Multiobjective Optimisation of Flotation Variables Using Controlled-NSGA-II and Paretosearch
Abstract
:1. Introduction
2. Research Methodology
2.1. Data Collection and Pre-Processing
2.2. Model Development and Evaluation
2.3. Optimisation Modelling
Problem Formulation
3. Results and Discussion
3.1. Predictive Models’ Performance
3.2. Best Multiobjective Algorithm Selection
Selection of the Best Solution
4. Conclusions
- (1)
- The model assessment showed good copper recovery and concentrate grade prediction from the flotation variables using the GPR model.
- (2)
- The rational quadratic covariance function worked best for copper recovery prediction, while the matern 3/2 covariance function worked best for the concentrate copper grade prediction.
- (3)
- The comparison between the PA and controlled-NSGA-II revealed that the PA, although the controlled-NSGA-II also worked very well, finds the best set of pareto-optimal solutions for both the copper recovery and concentrate grade maximisation.
- (4)
- Selecting a final optimal solution requires domain knowledge. For example, the optimal solution for the rougher flotation stage (focussed on maximising the throughput) may differ from that of the cleaner flotation stage (focus may be on higher product grades).
- (5)
- Further analysis of the best set of pareto-optimal solutions also revealed that a near optimal rougher copper recovery at a satisfactory grade is still attainable with varying feed grades and particle sizes when all the other flotation variables are kept at their optimum values.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharai, M.; Venugopal, R. Modeling of Flotation Process—An Overview of Different Approaches. Miner. Process. Extr. Metall. Rev. 2016, 37, 120–133. [Google Scholar] [CrossRef]
- Jovanović, I.; Miljanović, I.; Jovanović, T. Soft computing-based modeling of flotation processes—A review. Miner. Eng. 2015, 84, 34–63. [Google Scholar] [CrossRef]
- Quintanilla, P.; Neethling, S.J.; Brito-Parada, P.R. Modelling for froth flotation control: A review. Miner. Eng. 2021, 162, 106718. [Google Scholar] [CrossRef]
- Jahedsaravani, A.; Marhaban, M.H.; Massinaei, M. Application of Statistical and Intelligent Techniques for Modeling of Metallurgical Performance of a Batch Flotation Process. Chem. Eng. Commun. 2016, 203, 151–160. [Google Scholar] [CrossRef]
- Hayat, M.B. Mitigation of Environmental Hazards of Sulfide Mineral Flotation with an Insight into Froth Stability and Flotation Performance; Missouri University of Science and Technology: Rolla, MO, USA, 2018. [Google Scholar]
- Wang, G.; Nguyen, A.V.; Mitra, S.; Joshi, J.B.; Jameson, G.J.; Evans, G.M. A review of the mechanisms and models of bubble-particle detachment in froth flotation. Sep. Purif. Technol. 2016, 170, 155–172. [Google Scholar] [CrossRef]
- Yoon, R.-H.; Soni, G.; Huang, K.; Park, S.; Pan, L. Development of a turbulent flotation model from first principles and its validation. Int. J. Miner. Process. 2016, 156, 43–51. [Google Scholar] [CrossRef]
- Chilliers, J.J.; Asplin, R.A.; Woodburn, E.T. Kinetic Flotation Modelling Using Froth Imaging Data. In Frothing in Flotation; Woodburn, E.T., Ed.; Routledge: Boca Raton, FL, USA, 1998; pp. 309–335. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, J.; Zhang, X.; Wen, S. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network. Fuel Process. Technol. 2015, 129, 120–129. [Google Scholar] [CrossRef]
- Khodakarami, M.; Molatlhegi, O.; Alagha, L. Evaluation of ash and coal response to hybrid polymeric nanoparticles in flotation process: Data analysis using self-learning neural network. Int. J. Coal Prep. Util. 2019, 39, 199–218. [Google Scholar] [CrossRef]
- Zarie, M.; Jahedsaravani, A.; Massinaei, M. Flotation froth image classification using convolutional neural networks. Miner. Eng. 2020, 155, 106443. [Google Scholar] [CrossRef]
- Amankwaa-Kyeremeh, B.; Greet, C.J.; Skinner, W.; Zanin, M.; Asamoah, R.K. Selecting key predictor parameters for regression analysis using modified neighbourhood componenet analysis (NCA) algorithm. In Proceedings of the 6th UMaT Biennial International Mining and Mineral Conference, Tarkwa, Ghana, 5–6 August 2020; pp. 320–325. [Google Scholar]
- Jahedsaravani, A.; Marhaban, M.; Massinaei, M. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Miner. Eng. 2014, 69, 137–145. [Google Scholar] [CrossRef]
- Jahedsaravani, A.; Marhaban, M.; Massinaei, M.; Saripan, M.; Noor, S. Froth-based modeling and control of a batch flotation process. Int. J. Miner. Process. 2016, 146, 90–96. [Google Scholar] [CrossRef]
- Amankwaa-Kyeremeh, B.; Greet, C.; Zanin, M.; Skinner, W.; Asamoah, R.K. Predictability of rougher flotation copper recovery using Gaussian process regression algorithm. In Proceedings of the 6th UMaT Biennial International Mining and Mineral Conference, Tarkwa, Ghana, 5–6 August 2020; Ghana UMaT: Tarkwa, Ghana, 2020; pp. 1–8. [Google Scholar]
- Yang, K.; Jin, H.; Chen, X.; Dai, J.; Wang, L.; Zhang, D. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models. J. Chemom. Intell. Lab. Syst. 2016, 155, 170–182. [Google Scholar] [CrossRef]
- Amankwaa-Kyeremeh, B.; Zhang, J.; Zanin, M.; Skinner, W.; Asamoah, R.K. Feature selection and Gaussian process prediction of rougher copper recovery. Miner. Eng. 2021, 170, 107041. [Google Scholar] [CrossRef]
- Amankwaa-Kyeremeh, B.; Greet, C.; Skinner, W.; Asamoah, R.K. Correlating process mineralogy and pulp chemistry for quick ore variability diagnosis. In Proceedings of the International Future Mining Conference, Online, 6–10 December 2021; Australia Australia Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2021; pp. 1–10. [Google Scholar]
- Patel, A.K.; Gorai, A.K.; Chatterjee, S. Development of Machine vision-based system for iron ore grade prediction using Gaussian Process Regression (GPR). In Proceedings of the Pattern Recognition and Information processing (PRIP’2016), Minsk, Belarus, 3–5 October 2016; pp. 45–48. [Google Scholar]
- Arthur, C.K.; Temeng, V.A.; Ziggah, Y.Y. Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng. Comput. 2020, 36, 29–42. [Google Scholar] [CrossRef]
- Amankwaa Kyeremeh, B.; Ehrig, K.; Greet, C.; Asamoah, R. Pulp chemistry variables for gaussian process prediction of rougher copper recovery. Minerals 2023, 13, 731. [Google Scholar] [CrossRef]
- Amankwaa-Kyeremeh, B.; McCamley, C.; Zanin, M.; Greet, C.; Ehrig, K.; Asamoah, R.K. Prediction and Optimisation of Copper Recovery in the Rougher Flotation Circuit. Minerals 2024, 14, 36. [Google Scholar] [CrossRef]
- Amankwaa-Kyeremeh, B.; Skinner, W.; Asamoah, R.K. Comparative study on rougher copper recovery prediction using selected predictive algorithms. In Proceedings of the International Future Mining Conference, Sydney, Australia, 6–10 December 2021; Australia Australia Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2021; pp. 1–10. [Google Scholar]
- Cook, R.; Monyake, K.C.; Hayat, M.B.; Kumar, A.; Alagha, L. Prediction of flotation efficiency of metal sulfides using an original hybrid machine learning model. Eng. Rep. 2020, 2, e12167. [Google Scholar] [CrossRef]
- Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.; Botti, S.; Marques, M.A. Recent advances and applications of machine learning in solid-state materials science. Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Müller, J. MISO: Mixed-integer surrogate optimization framework. Optim. Eng. 2016, 17, 177–203. [Google Scholar] [CrossRef]
- Yu, D.; Hong, J.; Zhang, J.; Niu, Q. Multi-objective individualized-instruction teaching-learning-based optimization algorithm. Appl. Soft Comput. 2018, 62, 288–314. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, D.; Yuan, J.; Li, H.; Gao, Y. Application of NSGA-II algorithm for fault diagnosis in power system. Electr. Power Syst. Res. 2019, 175, 105893. [Google Scholar] [CrossRef]
- Beirigo, B.A.; dos Santos, A.G. Application of NSGA-II framework to the travel planning problem using real-world travel data. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 746–753. [Google Scholar]
- Gantayet, A.; Dheer, D.K. Multiobjective Planning Strategy for a Distribution Network integrated with Wind Power System considering Solid State Transformer. In Proceedings of the 2021 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 692–697. [Google Scholar]
- Mišo, B.B.; Branko, S.R.; Kolarik, L.; Petrovic, A.V. Multi-objective calibration of the double-ellipsoid heat source model for gmaw process simulation. Therm. Sci. 2022, 26, 2081–2092. [Google Scholar]
- Arthur, C.K.; Kaunda, R.B. A hybrid paretosearch algorithm and goal attainment method for maximizing production and reducing blast-induced ground vibration: A blast design parameter selection approach. Min. Technol. 2020, 129, 151–158. [Google Scholar] [CrossRef]
- Ehrig, K.; McPhie, J.; Kamenetsky, V. Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. In Geology and Genesis of Major Copper Deposits and Districts of the World, a Tribute to Richard Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2012; Volume 16, pp. 237–268. [Google Scholar]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Bratley, P.; Fox, B.L. Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 1988, 14, 88–100. [Google Scholar] [CrossRef]
- Fleischer, M. The measure of Pareto optima applications to multi-objective metaheuristics. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Faro, Portugal, 8–11 April 2003; pp. 519–533. [Google Scholar]
- Custódio, A.L.; Madeira, J.A.; Vaz, A.I.F.; Vicente, L.N. Direct multisearch for multiobjective optimization. SIAM J. Optim. 2011, 21, 1109–1140. [Google Scholar] [CrossRef]
- Owusu, K.B.; Karageorgos, J.; Greet, C.; Zanin, M.; Skinner, W.; Asamoah, R.K. Predicting mill feed grind characteristics through acoustic measurements. Miner. Eng. 2021, 171, 107099. [Google Scholar] [CrossRef]
- Asamoah, R.K.; Baawuah, E.; Greet, C.; Skinner, W. Characterisation of metal debris in grinding and flotation circuits. Miner. Eng. 2021, 171, 107074. [Google Scholar] [CrossRef]
- Forson, P.; Zanin, M.; Abaka-Wood, G.; Skinner, W.; Asamoah, R. Flotation of auriferous arsenopyrite from pyrite using thionocarbamate. Miner. Eng. 2022, 181, 107524. [Google Scholar] [CrossRef]
- Forson, P.; Skinner, W.; Asamoah, R. Investigating the selective flotation of auriferous arsenian pyrite from refractory ores using thionocarbamate. Powder Technol. 2023, 426, 118649. [Google Scholar] [CrossRef]
- Dankwah, J.B.; Asamoah, R.K.; Zanin, M.; Skinner, W. Dense liquid flotation: Can coarse particle flotation performance be enhanced by controlling fluid density? Miner. Eng. 2022, 180, 107513. [Google Scholar] [CrossRef]
- Forson, P.; Zanin, M.; Skinner, W.; Asamoah, R. Differential flotation of pyrite and Arsenopyrite: Effect of pulp aeration and the critical importance of collector concentration. Miner. Eng. 2022, 178, 107421. [Google Scholar] [CrossRef]
Training Data Set | ||||
---|---|---|---|---|
GPR Covariance Function | MAPE (%) | RRMSE | REC (%) | |
Squared exponential | 0.95 | 0.04 | 0.03 | 99.80 |
Rational quadratic | 0.99 | 0.02 | 0.01 | 99.98 |
Exponential | 0.97 | 0.02 | 0.02 | 99.96 |
Matern 3/2 | 0.95 | 0.03 | 0.04 | 99.78 |
Validation Data Set | ||||
GPR Covariance Function | MAPE (%) | RRMSE | REC (%) | |
Squared exponential | 0.94 | 0.29 | 0.46 | 83.83 |
Rational quadratic | 0.96 | 0.24 | 0.38 | 85.47 |
Exponential | 0.96 | 0.28 | 0.42 | 84.28 |
Matern 3/2 | 0.95 | 0.30 | 0.46 | 83.80 |
Testing Data Set | ||||
GPR Covariance Function | MAPE (%) | RRMSE | REC (%) | |
Squared exponential | 0.95 | 0.33 | 0.42 | 84.10 |
Rational quadratic | 0.97 | 0.26 | 0.37 | 85.39 |
Exponential | 0.96 | 0.30 | 0.44 | 83.98 |
Matern 3/2 | 0.97 | 0.33 | 0.43 | 83.97 |
Training Data Set | ||||
---|---|---|---|---|
GPR Covariance Function | MAPE (%) | RRMSE | REC (%) | |
Squared exponential | 0.96 | 0.02 | 0.02 | 99.95 |
Rational quadratic | 0.98 | 0.02 | 0.01 | 99.97 |
Exponential | 0.97 | 0.02 | 0.01 | 99.97 |
Matern 3/2 | 0.99 | 0.01 | 0.01 | 99.99 |
Validation Data Set | ||||
GPR Covariance Function | MAPE (%) | RRMSE | REC (%) | |
Squared exponential | 0.97 | 0.19 | 0.29 | 91.81 |
Rational quadratic | 0.98 | 0.18 | 0.27 | 91.86 |
Exponential | 0.97 | 0.19 | 0.28 | 91.82 |
Matern 3/2 | 0.98 | 0.17 | 0.25 | 92.92 |
Testing Data Set | ||||
GPR Covariance Function | MAPE (%) | RRMSE | REC (%) | |
Squared exponential | 0.97 | 0.23 | 0.28 | 92.20 |
Rational quadratic | 0.97 | 0.21 | 0.29 | 91.95 |
Exponential | 0.98 | 0.19 | 0.28 | 92.56 |
Matern 3/2 | 0.99 | 0.16 | 0.26 | 92.99 |
Variable | Solution 1 | Solution 2 | Solution 3 | Solution 4 | |
---|---|---|---|---|---|
Flotation feed grade (wt.%) | 2.52 | 1.60 | 2.52 | 2.52 | |
Percent particle passing 75 µm | 78.00 | 80.22 | 78.00 | 78.00 | |
Mill throughput (t/h) | 600.00 | 670.56 | 679.69 | 679.69 | |
Xanthate dosage in tanks 1 and 4 (ml/min) | 1 | 69.11 | 66.98 | 190.50 | 69.11 |
4 | 29.93 | 27.80 | 29.93 | 29.93 | |
Frother dosage in tanks 1 and 4 (ml/min) | 1 | 40.94 | 38.81 | 40.94 | 40.94 |
4 | 28.10 | 28.10 | 28.10 | 28.10 | |
Air flow rate in tanks 1 to 5 (m3/h) | 1 | 1215.63 | 1213.49 | 1215.63 | 900.00 |
2 | 1195.00 | 1192.87 | 1195.00 | 1195.00 | |
3 | 1165.63 | 1163.49 | 1165.63 | 1165.63 | |
4 | 1212.50 | 1210.37 | 1212.50 | 1212.50 | |
5 | 1100.00 | 1100.00 | 1100.00 | 1100.00 | |
Froth depth in tanks 1 to 5 (mm) | 1 | 150.00 | 150.00 | 150.00 | 150.00 |
2/3 * | 135.35 | 133.22 | 135.35 | 135.35 | |
4/5 * | 150.00 | 150.00 | 150.00 | 150.00 | |
Copper recovery (%) | 93.72 | 93.84 | 93.40 | 93.41 | |
Concentrate copper grade (wt.%) | 16.77 | 15.41 | 18.16 | 17.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amankwaa-Kyeremeh, B.; McCamley, C.; Ehrig, K.; Asamoah, R.K. Multiobjective Optimisation of Flotation Variables Using Controlled-NSGA-II and Paretosearch. Resources 2024, 13, 157. https://doi.org/10.3390/resources13110157
Amankwaa-Kyeremeh B, McCamley C, Ehrig K, Asamoah RK. Multiobjective Optimisation of Flotation Variables Using Controlled-NSGA-II and Paretosearch. Resources. 2024; 13(11):157. https://doi.org/10.3390/resources13110157
Chicago/Turabian StyleAmankwaa-Kyeremeh, Bismark, Conor McCamley, Kathy Ehrig, and Richmond K. Asamoah. 2024. "Multiobjective Optimisation of Flotation Variables Using Controlled-NSGA-II and Paretosearch" Resources 13, no. 11: 157. https://doi.org/10.3390/resources13110157
APA StyleAmankwaa-Kyeremeh, B., McCamley, C., Ehrig, K., & Asamoah, R. K. (2024). Multiobjective Optimisation of Flotation Variables Using Controlled-NSGA-II and Paretosearch. Resources, 13(11), 157. https://doi.org/10.3390/resources13110157