Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation
Abstract
:1. Introduction
2. Research Methodology
3. Surfactant
4. Biosurfactants
5. Microorganisms and Biosurfactant Production
5.1. Classification and Factors Influencing Production
5.1.1. Glycolipids
- Rhamnolipids
- Sophorolipids
- Trehalolipidis
5.1.2. Lipopeptides
5.1.3. Fatty Acids, Phospholipids and Neutral Lipids
5.1.4. Polymeric Biosurfactants
6. Application of Biosurfactants in Froth Flotation
7. Sustainability and Environmental Aspects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pawlowska, A.; Sadowski, Z. The Role of Biomodification in Mineral Processing. Minerals 2023, 13, 1246. [Google Scholar] [CrossRef]
- Xue, Z.; Feng, Y.; Li, H.; Zhu, Z.; Xu, C.; Ju, J.; Yang, Y. A comprehensive review on progresses of coal and minerals bioflotation in presence of microorganisms. J. Environ. Chem. Eng. 2023, 11, 111182. [Google Scholar] [CrossRef]
- Senave, L.; Jans, M.J.; Srivastava, R.P. The application of text mining in accounting. Int. J. Account. Inf. Syst. 2023, 50, 10624. [Google Scholar] [CrossRef]
- Fashola, M.O.; Anagun, O.S.; Babalola, O.O. Heavy metal pollution: Toxic effects on bacterial cells. Dep. Biol. Sci. Fac. Agric. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Janakova, I.; Cablik, V.; Tora, B.; Nowak, A.K. Degradation potential of bacteria and fungi isolated from sites contaminated with pesticides and synthetic polymers. Int. Multidiscip. Sci. GeoConference SGEM 2017, 17, 193–200. [Google Scholar]
- Datta, S.; Nag, S. Application of biosurfactant as antibiotics for the management of diseases affecting livestock. In Applications of Biosurfactant in Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 127–150. [Google Scholar]
- da Silva, E.J. Action of Biosurfactants as Natural Collectors in Improving the Efficiency of the Oily Water Treatment Process by Flotation. Ph.D. Thesis, Federal Rural University of Pernambuco, Pernambuco, Brazil, 2018. [Google Scholar]
- Camerini, F.V.; Chanin, C.A.; Borba, C.M.; Costa, J.A.V.; Burkert, C.A.V.; Burkert, J.F.M. Biosurfactant production by Phialemonium sp. using agroindustrial wastes: Influence of culture conditions. J. Biosurf. Prod. 2018, 41, 43484. [Google Scholar] [CrossRef]
- Maity, J.P.; Huang, Y.M.; Fan, C.W.; Chen, C.C.; Li, C.Y.; Hsu, C.M.; Chang, Y.F.; Wu, C.I.; Chen, C.Y.; Jean, J.S. Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in Hai-Pu, Taiwan. J. Environ. Sci. 2013, 25, 1180–1185. [Google Scholar] [CrossRef]
- Sobrinho, H.B.S.; Luna, J.M.; Rufino, R.D.; Porto, A.L.F.; Sarubbo, L.A. Biosurfactants: Classification, properties and environmental applications. Biosurf. Classif. 2013, 11, 1–29. [Google Scholar]
- Mishra, A.; Tripathi, B.D.; Rai, A.K. Biosorption of Cr(VI) and Ni(II) onto Hydrilla verticillata dried biomass. Ecol. Eng. 2014, 73, 713–723. [Google Scholar] [CrossRef]
- Singhon, R. Adsorption of Cu(II) and Ni(II) Ions on Functionalized Colloidal Silica Particles: Model Studies for Wastewater Treatment. Ph.D. Thesis, Université de Franche-Comté, Franche-Comté, France, 2014. [Google Scholar]
- Santos, K.A.L.; Benachour, M.; Sarubbo, L.A.; Santos, V.A. Development of a dissolved air flotation column with stages for water-oil separation. In Proceedings of the Congresso Brasileiro de Engenharia Química, Florianópolis, Brazil, 2015. [Google Scholar]
- Akcil, A.; Erust, C.; Ozdemiroglu, S.; Fonti, V.; Beolchini, F. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes. J. Clean. Prod. 2015, 86, 24–36. [Google Scholar] [CrossRef]
- Merma, A.G.; Torem, M.L. Bioflotation of apatite and quartz: Particle size effect on the rate constant. Mining 2015, 63, 343–350. [Google Scholar] [CrossRef]
- Ndikubwimana, T.; Chang, J.; Xiao, Z.; Shao, W.; Zeng, X.; Ng, I.-S.; Lu, Y. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production. Biotechnol. J. 2016, 11, 315–326. [Google Scholar] [CrossRef]
- Almeida, D.G.; Silva, R.C.F.S.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Biosurfactants: Promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016, 7, 230300. [Google Scholar] [CrossRef]
- Sanwani, E.S.C.; Mirahati, R.; Wahyuningsih, T. Bioflotation: Bacteria-Mineral Interaction for Ecofriendly and Sustainable Mineral Processing. Procedia Chem. 2016, 19, 666–672. [Google Scholar] [CrossRef]
- Yenial, U.; Bulut, G. Examination of flotation behavior of metal ions for process water remediation. J. Mol. Liq. 2017, 241, 130–135. [Google Scholar] [CrossRef]
- Tang, J.; He, J.; Liu, T.; Xin, X.; Hu, H. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere 2017, 189, 599–608. [Google Scholar] [CrossRef]
- Behera, S.K.; Mulaba-Bafubiandi, A.F. Microbes Assisted Mineral Flotation a Future Prospective for Mineral Processing Industries: A Review. Miner. Process. Extr. Metall. Rev. 2017, 38, 96–105. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F.; Alara, O.R. Biosurfactants—A new frontier for social and environmental safety: A mini review. Biotechnol. Res. Innov. 2018, 2, 81–90. [Google Scholar] [CrossRef]
- Peleka, E.N.; Gallios, G.P.; Matis, K.A. A perspective on flotation: A review. J. Chem. Technol. Biotechnol. 2018, 93, 615–623. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Hewage, S.A.; Batagoda, J.H. Environmental Engineering Science. Environ. Eng. Sci. 2018, 35, 1216–1227. [Google Scholar] [CrossRef]
- Sikder, T.; Rahman, M.; Jakariya; Hosokawa, T.; Kurasaki, M.; Saito, T. Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chem. Eng. J. 2019, 355, 920–941. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Selvarajan, R.; Chikere, C.B. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019, 7, 581. [Google Scholar] [CrossRef]
- Almeida, D.G.; Luna, J.M.; Silva, I.A.; Silva, E.J.; Santos, V.A.; Brasileiro, P.P.F.; Sarubbo, L.A. Biosurfactant from Pseudomonas cepacia CCT 6659 as alternative collector in dissolved air flotation system for soap and detergent industry effluent treatment. Chem. Eng. 2019, 74, 361–366. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A review on membrane technology and chemical surface modification for the oily wastewater treatment. Materials 2020, 13, 493. [Google Scholar] [CrossRef]
- Rasheed, T.; Shafi, S.; Bilal, M.; Hussain, T.; Sher, F.; Rizwan, K. Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. J. Mol. Liq. 2020, 318, 113960. [Google Scholar] [CrossRef]
- Hoseinian, F.S.; Rezai, B.; Kowsari, E.; Chinnappan, A.; Ramakrishna, S. Synthesis and characterization of a novel nanocollector for the removal of nickel ions from synthetic wastewater using ion flotation. Sep. Purif. Technol. 2020, 240, 116639. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, Z.; Zhang, W.; Gao, Q.; Dai, Y.; Xia, F. EDTA-based adsorbents for the removal of metal ions in wastewater. Coord. Chem. Rev. 2021, 434, 213809. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Krowiak, A.W.; Chojnacka, K. Potential environmental pollution from copper metallurgy and methods of management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef]
- Xu, X.; Ouyang, X.; Yang, L. Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J. Mol. Liq. 2021, 322, 114523. [Google Scholar] [CrossRef]
- Kashif, A.; Rehman, R.; Fuwad, A.; Shahid, M.K.; Dayarathne, H.N.P.; Jamal, A.; Aftab, M.N.; Mainali, B.; Choi, Y. Current advances in the classification, production, properties and applications of microbial biosurfactants—A critical review. Adv. Colloid Interface Sci. 2022, 306, 102718. [Google Scholar] [CrossRef]
- Gomes, B.O. Microflotation of Hematite and Dolomite with Carboxylates of Plant Origin. Master’s Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2022. [Google Scholar]
- Jia, K.; Yi, Y.; Ma, W.; Cao, Y.; Li, G.; Liu, S.; Wang, T.; An, N. Ion flotation of heavy metal ions by using biodegradable biosurfactant as collector: Application and removal mechanism. Miner. Eng. 2022, 176, 107338. [Google Scholar] [CrossRef]
- Oulkhir, A.; Lyamlouli, K.; Danouche, M.; Ouazzani, J.; Benhida, R. A critical review of natural surfactants and their potential for sustainable mineral flotation. Rev. Environ. Sci. Biotechnol. 2023, 22, 105–131. [Google Scholar] [CrossRef]
- Mishra, S.; Panda, S.; Akcil, A.; Dembele, S. Biotechnological Avenues in Mineral Processing: Fundamentals, Applications and Advances in Bioleaching and Bio-beneficiation. Miner. Process. Extr. Metall. Rev. 2023, 44, 22–51. [Google Scholar] [CrossRef]
- Çelik, P.A.; Çakmak, H.; Aksoy, D.O. Green bioflotation of calcite using surfactin as a collector. J. Dispers. Sci. Technol. 2023, 44, 911–921. [Google Scholar] [CrossRef]
- Pettersson, A.; Adamsson, M.; Dave, G. Toxicity and detoxification of Swedish detergents and softener products. Chemosphere 2000, 41, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Karsa, D. History and applications of surfactants. In Chemistry and Technology of Surfactants; Farn, R., Ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [PubMed]
- Ivanković, T.; Hrenović, J. Surfactants in the environment. Arh. Hig. Rada Toksikol. 2010, 61, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.C. An Introduction to Interfaces and Colloids: The Bridge to Nanoscience; World Scientific: Singapore, 2010. [Google Scholar]
- Uchegbu, I.F.; Schätzlein, A.G.; Cheng, W.P.; Lalatsa, A. (Eds.) Fundamentals of Pharmaceutical Nanoscience; Springer: New York, NY, USA, 2013. [Google Scholar]
- Seedher, N. In vitro study of the mechanism of interaction of trifluoperazine dihydrochloride with bovine serum albumin. Indian J. Pharm. Sci. 2000, 62, 16–20. [Google Scholar]
- Yushmanov, V.E.; Perussi, J.R.; Imasato, H.; Tabak, M. Interaction of papaverine with micelles of surfactants with different charge studied by 1H-NMR. Biochim. Biophys. Acta 1994, 1189, 74–80. [Google Scholar] [CrossRef]
- Costa, M.F.; de Oliveira, A.M.; de Oliveira Junior, E.N. Biodegradation of linear alkylbenzene sulfonate (LAS) by Penicillium chrysogenum. Bioresour. Technol. Rep. 2020, 9. [Google Scholar] [CrossRef]
- Corada-Fernández, C.; González-Mazo, E.; Lara-Martín, P.A. Evaluation of the anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) using OECD 308 water/sediment systems. J. Hazard. Mater. 2018, 360, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A. Surfactant screening of diesel-contaminated soil. Hazard. Waste Hazard. Mater. 1992, 9, 113–136. [Google Scholar] [CrossRef]
- Burckett, J.S.L.; de Buzzaccarini, F.; de Clerck, K.; Demeyere, H.; Labeque, R.; Lodewick, R.; van Langenhove, L. Laundry cleaning of textiles. In Handbook for Cleaning/Decontamination of Surfaces; Johansson, I., Somasundaran, P., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2007; pp. 57–102. [Google Scholar]
- Arai, M.; Suzuki, T.; Kaneko, Y.; Miyake, M.; Nishikawa, N. Properties of aggregates of amide guanidine type cationic surfactant with 1-hexadecanol adsorbed on hair. In Studies in Surface Science and Catalysis; Iwasawa, Y., Oyama, N., Kunieda, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1005–1008. [Google Scholar]
- Fredell, D.L. Biological properties and applications of cationic surfactants. In Cationic Surfactants: Analytical and Biological Evaluation; Cross, J., Singer, E.J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Cheng, K.C.; Khoo, Z.S.; Lo, N.W.; Tan, W.J.; Chemmangattuvalappil, N.G. Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon 2020, 6, e03861. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y.; Nakama, Y. Surfactants. In Cosmetic Science and Technology Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 231–244. [Google Scholar]
- Bazylińska, U.; Skrzela, R.; Szczepanowicz, K.; Warszyński, P.; Wilk, K.A. Novel approach to long sustained multilayer nanocapsules: Influence of surfactant head groups and polyelectrolyte layer number on the release of hydrophobic compounds. Soft Matter 2011, 7, 6113–6124. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Z.; Liu, G.; Huang, Y.; Zhang, Z. Selective flotation of copper oxide minerals with a novel amino-triazole-thione surfactant: A comparison to hydroxamic acid collector. Miner. Process. Extr. Metall. Rev. 2020, 41, 96–106. [Google Scholar] [CrossRef]
- Chen, Q.; Tian, M.; Kasomo, R.M.; Li, H.; Zheng, H.; Song, S.; Luo, H.; He, D. Depression effect of Al(III) and Fe(III) on rutile flotation using dodecylamine polyxyethylene ether as collector. Colloids Surf. A 2020, 603, 125269. [Google Scholar] [CrossRef]
- Ogru, K.I.; Olannye, P.G. Microbial studies of biosurfactant producing bacteria from crude oil contaminated soil. J. Appl. Sci. Environ. Manag. 2021, 25, 1729–1735. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B.; Makarov, S.O.; Litvinenko, L.V.; Cunningham, C.J.; Philp, J.C. Effect of biosurfactants on crude oil desorption and mobilization in a soil system (Recent Advances in Bioremediation). Environ. Int. 2005, 31, 155–161. [Google Scholar] [CrossRef]
- Sankhyan, S.; Kumar, P.; Sonkar, M.; Pandit, S.; Ranjan, N.; Ray, S. Characterization of biosurfactant produced through co-utilization of substrates by the novel strain Pseudomonas aeruginosa NG4. Biocatal. Agric. Biotechnol. 2023, 55, 102988. [Google Scholar]
- Marchant, R.; Banat, I.M. Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012, 34, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, L.A.; Maria da Gloria, C.S.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Santos, S.C. Biossurfactantes: Potenciais agentes biorremediadores. Cad. Prospecção Salvador 2019, 12, 1531–1540. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environ. Technol. Innov. 2021, 24, 102090. [Google Scholar] [CrossRef]
- Legawiec, K.J.; Kruszelnicki, M.; Zawadzka, M.; Basorová, P.; Zawala, J.; Polowczyk, I. Towards green flotation: Investigating the effect of rhamnolipid biosurfactant on single bubble adhesion dynamics. J. Mol. Liq. 2023, 388, 122759. [Google Scholar] [CrossRef]
- Uzoigwe, C.; Burgess, J.G.; Ennis, C.J.; Rahman, P.K.S.M. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 2015, 6, 245. [Google Scholar] [CrossRef]
- Elshafie, A.E.; Joshi, S.J.; Al-Wahaibi, Y.M.; Al-Bemani, A.S.; Al-Bahry, S.N.; Al-Maqbali, D.; Banat, I.M. Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front. Microbiol. 2015. [Google Scholar] [CrossRef]
- Olivera, N.L.; Nievas, M.L.; Lozada, M.; del Prado, G.; Dionisi, H.M.; Sineriz, F. Isolation and characterization of biosurfactant-producing Alcanivorax strains: Hydrocarbon accession strategies and alkane hydroxylase gene analysis. Res. Microbiol. 2009, 160, 19–26. [Google Scholar] [CrossRef]
- Araújo, J.; Rocha, J.; Oliveira Filho, M.; Matias, S.; Júnior, S.O.; Padilha, C. Rhamnolipids biosurfactants from Pseudomonas aeruginosa—A review. Biosci. Biotechnol. Res. Asia 2018, 15, 767–781. [Google Scholar] [CrossRef]
- Sakthipriya, N.; Kumar, G.; Agrawal, A.; Doble, M.; Sangwai, J.S. Impact of biosurfactants, Surfactin, and Rhamnolipid produced from Bacillus subtilis and Pseudomonas aeruginosa, on the enhanced recovery of crude oil and its comparison with commercial surfactants. Energy Fuels 2021, 35, 9883–9893. [Google Scholar] [CrossRef]
- Drakontis, C.E.; Amin, S. Biosurfactants: Formulations, properties, and applications. Curr. Opin. Colloid Interface Sci. 2020, 48, 77–90. [Google Scholar] [CrossRef]
- Vandana, P.; Singh, D. Review on biosurfactant production and its application. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4228–4241. [Google Scholar] [CrossRef]
- Bognolo, G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf. 1999, 152, 41–52. [Google Scholar] [CrossRef]
- Kosaric, N.; Cairns, W.L. Biosurfactants and Biotechnology; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Silva, R.C.F.S.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int. J. Mol. Sci. 2014, 15, 12523–12542. [Google Scholar] [CrossRef]
- Hassan, M.; Essam, T.; Yassin, A.S.; Salama, A. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design. Int. J. Biol. Macromol. 2016, 82, 573–579. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, F.; Wu, Y.; Tan, S.; Niu, A.; Qiu, W.; Wang, G. Biosurfactant from Pseudomonas fragi enhances the competitive advantage of Pseudomonas but reduces the overall spoilage ability of the microbial community in chilled meat. Food Microbiol. 2023, 115, 104311. [Google Scholar] [CrossRef]
- Gaur, V.K.; Bajaj, A.; Regar, R.K.; Kamthan, M.; Jha, R.R.; Srivastava, J.K.; Manickam, N. Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresour. Technol. 2019, 272, 19–25. [Google Scholar] [CrossRef]
- Nalini, S.; Parthasarathi, R. Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann. Agric. Sci. 2018, 16, 108–115. [Google Scholar] [CrossRef]
- Christova, N.; Lang, S.; Wray, V.; Kaloyanov, K.; Konstantinov, S.; Stoineva, I. Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J. Microbiol. Biotechnol. 2015, 25, 439–447. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B.; Baeva, T.A.; Kochina, O.A.; Gein, S.V.; Chereshnev, V.A. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol. 2015, 32, 559–568. [Google Scholar] [CrossRef]
- Pinto, M.I.S.; Ribeiro, B.G.; Guerra, J.M.C.; Rufino, R.D.; Sarubbo, L.A.; Santos, V.A.; Luna, J.M. Production in bioreactor, toxicity and stability of a low-cost biosurfactant. Chem. Eng. Trans. 2018, 64, 595–600. [Google Scholar]
- Dhar, P.; Thornhill, M.; Roelants, S.; Soetaert, W.; Chernyshova, I.V.; Rao, H. Linking molecular structures of yeast-derived biosurfactants with their foaming, interfacial, and flotation properties. Miner. Eng. 2021, 174, 107270. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Albuquerque, C.D.C.; Sarubbo, L.A.; Campos-Takaki, G.M. Economic optimized medium for tensio-active agent production by Candida sphaerica UCP0995 and application in the removal of hydrophobic contaminant from sand. Int. J. Mol. Sci. 2011, 12, 2463–2476. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, X.; Chen, Y.; Lin, Y.; Mohsin, A.; Chu, J. Efficient sophorolipids production via a novel in situ separation technology by Starmerella bombicola. Process Biochem. 2019, 81, 1–10. [Google Scholar] [CrossRef]
- Marcelino, P.R.F.; Peres, G.F.D.; Teran-Hilares, R.; Pagnocca, F.C.; Rosa, C.A.; Lacerda, T.M.; dos Santos, J.C.; da Silva, S.S. Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Ind. Crops Prod. 2019, 129, 212–223. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, J.; Wang, W.; Chen, Q. Production and characterization of a new glycolipid, mannosylerythritol lipid, from waste cooking oil biotransformation by Pseudozyma aphidis ZJUDM34. Food Sci. Nutr. 2019, 7, 937–948. [Google Scholar] [CrossRef]
- Camargo, F.P.; de Menezes, A.J.; Tonello, P.S.; Dos Santos, A.C.A.; Duarte, I.C.S. Characterization of biosurfactant from yeast using residual soybean oil under acidic conditions and their use in metal removal processes. FEMS Microbiol. Lett. 2018, 365, 98. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Potential food application of a biosurfactant produced by Saccharomyces cerevisiae URM 6670. Front. Bioeng. Biotechnol. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; de Veras, B.O.; dos Santos Aguiar, J.; Medeiros Campos Guerra, J.; Sarubbo, L.A. Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electron. J. Biotechnol. 2020, 46, 14–21. [Google Scholar] [CrossRef]
- Zenati, B.; Chebbi, A.; Badis, A.; Eddouaouda, K.; Boutoumi, H.; El Hattab, M.; Hentati, D.; Chelbi, M.; Sayadi, S.; Chamkha, M.; et al. A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement. Ecotoxicol. Environ. Saf. 2019, 154, 100–107. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, M.; Xue, J.; Shi, K.; Gu, M. Characterization and enhanced degradation potentials of biosurfactant-producing bacteria isolated from a marine environment. ACS Omega 2019, 4, 1645–1651. [Google Scholar] [CrossRef]
- Park, T.; Kwon, T.-H.; Dai, S. Alterations in wettability and immiscible fluid flows by bacterial biosurfactant production for microbial enhanced oil recovery: Pore-scale micromodel study. Geoenergy Sci. Eng. 2023, 229, 212170. [Google Scholar] [CrossRef]
- Joshi, S.; Yadav, S.; Desai, A.J. Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by Bacillus licheniformis R2. Biochem. Eng. J. 2008, 41, 122–127. [Google Scholar] [CrossRef]
- Jamal, P.; Alam, M.Z.; Zainuddin, E.A.; Nawawi, A.W.M.F.W. Production of biosurfactant in 2L bioreactor using sludge palm oil as a substrate. IIUM Eng. J. 2011, 12, 109–114. [Google Scholar] [CrossRef]
- Yang, Z.; Zu, Y.; Zhu, J.; Jin, M.; Cui, T.; Long, X. Application of biosurfactant surfactin as a pH-switchable biodemulsifier for efficient oil recovery from waste crude oil. Chemosphere 2020, 240, 124946. [Google Scholar] [CrossRef]
- Nair, A.S.; Al-Bahry, S.; Sivakumar, N. Co-production of microbial lipids and biosurfactant from waste office paper hydrolysate using a novel strain Bacillus velezensis ASN1. Biomass Convers. Biorefin. 2020, 10, 383–391. [Google Scholar] [CrossRef]
- Elazzazy, A.M.; Abdelmoneim, T.S.; Almaghrabi, O.A. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J. Biol. Sci. 2014, 22, 466–475. [Google Scholar] [CrossRef]
- Durval, I.J.B.; Mendonça, A.H.R.; Rocha, I.V.; Luna, J.M.; Rufino, R.D.; Converti, A.; Sarubbo, L.A. Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Mar. Pollut. Bull. 2020, 157, 111357. [Google Scholar] [CrossRef]
- Marchut-Mikolajczyk, O.; Drozdżyński, P.; Pietrzyk, D.; Antczak, T. Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. Microb. Cell Fact. 2018, 17, 171. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; Marinho, P.H.C.; Farias, C.B.B.; Ferreira, S.R.M.; Sarubbo, L.A. Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. J. Pet. Sci. Eng. 2013, 109, 117–122. [Google Scholar] [CrossRef]
- Wittgens, A.; Rosenau, F. On the road towards tailor-made rhamnolipids: Current state and perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 8175–8185. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.J.; Chan, S.S.; Khoo, K.S.; Munawaroh, H.S.H.; Lim, H.R.; Chew, K.W.; Ling, T.C.; Saravanan, A.; Ma, Z. Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. Biotechnol. Adv. 2023, 68, 108198. [Google Scholar] [CrossRef] [PubMed]
- Inès, M.; Dhouha, G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr. Res. 2015, 416, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Déziel, E.; Lépine, F.; Dennie, D.; Boismenu, D.; Mamer, O.A.; Villemur, R. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1999, 1440, 244–252. [Google Scholar] [CrossRef]
- Twigg, M.S.; Tripathi, L.; Zompra, A.; Salek, K.; Irorere, V.U.; Gutierrez, T.; Spyroulias, G.A.; Marchant, R.; Banat, I.M. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, nonpathogenic marine pseudomonad. Appl. Microbiol. Biotechnol. 2018, 102, 8537–8549. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Lotfabad, T.B.; Abassi, H.; Ahmadkhaniha, R.; Roostazad, R.; Masoomi, F.; Zahiri, H.S.; Ahmadian, G.; Vali, H.; Noghabi, K.A. Structural characterization of a rhamnolipid type biosurfactant produced by Pseudomonas aeruginosa MR01. Colloids Surf. B Biointerfaces 2010, 81, 397–405. [Google Scholar] [CrossRef]
- Ahangar, A.K.; Taghavijeloudar, M. Desalination and extraction of high value bio-products from algal-rich seawater using Rhamnolipid as a bio draw solution in forward osmosis. Desalination 2023, 568, 117017. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, C.; Chen, Y.; Huang, B.; Yang, Y.; Zhu, H.; Li, Y.; Wang, X.; Zhang, C. Intervention of rhamnolipid improves the rhizosphere microenvironment of cotton in desert saline lands. Environ. Technol. Innov. 2023, 32, 103378. [Google Scholar] [CrossRef]
- Santa Anna, L.M.; Sebastian, G.V.; Menezes, E.P.; Alves, T.L.M.; Santos, A.S.; Pereira, N., Jr.; Freire, D.M. Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Brazilian J. Chem. Eng. 2002, 19, 159–166. [Google Scholar] [CrossRef]
- Soberón-Chávez, G.; Lépine, F.; Déziel, E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2005, 68, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Dobler, L.; Vilela, L.F.; Almeida, R.V.; Neves, B.C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol. 2017, 33, 123–135. [Google Scholar] [CrossRef]
- Chong, H.; Li, Q. Microbial production of rhamnolipids: Opportunities, challenges and strategies. Microb. Cell Fact. 2017, 16, 137. [Google Scholar] [CrossRef] [PubMed]
- Kronemberger, F.A. Production of Rhamnolipids by Pseudomonas aeruginosa PA1 in a Bioreactor with Membrane Contactor Oxygenation. Ph.D. Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Zhao, F.; Wang, Q.; Zhang, Y.; Lei, L. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: Performance, mechanism and its application potential for enhanced oil recovery. Microb. Cell Fact. 2021, 20, 103. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Rodrigues, A.I.; de Freitas, V.; Azevedo, Z.; Teixeira, J.A.; Rodrigues, L.R. Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour. Technol. 2016, 212, 144–150. [Google Scholar] [CrossRef]
- Dos Santos, A.S.; Pereira, N., Jr.; Freire, D.M.G. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1. PeerJ 2016, 4, e2078. [Google Scholar] [CrossRef]
- Rawat, G.; Dhasmana, A.; Kumar, V. Biosurfactants: The next generation biomolecules for diverse applications. Environ. Sustain. 2020, 3, 353–369. [Google Scholar] [CrossRef]
- Das, A.J.; Kumar, R. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresour. Technol. 2018, 260, 233–240. [Google Scholar] [CrossRef]
- Rahman, P.K.S.M.; Gakpe, E. Production, characterization and application of biosurfactants—Review. Biotechnology 2008, 7, 360–370. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.A.; Saerens, K.; De Muynck, C.; Develter, D.; Soetaert, W.; Vandamme, E.J. Microbial production and application of sophorolipids. Appl. Microbiol. Biotechnol. 2007, 76, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Li, Q.; Ushimaru, K.; Hirota, M.; Morita, T.; Fukuoka, T. Isolation and characterization of novel naturally occurring sophorolipid glycerides. Bioresour. Technol. Rep. 2023, 22, 101399. [Google Scholar] [CrossRef]
- Baccile, N.; Poirier, A.; Le Griel, P.; Pernot, P.; Pala, M.; Roelants, S.; Soetaert, W.; Stevens, C.V. Aqueous self-assembly of a wide range of sophorolipid and glucolipid microbial bioamphiphiles (biosurfactants): Considerations on the structure-properties relationship. Colloids Surf. A Physicochem. Eng. Asp. 2023. [Google Scholar] [CrossRef]
- Smyth, T.J.P.; Perfumo, A.; Marchant, R.; Banat, I.M. Isolation and analysis of low molecular weight microbial glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3705–3723. [Google Scholar] [CrossRef]
- Claus, S.; Van Bogaert, I.N.A. Sophorolipid production by yeasts: A critical review of the literature and suggestions for future research. Appl. Microbiol. Biotechnol. 2017, 101, 7811–7821. [Google Scholar] [CrossRef] [PubMed]
- Roelants, S.L.; Ciesielska, K.; De Maeseneire, S.L.; Moens, H.; Everaert, B.; Verweire, S.; Denon, Q.; Vanlerberghe, B.; Van Bogaert, I.N.A.; Van Der Meeren, P. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol. Bioeng. 2016, 113, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.R. Production of Sophorolipids by Immobilized Candida Bombicola ATCC 22214 Cells in Calcium Alginate. Ph.D. Thesis, State University of Londrina, Londrina, Brazil, 2017. [Google Scholar]
- Bages-Estopa, S.; White, D.A.; Winterburn, J.B.; Webb, C.; Martin, P.J. Production and separation of a trehalolipid biosurfactant. Biochem. Eng. J. 2018, 139, 85–94. [Google Scholar] [CrossRef]
- Cameotra, S.S.; Makkar, R.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 1998, 50, 520. [Google Scholar]
- Marqués, A.M.; Pinazo, A.; Farfan, M.; Aranda, F.J.; Teruel, J.A.; Ortiz, A.; Manresa, A.; Espuny, M.J. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem. Phys. Lipids. 2009, 158, 110–117. [Google Scholar] [CrossRef]
- Ping, Q.; Zhang, J.; Tang, R.; Liao, S.; Zhang, Z.; Li, Y. Effect of surfactants on phosphorus release and acidogenic fermentation of waste activated sludge containing different aluminium phosphate forms. Chemosphere 2022, 287 Pt 3, 132213. [Google Scholar] [CrossRef]
- Voit, E.O. Biochemical and genomic regulation of the trehalose cycle in yeast: Review of observations and canonical model analysis. J. Theor. Biol. 2003, 223, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Eastmond, P.J.; Graham, I.A. Trehalose metabolism: A regulatory role for trehalose-6-phosphate. Curr. Opin. Plant Biol. 2003, 6, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Avonce, N.; Mendoza-Vargas, A.; Morett, E.; Iturriaga, G. Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol. 2006, 6, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.A.; Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: The yin and yang of trehalose. Trends Biotechnol. 1998, 16, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Colla, E. Selection of Trehalose-Producing Yeasts and Optimization of Production Using Sequential Experimental Design Strategies. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2008. [Google Scholar]
- Jana, S.; Mondal, S.; Kulkarni, S.S. Chemical synthesis of biosurfactant succinoyl trehalose lipids. Org. Lett. 2017, 19, 1784–1787. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smyth, T.J.; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Han, S.; Zheng, S. Application of the Corynebacterium glutamicum engineering display system in three generations of biorefinery. Microb. Cell Fact. 2023, 21. [Google Scholar] [CrossRef] [PubMed]
- Arima, K.; Kakinuma, A.; Tamura, G. Biochemistry. Biophys. Res. Commun. 1968, 31, 488. [Google Scholar]
- Kowall, M.; Vater, J.; Kluge, B.; Stein, T.; Franke, P.; Ziessow, D.J. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. Colloid Interface Sci. 1998, 204, 1–8. [Google Scholar] [CrossRef]
- Sani, A.; Qin, W.-Q.; Li, J.-Y.; Liu, Y.-F.; Zhou, L.; Yang, S.-Z.; Mu, B.-Z. Structural diversity and applications of lipopeptide biosurfactants as biocontrol agents against phytopathogens: A review. Microbiol. Res. 2024, 278, 127518. [Google Scholar] [CrossRef]
- Bascou, R.; Flick, A.; Guénin, E.; Nesterenko, A. Development of lipopeptide surfactants from silk sericin and evaluation of their surface active properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 678, 132460. [Google Scholar] [CrossRef]
- Costa, G.A.N. Biotechnological Production of Bacillus subtilis Surfactant from Agro-Industrial Waste, Characterization and Applications. Master’s Thesis, State University of Campinas, Campinas, Brazil, 2005. [Google Scholar]
- Hoffmann, M.; Mück, D.; Grossmann, L.; Greiner, L.; Klausmann, P.; Henkel, M.; Lilge, L.; Weiss, J.; Hausmann, R. Surfactin from Bacillus subtilis displays promising characteristics as O/W emulsifier for food formulations. Colloids Surf. B Biointerfaces 2021, 203, 111749. [Google Scholar] [CrossRef] [PubMed]
- Grangemard, I.; Wallach, J.; Maget-Dana, R.; Peypoux, F. Lichenysin—A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yan, L.; Guo, L.; Sun, H.; Huang, Q. Effects of iturin A from Bacillus subtilis on HepG2 cells in vitro and in vivo. AMB Express 2021, 11, 67. [Google Scholar] [CrossRef]
- Sullivan, E.R. Molecular genetics of biosurfactant production. Curr. Opin. Biotechnol. 1998, 9, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Barros, F.F.C.; Cavalcante, Q.P.; Pereira, C., Jr.; Maróstica, R.; Pastore, G.M. Surfactin, Chemical, technological and functional properties for food applications. Quím. Nova 2007, 30, 409–414. [Google Scholar] [CrossRef]
- Oliveira, F.H.P.C. Physiology of Bacillus subtilis R14: Growth and Lipopeptide Production in Batch Cultures. Master’s Thesis, Federal University of Pernambuco, Pernambuco, Brazil, 2006. [Google Scholar]
- Motta, V.T. Bioquímica Clínica para o Laboratório: Princípios e Interpretações, 5ed.; MedBook: Rio de Janeiro, Brazil, 2005; 400p, ISBN 8599977350, 9788599977354. [Google Scholar]
- Fathabad, E.G. Biosurfactants in pharmaceutical industry: A mini-review. Am. J. Drug Discov. Dev. 2010, 1, 58–69. [Google Scholar]
- Felix, A.K.N. Characterization and study of the applicability of the biosurfactant produced by Bacillus subtilis LAMI005 from cashew juice. Master’s Thesis, Federal University of Ceará, Ceará, Brazil, 2012. [Google Scholar]
- Winterburn, J.B.; Martin, P.J. Foam mitigation and exploitation in biosurfactant production. Biotechnol. Lett. 2012, 34, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Santoyo, G.; Treviño-Reséndez, J.; Robles, I.; Godínez, L.A.; García-Espinoza, J.D. A review on recent environmental electrochemistry approaches for the consolidation of a circular economy model. Chemosphere 2024, 346, 140573. [Google Scholar] [CrossRef]
- Nitschke, M.; Pastore, G.M. Biosurfactants: Properties and applications. Quím. Nova 2002, 25, 772–776. [Google Scholar] [CrossRef]
- Vo, P.H.; Danaee, S.; Hai, H.T.N.; Huy, L.N.; Nguyen, T.A.; Nguyen, H.T.; Kuzhiumparambil, U.; Kim, M.; Nghiem, L.D.; Ralph, P.J. Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review. Sci. Total Environ. 2024, 908, 168210. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Ding, R.; Chen, Y.; Lu, T.; Li, G.; Cao, Y.; Wang, C. Green, multiple-ligand collector sodium myristoyl glutamate for flotation of smithsonite. Appl. Surf. Sci. 2024, 660, 159932. [Google Scholar] [CrossRef]
- Hu, J.; Ju, R.; Zhao, J.; Zhang, H.; Sun, X.; Li, J. Ion flotation for heavy metal removal with biosurfactant sodium lauroyl methyl isethionate: Operational parameters and removal mechanism. Sep. Purif. Technol. 2024, 340, 126667. [Google Scholar] [CrossRef]
- Chakankar, M.; Pollmann, K.; Rudolph, M. Selective removal of Gallium from mixed metal solutions with Arsenic by ion flotation using the biosurfactant rhamnolipid. J. Water Process Eng. 2024, 58, 104879. [Google Scholar] [CrossRef]
- Miettinen, H.; Bomberg, M.; Biçak, Ö.; Ekmekçi, Z.; Kinnunen, P. The effects of indigenous microorganisms and water treatment with ion exchange resin on Cu-Ni flotation performance. Miner. Eng. 2024, 205, 108473. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Q.; Miao, B.; Li, B.; Li, S. Exopolysaccharide (EPS) synthesised from Azotobacter vinelandii and its characterisation and application in bioflotation. Miner. Eng. 2024, 211, 108693. [Google Scholar] [CrossRef]
- Legawiec, K.J.; Kruszelnicki, M.; Bastrzyk, A.; Polowczyk, I. Rhamnolipids as effective green agents in destabilizing dolomite suspension. Interno. J. Mol. Ciência. 2021, 22, 10591. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Lu, Y.; Liu, J.; Cheng, S.; Liu, S.; Cao, Y.; Li, G. Selective flotation separation of hemimorphite from quartz using the biosurfactant sodium N-lauroylsarcosinate as a novel collector. Miner. Eng. 2023, 198, 108073. [Google Scholar] [CrossRef]
- Arias, D.; Ardiles, C.S.; Andrade, D.C.; Rivas, M.; Panico, A.; Race, M.; Cisternas, L.A.; Dorador, C. The microbial world in copper sulfide flotation plants (CSFP): Novel insights into bacterial communities and their application as potential pyrite bioreagents. Environ. Res. 2023, 218, 114904. [Google Scholar] [CrossRef]
- Mwewa, B.; Augustyn, A.; Pott, R.; Tadie, M. Fundamental study of pyrite flotation using eco-friendly surfactin as collector. Miner. Eng. 2023, 202, 108315. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Kou, J.; Sun, C. Synergy Effect between Sodium Oleate and Alcohol Ethoxylates on the Reverse Flotation of Quartz. Minerals 2023, 13, 93. [Google Scholar] [CrossRef]
- Shahid, M.K.; Batool, A.; Kashif, A.; Nawaz, M.H.; Aslam, M.; Iqbal, N.; Choi, Y. Biofuels and biorefineries: Development, application, and future perspectives emphasizing the environmental and economic aspects. J. Environ. Manag. 2021, 297, 113268. [Google Scholar] [CrossRef] [PubMed]
- Das, A.J.; Kumar, R. Production of biosurfactant from agro-industrial waste by Bacillus safeness J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environ. Technol. Innov. 2019, 16, 100450. [Google Scholar] [CrossRef]
- Baccile, N.; Babonneau, F.; Banat, I.M.; Ciesielska, K.; Cuvier, A.-S.; Devreese, B.; Everaert, B.; Lydon, H.; Marchant, R.; Mitchell, C.A.; et al. Development of a cradle-to-grave approach for acetylated acidic sophorolipid biosurfactants. ACS Sustain. Chem. Eng. 2017, 5, 1186–1198. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Rout, P.R.; Choi, Y. An overview of soil bacteria for CO2 sequestration. In Advances in Agricultural and Industrial Microbiology; Nayak, S.K., Baliyarsingh, B., Mannazzu, I., Singh, A., Mishra, B.B., Eds.; Springer Nature: Singapore, 2022; pp. 91–103. [Google Scholar] [CrossRef]
- Shahid, M.K.; Choi, Y. Sustainable membrane-based wastewater reclamation employing CO2 to impede ionic precipitation and consequent scale progression onto the membrane surfaces. Membranes 2021, 11, 688. [Google Scholar] [CrossRef]
Fixed Term | Titles | Abstract | ||||
---|---|---|---|---|---|---|
2º Term | Correlation | Significance (p) | 2º Term | Correlation | Significance (p) | |
Biosurfactants | Adsorption | 0.84 | 0.0020 | Adsorb | 0.82 | 0.003 |
Application | 0.79 | 0.0070 | Availability | 0.82 | 0.003 | |
Bacteria | 0.64 | 0.0460 | Behavior | 0.79 | 0.006 | |
Bioflocculant | 0.01 | 0.9800 | Biodegradable | 0.00 | 0.990 | |
Additives | 0.01 | 0.9800 | Access | −0.01 | 0.988 | |
Environmental | −0.83 | 0.0030 | Acids | −0.54 | 0.105 | |
Anionic | −0.87 | 0.0010 | Amino | −0.55 | 0.100 | |
Air | −0.91 | 0.0002 | Auxiliary | −0.65 | 0.044 |
Year | Titles | Abstract | ||||
---|---|---|---|---|---|---|
2º Term | Correlation | p | 2º Term | Correlation | p | |
2013 | Application | 0.65 | 0.043 | Behavior | 0.76 | 0.010 |
Activated | −0.16 | 0.667 | Bioremediation | −0.12 | 0.746 | |
Biological | −0.55 | 0.102 | Biodegradation | −0.37 | 0.294 | |
2014 | Application | 0.78 | 0.007 | Allows | 0.70 | 0.023 |
Biosorption | −0.05 | 0.901 | Improve | 0.04 | 0.907 | |
Adsorption | −0.41 | 0.242 | Adsorption | −0.68 | 0.031 | |
2015 | Foam | 0.86 | 0.001 | Application | 0.67 | 0.035 |
Bioremediation | 0.04 | 0.907 | Bacterial | 0.01 | 0.978 | |
Production | −0.59 | 0.075 | Aqueous | −0.72 | 0.019 | |
2016 | Hematite | 0.83 | 0.003 | Benefits | 0.69 | 0.027 |
Soil | 0.04 | 0.904 | Evaluation | 0.20 | 0.583 | |
Microalgae | −0.21 | 0.565 | Application | 0.17 | 0.629 | |
2017 | Concentration | 0.70 | 0.024 | Agents | 0.81 | 0.004 |
Agriculture | −0.04 | 0.919 | Adsorbents | −0.01 | 0.971 | |
Degradation | −0.79 | 0.006 | Amphoteric | −0.41 | 0.235 | |
2018 | Collector | 0.77 | 0.005 | Air | 0.65 | 0.044 |
Air | −0.03 | 0.930 | Biomass | 0.03 | 0.041 | |
Metal | −0.23 | 0.521 | Appropriate | −0.69 | 0.026 | |
2019 | Alternative | 0.55 | 0.047 | Bioremediation | 0.94 | 0.000 |
Bacteria | −0.10 | 0.788 | Air | −0.02 | 0.955 | |
Agents | −0.59 | 0.075 | Aeruginosa | −0.54 | 0.105 | |
2020 | Emulsifiers | 0.73 | 0.016 | Action | 0.83 | 0.003 |
Processes | 0.05 | 0.889 | Biodegradation | 0.01 | 0.984 | |
Synthesis | 0.00 | 1.000 | Progress | −0.72 | 0.019 | |
2021 | Enhanced | 0.84 | 0.002 | Skill | 0.70 | 0.024 |
Biomass | −0.02 | 0.959 | Amina | 0.01 | 0.030 | |
Based | −0.39 | 0.271 | Affects | −0.54 | 0.106 | |
2022 | Chitosone | 0.73 | 0.016 | Arrangements | 0.78 | 0.008 |
Characteristics | 0.15 | 1.000 | Applications | −0.01 | 0.042 | |
Approaches | −0.37 | 0.289 | Agents | −0.45 | 0.190 | |
2023 | Copper | 0.77 | 0.009 | Activities | 0.80 | 0.006 |
Bioproducts | −0.01 | 0.471 | Biodegradable | −0.01 | 0.048 | |
Activated | −0.71 | 0.022 | Biofilm | −0.50 | 0.1390 |
Biosurfactants | Synthetic Surfactants | ||
---|---|---|---|
Advantages | Disadvantages | Advantages | Disadvantages |
High biodegradability | Difficulty in production at scale | Capable of generating foam | Low biodegradability |
Low production cost | Sensitive boundary conditions (Temperature, pressure) | Soluble in water | High production cost |
Non-toxic | Ease of production at scale | Toxic | |
Capable of generating foam | |||
Soluble in water |
Class | Subclass | Microorganisms | References |
---|---|---|---|
Glycolipids | Rhamnolipids | Pseudomonas aeruginosa | [67,71] |
Pseudomonas cepacia | [78] | ||
Pseudomonas spp. | [79,80] | ||
Lysinibacillus sphaericus | [81] | ||
Serratia rubidaea | [82] | ||
Trehalolipids | Nocardia farcinica | [83] | |
Rhodococcus sp. | [84] | ||
Candida bombicola | [85,86] | ||
Sophorolipids | Candida sphaerica | [87] | |
Starmerella bombicola | [88] | ||
Cutaneotrichosporon mucoides | [89] | ||
Mannosylerythritol Lipids | Pseudozyma aphidis | [90] | |
Not informed | Meyerozyma guilliermondii | [91] | |
Saccharomyces cerevisiae | [92] | ||
Candida utilis | [93] | ||
Marinobacter hydrocarbonoclasticus | [94] | ||
Lipopeptides | Surfactin | Bacillus subtilis, Bacillus nealsonii | [95,96] |
Lichenysin | Bacillus licheniformis | [97] | |
Not informed | Pseudomonas azotoformans | [98] | |
Bacillus velezensis | [99] | ||
Virgibacillus salarius | [100] | ||
Bacillus pumilus | [101] | ||
Halomonas sp. | [102] | ||
Phospholipids | Thiobacillus thiooxidans | [103] | |
Klebsiella pneumoniae | [104] | ||
Polymeric Surfactants | Liposan | Candida lipolytica | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, C.R.; da Silva, M.W.P.; de Souza, R.F.M.; Hacha, R.R.; Merma, A.G.; Torem, M.L.; Silvas, F.P.C. Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation. Resources 2024, 13, 81. https://doi.org/10.3390/resources13060081
Simões CR, da Silva MWP, de Souza RFM, Hacha RR, Merma AG, Torem ML, Silvas FPC. Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation. Resources. 2024; 13(6):81. https://doi.org/10.3390/resources13060081
Chicago/Turabian StyleSimões, Carolina Rossini, Matheus Willian Pereira da Silva, Rodrigo Fernandes Magalhães de Souza, Ronald Roja Hacha, Antônio Gutierrez Merma, Maurício Leonardo Torem, and Flávia Paulucci Cianga Silvas. 2024. "Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation" Resources 13, no. 6: 81. https://doi.org/10.3390/resources13060081
APA StyleSimões, C. R., da Silva, M. W. P., de Souza, R. F. M., Hacha, R. R., Merma, A. G., Torem, M. L., & Silvas, F. P. C. (2024). Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation. Resources, 13(6), 81. https://doi.org/10.3390/resources13060081