysis and techno-economic assessment of co-production of bioethanol and biogas from cellulosic biomass. Fermentation 2021, 7, 229. [Google Scholar] [CrossRef]
- Joelsson, E.; Dienes, D.; Kovacs, K.; Galbe, M.; Wallberg, O. Combined production of biogas and ethanol at high solids loading from wheat straw impregnated with acetic acid: Experimental study and techno-economic evaluation. Sustain. Chem. Process. 2016, 4, 14. [Google Scholar] [CrossRef]
- Demichelis, F.; Laghezza, M.; Chiappero, M.; Fiore, S. Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass. J. Clean. Prod. 2020, 277, 124111. [Google Scholar] [CrossRef]
- Lobos, G.; Baettig, R.; Schnettler, B.; Saens, R. Estimating the market value of farm tractors in Chile: An econometric approach. Chil. J. Agric. Anim. Sci. 2021, 37, 92–98. [Google Scholar] [CrossRef]
- Muñoz, I.; Flury, K.; Jungbluth, N.; Rigarlsford, G.; Canals, L.M.; King, H. Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int. J. Life Cycle Assess. 2014, 19, 109–119. [Google Scholar] [CrossRef]
- González-García, S.; Morales, P.C.; Gullón, B. Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Ind. Crop. Prod. 2018, 123, 331–340. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, J.; Zhai, Z.; Feng, Y.; Geng, Z. Life cycle assessment for bioethanol production from whole plant cassava by integrated process. J. Clean. Prod. 2020, 269, 121902. [Google Scholar] [CrossRef]
- Wang, M.; Shi, Y.; Xia, X.; Li, D.; Chen, Q. Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato. Bioresour. Technol. 2013, 133, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Morales-Vera, R.; Vásquez-Ibarra, L.; Scott, F.; Puettmann, M.; Gustafson, R. Life Cycle Assessment of Bioethanol Production: A Case Study from Poplar Biomass Growth in the U.S. Pacific Northwest. Fermentation 2022, 8, 734. [Google Scholar] [CrossRef]
DCF Parameters | Value |
---|---|
Discount rate | 10% |
Plant lifetime | 30 years |
Equity financing | 100% |
Corporate tax rate | 35% |
Plant construction duration | 3 years |
Percentage of project cost in the 1st, 2nd, and 3rd year of construction | 8–60–32% |
Salvage value | 0 |
Land costs | 0 |
Section | Equipment | Value | Unit | Ceq.fob ($) | Amount | Total ($) |
---|---|---|---|---|---|---|
Pre-treatment | Storage tank 1 | 54.7 | m3 | $109,438 | 1 | $109,438 |
Grinder 2 | 50.0 | t/h | $40,000 | 1 | $40,000 | |
Screw conveyor 1 | 21.3 | m2 | $20,400 | 2 | $40,801 | |
Screw Pressing 2 | 50.0 | t/h | $120,000 | 14 | $1,680,000 | |
Fermentation | Seed reactor 1 | 27.2 | m3 | $73,668 | 3 | $221,003 |
Seed reactor 3 | 407.9 | m3 | $384,188 | 1 | $384,188 | |
Fermenter 3 | 711.1 | m3 | $673,465 | 12 | $8,081,581 | |
Centrifugal compressor 1 | 226.4 | kW | $235,996 | 1 | $235,996 | |
Storage tank 1 | 309.4 | m3 | $57,243 | 1 | $57,243 | |
Purification | Pump 1 | 1.4 | kW | $8245 | 1 | $8245 |
Heat exchanger 1 | 72.3 | m2 | $90,158 | 2 | $180,315 | |
Heat exchanger 1 | 2.2 | m2 | $9821 | 1 | $9821 | |
Centrifugal compressor 1 | 18.0 | kW | $11,918 | 1 | $11,918 | |
GAC Adsorber 1 | 308.9 | m3 | $190,516 | 11 | $2,095,679 | |
Distillation column 1 | 14.0 | m3 | $57,106 | 2 | $114,211 | |
Distillation column 1 | 23.6 | m3 | $42,806 | 1 | $42,806 | |
Steam generation | Boiler plant 2 | 1.217 | t/h | $31,000 | 1 | $31,000 |
Vinasse treatment (for biogas production) | Pumps 1 | 2.7 | kW | $35,277 | 16 | $94,404 |
Heat exchanger 1 | 247 | m2 | $34,303 | 1 | $34,303 | |
Storage tank 1 | 43.3 | m3 | $33,012 | 1 | $33,012 | |
Reactor AD 3 | 6000 | m3 | $1,337,904 | 22 | $29,433,887 | |
Centrifuges 2 | 300 | kW | $340,000 | 4 | $680,000 | |
Storage tank 1 | 30.6 | m3 | $25,179 | 1 | $25,179 | |
Reactor 3 | 757 | m3 | $589,957 | 9 | $5,309,611 | |
Blower biogas 2 | 0.5 | m3/s | $24,000 | 22 | $528,000 | |
Blower aeration 2 | 0.4 | m3/s | $24,000 | 9 | $216,000 | |
Mixer 1 | 3.8 | kW | $17,987 | 9 | $161,883 | |
Boiler plant 2 | 17.7 | t/h | $223,200 | 1 | $223,200 |
Section | Equipment | Parameter | Unit | Ceq.fob ($) | Amount | Total ($) |
---|---|---|---|---|---|---|
Lagooning | Pumps 1 | 0.7 | kW | 20,034 | 4 | 20,034 |
Heat exchanger 1 | 129.0 | m2 | 25,890 | 1 | 25,890 | |
Storage tank 1 | 41.2 | m3 | 31,776 | 1 | 31,776 | |
Composting | Pumps 1 | 0.9 | kW | 11,856 | 2 | 11,856 |
Heat exchanger 1 | 371.0 | m2 | 42,159 | 1 | 42,159 | |
Tank 1 | 41.2 | m3 | 31,776 | 1 | 31,776 | |
Browler 2 | 9.0 | m3/s | 180,000 | 9 | 1,620,000 | |
Truck 3 | 23,744 | 1 | 23,744 |
Impact Category | Acronym | Unit | Mass FU (1 kg) | Energy FU (1 MJ) | Volume FU (1 L) |
---|---|---|---|---|---|
Global Warming | GW | kg CO2 eq | 1.13 | 0.05 | 1.18 |
Stratospheric ozone depletion | SOD | mg CFC11 eq | 1.19 | 0.05 | 1.25 |
Ionizing radiation | IR | Bq Co-60 eq | 5.84 | 0.25 | 6.09 |
Ozone formation, Human health | OF, HH | g NOx eq | 8.51 | 0.37 | 8.88 |
Fine particulate matter formation | PMF | g PM2.5 eq | 13.38 | 0.58 | 13.96 |
Ozone formation, Terrestrial ecosystems | OF, TE | g NOx eq | 8.57 | 0.37 | 8.94 |
Terrestrial acidification | TA | g SO2 eq | 7.25 | 0.31 | 7.57 |
Freshwater eutrophication | FE | g P eq | 0.87 | 0.04 | 0.91 |
Marine eutrophication | ME | g N eq | 0.10 | 0.004 | 0.11 |
Terrestrial ecotoxicity | TET | kg 1.4-DCB | 3.35 | 0.15 | 3.50 |
Freshwater ecotoxicity | FET | kg 1.4-DCB | 0.08 | 0.004 | 0.08 |
Marine ecotoxicity | MET | kg 1.4-DCB | 0.10 | 0.005 | 0.11 |
Human carcinogenic toxicity | HCT | kg 1.4-DCB | 0.05 | 0.002 | 0.05 |
Human non-carcinogenic toxicity | HNCT | kg 1.4-DCB | 3.22 | 0.14 | 3.35 |
Land use | LU | m2a crop eq | 1.16 | 0.05 | 1.21 |
Mineral resource scarcity | MRS | g Cu eq | 0.27 | 0.01 | 0.27 |
Fossil resource scarcity | FRS | kg oil eq | 0.33 | 0.01 | 0.34 |
Water consumption | WC | m3 | 1.84 | 0.08 | 1.92 |
Impact Category | Unit | COM | Benefits | ||||
---|---|---|---|---|---|---|---|
E + B | E + L | E + C | E + B | E + L | E + C | ||
GW | $∙kg CO2 eq−1 | 3.53 | 0.42 | 0.44 | 8.55 | 0.96 | 1.00 |
SOD | $∙mg CFC11 eq−1 | 3.35 | 1.01 | 0.02 | 8.10 | 2.30 | 0.06 |
IR | $∙Bq Co-60 eq−1 | 0.68 | 0.44 | 0.37 | 1.66 | 1.00 | 0.85 |
OF, HH | $∙kg NOx eq−1 | 469.54 | 146.73 | 154.06 | 1136.33 | 333.05 | 351.82 |
PMF | $∙kg PM2.5 eq−1 | 298.53 | 114.01 | 106.67 | 722.46 | 258.78 | 243.59 |
OF, TE | $∙kg NOx eq−1 | 466.42 | 145.81 | 153.10 | 1128.78 | 330.96 | 349.62 |
TA | $∙kg SO2 eq−1 | 550.81 | 205.42 | 84.21 | 1333.01 | 466.29 | 192.30 |
FE | $∙g P eq−1 | 4.60 | 1.87 | 1.93 | 11.12 | 4.25 | 4.41 |
ME | $∙g N eq−1 | 39.07 | 16.20 | 16.78 | 94.56 | 36.76 | 38.31 |
TET | $∙kg 1,4-DCB−1 | 1.19 | 0.36 | 0.39 | 2.88 | 0.83 | 0.88 |
FET | $∙kg 1,4-DCB−1 | 52.93 | 22.13 | 23.33 | 128.09 | 50.22 | 53.27 |
MET | $∙kg 1,4-DCB−1 | 38.62 | 15.97 | 16.83 | 93.46 | 36.25 | 38.44 |
HCT | $∙kg 1,4-DCB−1 | 76.69 | 31.40 | 32.18 | 185.60 | 71.28 | 73.50 |
HNCT | $∙kg 1,4-DCB−1 | 1.24 | 0.47 | 0.50 | 3.01 | 1.07 | 1.13 |
LU | $∙m2a crop eq−1 | 3.44 | 0.88 | 0.94 | 8.34 | 2.00 | 2.14 |
MRS | $∙g Cu eq−1 | 14.99 | 17.54 | 16.25 | 36.28 | 39.82 | 37.10 |
FRS | $∙kg oil eq−1 | 12.29 | 5.24 | 5.38 | 29.73 | 11.89 | 12.28 |
WC | $∙m−3 | 2.17 | 0.91 | 0.97 | 5.25 | 2.07 | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebolledo-Leiva, R.; Estévez, S.; Hernández, D.; Feijoo, G.; Moreira, M.T.; González-García, S. Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis. Resources 2024, 13, 156. https://doi.org/10.3390/resources13110156
Rebolledo-Leiva R, Estévez S, Hernández D, Feijoo G, Moreira MT, González-García S. Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis. Resources. 2024; 13(11):156. https://doi.org/10.3390/resources13110156
Chicago/Turabian StyleRebolledo-Leiva, Ricardo, Sofía Estévez, Diógenes Hernández, Gumersindo Feijoo, María Teresa Moreira, and Sara González-García. 2024. "Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis" Resources 13, no. 11: 156. https://doi.org/10.3390/resources13110156
APA StyleRebolledo-Leiva, R., Estévez, S., Hernández, D., Feijoo, G., Moreira, M. T., & González-García, S. (2024). Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis. Resources, 13(11), 156. https://doi.org/10.3390/resources13110156