Sustainable Development, Territorial Disparities in Land Resources, and Soil Degradation: A Multi-Temporal Approach
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Source and Elementary Variables
2.2.1. Soil Quality
2.2.2. Climate Quality
2.2.3. Vegetation Quality
2.2.4. Land Management Quality
2.3. Thematic Indicators
2.4. Descriptive Statistics of the Composite Index (ESAI)
3. Results
3.1. A Preliminary Scrutiny of Territorial Conditions
3.2. Descriptive Statistics
3.3. Spatial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Achour, Y.; Saidani, Z.; Touati, R.; Pham, Q.B.; Pal, S.C.; Mustafa, F.; Balik Sanli, F. Assessing Landslide Susceptibility Using a Machine Learning-Based Approach to Achieving Land Degradation Neutrality. Environ. Earth Sci. 2021, 80, 575. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Bakr, N.; Weindorf, D.C.; Bahnassy, M.H.; El-Badawi, M.M. Multi-Temporal Assessment of Land Sensitivity to Desertification in a Fragile Agro-Ecosystem: Environmental Indicators. Ecol. Indic. 2012, 15, 271–280. [Google Scholar] [CrossRef]
- Bianchini, L.; Egidi, G.; Alhuseen, A.; Sateriano, A.; Cividino, S.; Clemente, M.; Imbrenda, V. Toward a Dualistic Growth? Population Increase and Land-Use Change in Rome, Italy. Land 2021, 10, 749. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A.E. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [Google Scholar] [CrossRef]
- Joint Research Centre (European Commission); Hill, J.; Von Maltitz, G.; Sommer, S.; Reynolds, J.; Hutchinson, C.; Cherlet, M. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-75349-7. [Google Scholar]
- Imeson, A. Desertification, Land Degradation and Sustainability; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-71449-2. [Google Scholar]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. Meteorological Droughts in Europe: Events and Impacts: Past Trends and Future Projections; European Union; Publications Office of the European Union: Luxembourg, 2016; p. 134. [Google Scholar]
- Gisladottir, G.; Stocking, M. Land Degradation Control and Its Global Environmental Benefits. Land Degrad. Dev. 2005, 16, 99–112. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Hutchinson, C.F. The Changing Contexts of the Desertification Debate. J. Arid Environ. 2005, 63, 538–555. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Dynamic Causal Patterns of Desertification. BioScience 2004, 54, 817–829. [Google Scholar] [CrossRef]
- Symeonakis, E.; Karathanasis, N.; Koukoulas, S.; Panagopoulos, G. Monitoring Sensitivity to Land Degradation and Desertification with the Environmentally Sensitive Area Index: The Case of Lesvos Island. Land Degrad. Dev. 2016, 27, 1562–1573. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of Land Degradation Sensitivity Areas in Southern and Central Southeastern Europe. New Results Based on Improving DISMED Methodology with New Climate Data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- Imbrenda, V.; Quaranta, G.; Salvia, R.; Egidi, G.; Salvati, L.; Prokopovà, M.; Coluzzi, R.; Lanfredi, M. Land Degradation and Metropolitan Expansion in a Peri-Urban Environment. Geomat. Nat. Hazards Risk 2021, 12, 1797–1818. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Nickayin, S.S.; Salvati, L.; Coluzzi, R.; Lanfredi, M.; Halbac-Cotoara-Zamfir, R.; Salvia, R.; Quaranta, G.; Alhuseen, A.; Gaburova, L. What Happens in the City When Long-Term Urban Expansion and (Un)Sustainable Fringe Development Occur: The Case Study of Rome. ISPRS Int. J. Geo-Inf. 2021, 10, 231. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.-Z.; Tan, M.-Z.; Gong, Z.-T. Soil Degradation: A Global Problem Endangering Sustainable Development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-597-8. [Google Scholar]
- Basso, B.; De Simone, L.; Cammarano, D.; Martin, E.C.; Margiotta, S.; Grace, P.R.; Yeh, M.L.; Chou, T.Y. Evaluating Responses to Land Degradation Mitigation Measures in Southern Italy. Int. J. Environ. Res. 2012, 6, 367–380. [Google Scholar] [CrossRef]
- Warren, A. Land Degradation Is Contextual. Land Degrad. Dev. 2002, 13, 449–459. [Google Scholar] [CrossRef]
- Lahmar, R.; Ruellan, A. Soil Degradation in the Mediterranean Region and Cooperative Strategies. Cah. Agric. 2007, 16, 318. [Google Scholar]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; Borrelli, P. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- Lanfredi, M.; Egidi, G.; Bianchini, L.; Salvati, L. One Size Does Not Fit All: A Tale of Polycentric Development and Land Degradation in Italy. Ecol. Econ. 2022, 192, 107256. [Google Scholar] [CrossRef]
- Lagacherie, P.; Álvaro-Fuentes, J.; Annabi, M.; Bernoux, M.; Bouarfa, S.; Douaoui, A.; Grünberger, O.; Hammani, A.; Montanarella, L.; Mrabet, R.; et al. Managing Mediterranean Soil Resources under Global Change: Expected Trends and Mitigation Strategies. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC107116 (accessed on 7 August 2024).
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef]
- Lanfredi, M.; Coluzzi, R.; Imbrenda, V.; Macchiato, M.; Simoniello, T. Analyzing Space–Time Coherence in Precipitation Seasonality across Different European Climates. Remote Sens. 2020, 12, 171. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. Land Degradation in the Mediterranean Basin: Linking Bio-Physical and Economic Factors into an Ecological. Biota 2005, 5, 67–77. [Google Scholar]
- Coluzzi, R.; Fascetti, S.; Imbrenda, V.; Italiano, S.S.P.; Ripullone, F.; Lanfredi, M. Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests. Land 2020, 9, 325. [Google Scholar] [CrossRef]
- Coluzzi, R.; Bianchini, L.; Egidi, G.; Cudlin, P.; Imbrenda, V.; Salvati, L.; Lanfredi, M. Density Matters? Settlement Expansion and Land Degradation in Peri-Urban and Rural Districts of Italy. Environ. Impact Assess. Rev. 2022, 92, 106703. [Google Scholar] [CrossRef]
- Nickayin, S.S.; Coluzzi, R.; Marucci, A.; Bianchini, L.; Salvati, L.; Cudlin, P.; Imbrenda, V. Desertification Risk Fuels Spatial Polarization in ‘Affected’ and ‘Unaffected’ Landscapes in Italy. Sci. Rep. 2022, 12, 747. [Google Scholar] [CrossRef] [PubMed]
- Contador, J.F.L.; Schnabel, S.; Gutiérrez, A.G.; Fernández, M.P. Mapping Sensitivity to Land Degradation in Extremadura. SW Spain. Land Degrad. Dev. 2009, 20, 129–144. [Google Scholar] [CrossRef]
- Salvati, L.; Perini, L.; Sabbi, A.; Bajocco, S. Climate Aridity and Land Use Changes: A Regional-Scale Analysis. Geogr. Res. 2012, 50, 193–203. [Google Scholar] [CrossRef]
- Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Battista, F.D.; Scarascia, M.E.V. Italy’s Renewable Water Resources as Estimated on the Basis of the Monthly Water Balance. Irrig. Drain. 2008, 57, 507–515. [Google Scholar] [CrossRef]
- Imbrenda, V.; D’Emilio, M.; Lanfredi, M.; Simoniello, T.; Ragosta, M.; Macchiato, M. Integrated Indicators for the Estimation of Vulnerability to Land Degradation. In Soil Processes and Current Trends in Quality Assessment; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Budak, M.; Günal, H.; Çelik, İ.; Yıldız, H.; Acir, N.; Acar, M. Environmental Sensitivity to Desertification in Northern Mesopotamia; Application of Modified MEDALUS by Using Analytical Hierarchy Process. Arab. J. Geosci. 2018, 11, 481. [Google Scholar] [CrossRef]
- Uzuner, C.; Dengïz, O. Desertification risk assessment in Turkey based on environmentally sensitive areas. Ecol. Indic. 2020, 114, 106295. [Google Scholar] [CrossRef]
- Perović, V.; Kadović, R.; Đurđević, V.; Pavlović, D.; Pavlović, M.; Čakmak, D.; Mitrović, M.; Pavlović, P. Major Drivers of Land Degradation Risk in Western Serbia: Current Trends and Future Scenarios. Ecol. Indic. 2021, 123, 107377. [Google Scholar] [CrossRef]
- Fernández, R.J. Do Humans Create Deserts? Trends Ecol. Evol. 2002, 17, 6–7. [Google Scholar] [CrossRef]
- Drake, N.A.; Vafeidis, A. Review of Spatial and Temporal Methods for Assessing Land Degradation in the Mediterranean. Adv. Environ. Monit. Model. 2004, 1, 15–51. [Google Scholar]
- Symeonakis, E.; Calvo-Cases, A.; Arnau-Rosalen, E. Land Use Change and Land Degradation in Southeastern Mediterranean Spain. Environ. Manag. 2007, 40, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land Degradation and Long-Term Changes in Agro-Pastoral Systems: An Empirical Analysis of Ecological Resilience in Asteroussia—Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Ibáñez, J.; Valderrama, J.M.; Puigdefábregas, J. Assessing Desertification Risk Using System Stability Condition Analysis. Ecol. Model. 2008, 213, 180–190. [Google Scholar] [CrossRef]
- Johnson, D.L.; Lewis, L.A. Land Degradation: Creation and Destruction; Rowman & Littlefield: Lanham, MD, USA, 2007; ISBN 978-0-7425-1948-0. [Google Scholar]
- Montanarella, L.; Panagos, P. The Relevance of Sustainable Soil Management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Incerti, G.; Feoli, E.; Salvati, L.; Brunetti, A.; Giovacchini, A. Analysis of Bioclimatic Time Series and Their Neural Network-Based Classification to Characterise Drought Risk Patterns in South Italy. Int. J. Biometeorol. 2007, 51, 253–263. [Google Scholar] [CrossRef]
- Scarascia, M.E.V.; Battista, F.D.; Salvati, L. Water Resources in Italy: Availability and Agricultural Uses. Irrig. Drain. 2006, 55, 115–127. [Google Scholar] [CrossRef]
- Kosmas, C.; Ferrara, A.; Briassouli, H.; Imeson, A. Methodology for Mapping Environmentally Sensitive Areas (ESAs) to Desertification. In The Medalus Project—Mediterranean Desertification and Land Use. Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; European Commission: Luxembourg, 1999; pp. 31–47. ISBN 978-92-828-6349-7. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Santini, M.; Caccamo, G.; Laurenti, A.; Noce, S.; Valentini, R. A Multi-Component GIS Framework for Desertification Risk Assessment by an Integrated Index. Appl. Geogr. 2010, 30, 394–415. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in Balance: The Scientific Conceptual Framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Vogt, J.V.; Safriel, U.; Von Maltitz, G.; Sokona, Y.; Zougmore, R.; Bastin, G.; Hill, J. Monitoring and Assessment of Land Degradation and Desertification: Towards New Conceptual and Integrated Approaches. Land Degrad. Dev. 2011, 22, 150–165. [Google Scholar] [CrossRef]
- Singh, R.B.; Ajai. A Composite Method to Identify Desertification ‘Hotspots’ and ‘Brightspots’. Land Degrad. Dev. 2019, 30, 1025–1039. [Google Scholar] [CrossRef]
- Blasi, C.; Filibeck, G.; Frondoni, R.; Rosati, L.; Smiraglia, D. The Map of the Vegetation Series of Italy. Fitosociologia 2004, 41, 21–25. [Google Scholar]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Rosa, W., Ed.; Springer Publishing Company: New York, NY, USA, 2017; ISBN 978-0-8261-9011-6. [Google Scholar]
- Otto, R.; Krüsi, B.O.; Kienast, F. Degradation of an Arid Coastal Landscape in Relation to Land Use Changes in Southern Tenerife (Canary Islands). J. Arid. Environ. 2007, 70, 527–539. [Google Scholar] [CrossRef]
- Kefalas, G.; Poirazidis, K.; Xofis, P.; Kalogirou, S.; Chalkias, C. Landscape Dynamics on Insular Environments of Southeast Mediterranean Europe. Geocarto Int. 2022, 37, 1813–1832. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Abdelatif, A.D. Assessment of Desertification Using Modified MEDALUS Model in the North Nile Delta, Egypt. Geoderma 2022, 405, 115400. [Google Scholar] [CrossRef]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe: Practices & Trends; Manakos, I., Braun, M., Eds.; Remote Sensing and Digital Image Processing; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 55–74. ISBN 978-94-007-7969-3. [Google Scholar]
Soil Quality (SQI) | Vegetation Quality (VQI) | ||||
---|---|---|---|---|---|
Texture | Fire Risk | Corine Class | Score | ||
S | 2.00 | Barren; permanent agriculture; crops | 2.1.2., 2.2.1., 2.2.2., 2.2.3, 3.3.3, 3.3.4, 4.2.3 | 1.00 | |
Si, C, SiC | 1.67 | Cereals; grasslands; deciduous forests | 2.1.1., 2.4.1., 2.4.2., 2.4.3, 2.4.4., 3.1.1., 3.1.3., 3.2.1, 3.2.4 | 1.33 | |
SC, SiL, SiCL | 1.33 | Mediterranean maquis | 3.2.3 | 1.67 | |
L, SCL, SL, LS, CL | 1.00 | Conifer | 3.1.2 | 2.00 | |
Soil depth | Soil erosion protection | ||||
<15 | 2.00 | Mixed Mediterranean maquis-evergreen wood | 2.4.4., 3.1.3., 3.2.4. | 1.0 | |
15–30 | 1.67 | Mediterranean maquis; conifer wood; evergreen permanent agriculture (olive trees); permanent grassland | 3.2.3., 3.1.2., 3.2.1., 3.2.3. | 1.3 | |
30–75 | 1.33 | Deciduous wood | 3.1.1. | 1.6 | |
>75 | 1.00 | Permanent agriculture (orchard) | 2.2.2. | 1.8 | |
Crops; grasslands; barren | 2.1.1., 2.1.2., 2.2.1., 2.4.1., 2.4.2., 2.4.3., 3.3.3., 3.3.4., 4.2.3. | 2.0 | |||
Avai. water capacity | Drought resistance | ||||
<80 | 2.00 | Mixed Mediterranean maquis-evergreen wood | 3.2.3., 3.2.4., 3.3.3., 3.3.4. | 1.0 | |
80–120 | 1.67 | Conifer; deciduous; olives | 2.2.3., 3.1.1., 3.1.2., 3.1.3. | 1.2 | |
120–180 | 1.33 | Permanent agriculture | 2.2.1., 2.2.2., 2.4.4. | 1.4 | |
>180 | 1.00 | Permanent grasslands | 2.4.1., 3.2.1., 4.2.3. | 1.7 | |
Slope | Crops; barren | 2.1.1., 2.1.2., 2.4.2., 2.4.3. | 2.0 | ||
>35% | 2.00 | Vegetation cover | |||
18–35% | 1.67 | >40% | 1.0 | ||
6–18% | 1.33 | 10–40% | 2.1.1., 2.2.1., 2.2.2., 2.2.3., 2.4.1., 2.4.2., 2.4.3., 2.4.4., 3.2.1., 4.2.3. | 1.8 | |
<6% | 1.00 | <10% | 3.3.3., 3.3.4. | 2.0 | |
Climate Quality (CQI) | Land Management Quality (MQI) | ||||
Aridity index | Land-use intensity | Corine class | Score | ||
<0.5 | 2.0 | Olive; deciduous and conifer wood; Mediterranean maquis | 2.1.2., 2.2.1., 2.2.2., 2.4.2. | 1.00 | |
0.5–0.65 | 1.8 | Mixed woodland–farmland areas | 3.2.4., 3.3.4. | 1.33 | |
0.65–0.8 | 1.6 | Annual crops (not irrigated); permanent grassland | 2.1.1., 2.3.1., 2.4.1., 2.4.3. | 1.67 | |
0.8–1.0 | 1.4 | Permanent (and irrigated) agriculture | 2.1.2., 2.2.1., 2.2.2., 2.4.2. | 2.00 | |
1.0–1.5 | 1.2 | Population density | |||
>1.5 | 1.0 | <100 | 1.0 | ||
Annual rainfall rate | 100–200 | 1.2 | |||
<280 | 2.0 | 200–400 | 1.4 | ||
280–650 | 1.5 | 400–700 | 1.6 | ||
>650 | 1.0 | 700–1000 | 1.8 | ||
Exposition | >1000 | 2.0 | |||
−1° | 1.00 | Population growth rate | |||
225–359° | 1.00 | <20% | 1.0 | ||
0–135° | 1.00 | 20–40% | 1.5 | ||
136–224° | 2.00 | >40% | 2.0 |
Variable | 1960 | 1990 | 2020 | % Change, 1960–1990 | % Change, 1990–2020 |
---|---|---|---|---|---|
Average ESAI, score | 1.34 | 1.35 | 1.36 | 0.03 | 0.02 |
Percent share of land classified at different levels of soil degradation (ESAI score) | |||||
<1.2 | 0.3 | 3.4 | 4.0 | 31.9 | 0.5 |
1.2–1.3 | 38.3 | 29.0 | 28.9 | −0.8 | 0.0 |
1.3–1.4 | 38.9 | 32.8 | 29.6 | −0.5 | −0.2 |
1.4–1.5 | 19.7 | 33.0 | 30.0 | 2.3 | −0.2 |
>1.5 | 2.7 | 1.8 | 7.5 | −1.1 | 6.3 |
Statistical distribution of ESAI scores | |||||
Minimum | 1.17 | 1.13 | 1.12 | −0.13 | 0.00 |
Maximum | 1.63 | 1.61 | 1.65 | −0.07 | 0.16 |
Absolute range | 0.46 | 0.47 | 0.52 | 0.11 | 0.53 |
Predisposing factors (thematic indicators of the ESAI, score) | |||||
Climate quality | 1.08 | 1.17 | 1.14 | 0.28 | −0.14 |
Vegetation quality | 1.51 | 1.53 | 1.53 | 0.04 | 0.00 |
Land management | 1.36 | 1.31 | 1.34 | −0.12 | 0.12 |
Soil quality | - | 1.48 | - | - | - |
NUTS-3 provinces (ESAI score) | |||||
Viterbo | 1.34 | 1.38 | 1.37 | 0.09 | −0.02 |
Rieti | 1.30 | 1.32 | 1.29 | 0.04 | −0.10 |
Rome | 1.37 | 1.38 | 1.41 | 0.01 | 0.10 |
Latina | 1.34 | 1.35 | 1.37 | 0.04 | 0.07 |
Frosinone | 1.30 | 1.31 | 1.32 | 0.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maialetti, M.; Salvati, L.; Chelli, F.M. Sustainable Development, Territorial Disparities in Land Resources, and Soil Degradation: A Multi-Temporal Approach. Resources 2024, 13, 125. https://doi.org/10.3390/resources13090125
Maialetti M, Salvati L, Chelli FM. Sustainable Development, Territorial Disparities in Land Resources, and Soil Degradation: A Multi-Temporal Approach. Resources. 2024; 13(9):125. https://doi.org/10.3390/resources13090125
Chicago/Turabian StyleMaialetti, Marco, Luca Salvati, and Francesco Maria Chelli. 2024. "Sustainable Development, Territorial Disparities in Land Resources, and Soil Degradation: A Multi-Temporal Approach" Resources 13, no. 9: 125. https://doi.org/10.3390/resources13090125
APA StyleMaialetti, M., Salvati, L., & Chelli, F. M. (2024). Sustainable Development, Territorial Disparities in Land Resources, and Soil Degradation: A Multi-Temporal Approach. Resources, 13(9), 125. https://doi.org/10.3390/resources13090125