Evaluating the Global Processability of Anthropogenic Metals from Mining Waste
Abstract
:1. Introduction
- Mining waste’s processability is evaluated using Shannon entropies.
- A conceptually integrated processability map for mine waste is developed across ten countries. Waste is categorized based on its material mixing and processability.
- A global policy framework is developed to enhance the efficiency of mine waste management services.
2. Methodology
2.1. Basis for Using Thermodynamic Entropy and Grade
2.1.1. Entropy in Waste Recycling
2.1.2. Grade
2.2. Processability Calculation
2.3. Observations
- For a single, pure component, pi = 1, H = 0.
- For pi = 0.1, H = 0.1.
- For pi = 0.01, H = 0.02.
- For pi = 0.001, H = 0.003.
3. Results
3.1. Mining Waste Processability
3.2. Processability Efficiency
3.3. Global Processability and Revenue Potential
3.4. Analyzing Costs and Benefits
3.5. Sensitivity Analysis
4. Discussion
4.1. Optimization of the Processability System
4.2. Entropy Cycling and SDG Achievement
4.3. Policy Implications and Prospects
- Developing recycling infrastructure: Investing in recycling infrastructure boosts recycling rates and reduces landfill waste. Advanced systems like San Francisco have high diversion rates [49]. Governments should improve recycling centers and technologies.
- Supporting research and development: Research and development (R&D) investments lead to technological innovations that improve recycling processes, such as robotic sorting and chemical recycling methods. Policymakers should support R&D efforts to foster innovation in recycling technologies, as demonstrated by the European Union’s Horizon 2020 program [50].
- Implementing regulations and standards: The EU WEEE Directive and Extended Producer Responsibility programs in Japan and South Korea have significantly improved recycling rates and waste management, highlighting the importance of effective regulations and standards in promoting recycling practices [51]. Enforcing similar standards can drive further improvements in recycling practices.
- Educating the public: Public education campaigns, such as the UK’s “Recycle Now” campaign, have been proven to boost recycling participation, with household recycling rates increasing by 15% over five years [50]. Policymakers should invest in public education to enhance recycling behaviors and community engagement.
- Encouraging international cooperation: The Basel Convention and the International Resource Panel promote global best practices in recycling and resource management, promoting international cooperation to improve processes and standards worldwide, thereby facilitating the transboundary movement of hazardous wastes [51].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, M.R.; Liu, B.K.; Huang, S.J.; Zhou, A. Experimental Study of Seismic Performance on Three-Story Prestressed Fabricated Concrete Frame. Adv. Mater. Res. 2011, 250, 1287–1292. [Google Scholar] [CrossRef]
- Benahsina, A.; El Haloui, Y.; Taha, Y.; Elomari, M.; Bennouna, M.A. Natural sand substitution by copper mine waste rocks for concrete manufacturing. J. Build. Eng. 2022, 47, 103817. [Google Scholar] [CrossRef]
- Kanwal, Q.; Li, J.H.; Zeng, X.L. Mapping Recyclability of Industrial Waste for Anthropogenic Circularity: A Circular Economy Approach. ACS Sustain. Chem. Eng. J. 2021, 9, 11927–11936. [Google Scholar] [CrossRef]
- Liao, B.; Huang, L.N.; Ye, Z.H.; Lan, C.Y.; Shu, W.S. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils. J. Env. Qual. 2007, 36, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Suppes, R.; Heuss-Assbichler, S. Resource potential of mine wastes: A conventional and sustainable perspective on a case study tailings mining project. J. Clean. Prod. 2021, 297, 126446. [Google Scholar] [CrossRef]
- Contreras, M.; Gázquez, M.; Romero, M.; Bolívar, J. Recycling of industrial wastes for value-added applications in clay-based ceramic products: A global review (2015–19). New Mater. Civ. Eng. 2020, 155–219. [Google Scholar] [CrossRef]
- Martins, N.P.; Srivastava, S.; Simao, F.V.; Niu, H.; Perumal, P.; Snellings, R.; Illikainen, M.; Chambart, H.; Habert, G. Exploring the Potential for Utilization of Medium and Highly Sulfidic Mine Tailings in Construction Materials: A Review. Sustainability 2021, 13, 12150. [Google Scholar] [CrossRef]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 2017, 8, 1013. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Ali, S.H.; Bazilian, M.; Radley, B.; Nemery, B.; Okatz, J.; Mulvaney, D. Sustainable minerals and metals for a low-carbon future. Science 2020, 367, 30–33. [Google Scholar] [CrossRef]
- Bodénan, F.; Bourgeois, F.; Petiot, C.; Augé, T.; Bonfils, B.; Julcour-Lebigue, C.; Guyot, F.; Boukary, A.; Tremosa, J.; Lassin, A.; et al. Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project). Miner. Eng. 2014, 59, 52–63. [Google Scholar] [CrossRef]
- McLellan, B.; Yamasue, E.; Tezuka, T.; Corder, G.; Golev, A.; Giurco, D. Critical Minerals and Energy–Impacts and Limitations of Moving to Unconventional Resources. Resources 2016, 5, 19. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J. Emerging anthropogenic circularity science: Principles, practices, and challenges. iScience 2021, 24, 102237. [Google Scholar] [CrossRef] [PubMed]
- Panayotova, M.; Panayotov, V. Editorial for the Special Issue: “Valuable Metals Recovery by Mineral Processing and Hydrometallurgy”. Minerals 2024, 14, 653. [Google Scholar] [CrossRef]
- Kügerl, M.-T.; Hitch, M.; Gugerell, K. Responsible sourcing for energy transitions: Discussing academic narratives of responsible sourcing through the lens of natural resources justice. J. Environ. Manag. 2023, 326, 116711. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.A.; van Schaik, A.; Gutzmer, J.; Bartie, N.; Abadías-Llamas, A. Challenges of the Circular Economy: A Material, Metallurgical, and Product Design Perspective. Annu. Rev. Mater. Res. 2019, 49, 253–274. [Google Scholar] [CrossRef]
- Figueiredo, J.; Vila, M.C.; Matos, K.; Martins, D.; Futuro, A.; Dinis, M.d.L.; Góis, J.; Leite, A.; Fiúza, A. Tailings reprocessing from Cabeço do Pião dam in Central Portugal: A kinetic approach of experimental data. J. Sustain. Min. 2018, 17, 139–144. [Google Scholar] [CrossRef]
- Lima, A.T.; Kirkelund, G.M.; Ntuli, F.; Ottosen, L.M. Screening dilute sources of rare earth elements for their circular recovery. J. Geochem. Explor. 2022, 238, 107000. [Google Scholar] [CrossRef]
- Guézennec, A.-G.; Bodénan, F.; Bertrand, G.; Fuentes, A.; Bellenfant, G.; Lemière, B.; d’Hugues, P.; Cassard, D.; Save, M. Re-processing of mining waste: An alternative way to secure metal supplies of European Union. In Rewas 2013: Enabling Materials Resource Sustainability; Springer: Cham, Switzerland, 2013; pp. 231–237. [Google Scholar] [CrossRef]
- Caverson, D.; Ben-Awuah, E. Management of Mineralized Mine Waste as a Future Resource. Min. Optim. Lab. 2016, 1, 43. [Google Scholar]
- Figueiredo, J.; Vila, M.C.; Fiúza, A.; Góis, J.; Futuro, A.; Dinis, M.L.; Martins, D. A Holistic Approach in Re-Mining Old Tailings Deposits for the Supply of Critical-Metals: A Portuguese Case Study. Minerals 2019, 9, 638. [Google Scholar] [CrossRef]
- Tost, M.; Murguia, D.; Hitch, M.; Lutter, S.; Luckeneder, S.; Feiel, S.; Moser, P. Ecosystem services costs of metal mining and pressures on biomes. Extr. Ind. Soc. 2020, 7, 79–86. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef]
- Anctil, A.; Fthenakis, V. Critical metals in strategic photovoltaic technologies: Abundance versus recyclability. Prog. Photovolt. 2013, 21, 1253–1259. [Google Scholar] [CrossRef]
- Stillings, L.L.; Amacher, M.C. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA. Chem. Geol. 2010, 269, 113–123. [Google Scholar] [CrossRef]
- Flett, L.; McLeod, C.L.; McCarty, J.L.; Shaulis, B.J.; Fain, J.J.; Krekeler, M.P.S. Monitoring uranium mine pollution on Native American lands: Insights from tree bark particulate matter on the Spokane Reservation, Washington, USA. Environ. Res. 2021, 194, 110619. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.W.; Gutierrez, M.; Gouzie, D.; McAliley, L.R. State of remediation and metal toxicity in the Tri-State Mining District, USA. Chemosphere 2016, 144, 1132–1141. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Meier, A.L.; Jackson, J.C.; Barden, R.; Wormington, P.; Wormington, J.; Seal II, R. Characterization of Mine Waste at the Elizabeth Copper Mine, Orange County, Vermont; US Department of the Interior, US Geological Survey: Louisville, KY, USA, 2000.
- Piatak, N.M.; Seal, R.R.; Hammarstrom, J.M.; Kiah, R.G.; Deacon, J.R.; Adams, M.; Anthony, M.W.; Briggs, P.H.; Jackson, J.C. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont; Scientific Investigations Report 2006-5303; Geological Survey (U.S.): Louisville, KY, USA, 2006. [CrossRef]
- Liu, H.; Liu, Z. Recycling utilization patterns of coal mining waste in China. Resour. Conserv. Recycl. 2010, 54, 1331–1340. [Google Scholar] [CrossRef]
- Šajn, R.; Ristović, I.; Čeplak, B. Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region. Minerals 2022, 12, 547. [Google Scholar] [CrossRef]
- Aldagheiri, M. The Minerals Sector and Sustainable Development in Saudi Arabia. In Proceedings of the Sustainable Development Indicators in the Minerals Industry (SDIMI) 2009 Conference, Gold Coast, QLD, Australia, 6–8 July 2009. [Google Scholar]
- Hefni, M.; Ahmed, H.A.M.; Omar, E.S.; Ali, M.A. The Potential Re-Use of Saudi Mine Tailings in Mine Backfill: A Path towards Sustainable Mining in Saudi Arabia. Sustainability 2021, 13, 6204. [Google Scholar] [CrossRef]
- Fan, R.; Qian, G.; Li, Y.; Short, M.D.; Schumann, R.C.; Chen, M.; Smart, R.S.C.; Gerson, A.R.J.C.G. Evolution of pyrite oxidation from a 10-year kinetic leach study: Implications for secondary mineralisation in acid mine drainage control. Chem. Geol. 2022, 588, 120653. [Google Scholar] [CrossRef]
- Salinas-Rodriguez, E.; Flores-Badillo, J.; Hernandez-Avila, J.; Cerecedo-Saenz, E.; Gutierrez-Amador, M.D.; Jeldres, R.I.; Toro, N. Assessment of Silica Recovery from Metallurgical Mining Waste, by Means of Column Flotation. Metals 2020, 10, 72. [Google Scholar] [CrossRef]
- Espinha Marques, J.; Martins, V.; Santos, P.; Ribeiro, J.; Mansilha, C.; Melo, A.; Rocha, F.; Flores, D. Changes Induced by Self-Burning in Technosols from a Coal Mine Waste Pile: A Hydropedological Approach. Geosciences 2021, 11, 195. [Google Scholar] [CrossRef]
- Hasan, S.; Kusin, F.M.; Jusop, S.; Mohamat-Yusuff, F. The mineralogy and chemical properties of sedimentary waste rocks with carbon sequestration potential at Selinsing Gold Mine, Pahang. Pertanika J. Sci. Technol. 2019, 27, 1005–1012. [Google Scholar]
- Swęd, M.; Uzarowicz, Ł.; Duczmal-Czernikiewicz, A.; Kwasowski, W.; Pędziwiatr, A.; Siepak, M.; Niedzielski, P. Forms of metal(loid)s in soils derived from historical calamine mining waste and tailings of the Olkusz Zn–Pb ore district, southern Poland: A combined pedological, geochemical and mineralogical approach. Appl. Geochem. 2022, 139, 105218. [Google Scholar] [CrossRef]
- Drif, B.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Integrated valorization of silver mine tailings through silver recovery and ceramic materials production. Miner. Eng. 2021, 170, 107060. [Google Scholar] [CrossRef]
- Gößling-Reisemann, S. Entropy analysis of metal production and recycling. Manag. Environ. Qual. Int. J. 2008, 19, 487–492. [Google Scholar] [CrossRef]
- Reuter, M.A.; van Schaik, A.; Gediga, J. Simulation-based design for resource efficiency of metal production and recycling systems: Cases-copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int. J. Life Cycle Assess. 2015, 20, 671–693. [Google Scholar] [CrossRef]
- Allwood, J.M.; Cullen, J.M.; Carruth, M.A.; Cooper, D.R.; McBrien, M.; Milford, R.L.; Moynihan, M.C.; Patel, A.C. Sustainable Materials: With Both Eyes Open; UIT Cambridge Limited: Cambridge, UK, 2012; Volume 2012. [Google Scholar]
- Graedel, T.E.; Reck, B.K. Six Years of Criticality Assessments: What Have We Learned So Far? J. Ind. Ecol. 2015, 20, 692–699. [Google Scholar] [CrossRef]
- Zeng, X.L.; Li, J.H. Measuring the recyclability of e-waste: An innovative method and its implications. J. Clean. Prod. 2016, 131, 156–162. [Google Scholar] [CrossRef]
- Fang, S.; Yan, W.Y.; Cao, H.B.; Song, Q.B.; Zhang, Y.; Sun, Z. Evaluation on end-of-life LEDs by understanding the criticality and recyclability for metals recycling. J. Clean. Prod. 2018, 182, 624–633. [Google Scholar] [CrossRef]
- Iglesias-Émbil, M.; Abadías, A.; Valero, A.; Calvo, G.; Reuter, M.A.; Ortego, A. Criticality and Recyclability Assessment of Car Parts—A Thermodynamic Simulation-Based Approach. Sustainability 2023, 15, 91. [Google Scholar] [CrossRef]
- Guner, M.K.; Bulut, G.; Hassanzadeh, A.; Lode, S.; Aasly, K. Automated Mineralogy and Diagnostic Leaching Studies on Bulk Sulfide Flotation Concentrate of a Refractory Gold Ore. Minerals 2023, 13, 1243. [Google Scholar] [CrossRef]
- MacFarlane, K. Global Allegory: Electronic Waste and the San Francisco Bay Area. Environ. Space Place 2021, 13, 74–110. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy–From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Kojima, M.; Yoshida, A.; Sasaki, S. Difficulties in applying extended producer responsibility policies in developing countries: Case studies in e-waste recycling in China and Thailand. J. Mater. Cycles Waste Manag. 2009, 11, 263–269. [Google Scholar] [CrossRef]
- Jones, M.; Palfrey, D.; Patterson, K.; Crichton, L.; Hollinshead, G.; Mitchell, P.; Kjaer, B. Approaches to Using Waste as a Resource: Lessons Learnt from UK Experiences; European Topic Centre on Sustainable Consumption and Production: Copenhagen, Denmark, 2013. [Google Scholar]
- Rummel-Bulska, I. The Basel Convention: A global approach for the management of hazardous wastes. Environ. Policy Law 1994, 24, 13. [Google Scholar]
Country | Location | Mining Waste Type | H (bit) | D | P (bit) |
---|---|---|---|---|---|
KSA | Al Amar Maaden Gold Mining | Gold tailings | 0.00031–0.53 | 6.85 | 0.33 |
KSA | Copper tailings | 0.01–0.50 | 9.09 | 0.37 | |
European Union | Global review | Sulfidic tailings | 0.07–0.53 | 6.56 | 0.34 |
USA | Idaho, Western Wyoming, and Northern Utah | Phosphate mines Utah | 0.00024–0.50 | 8.12 | 0.29 |
Washington | Midnite Uranium mine | 0.02–0.48 | 4.68 | 0.21 | |
Tennessee and North Carolina | Sulfidic shale and copper mine waste | 0.03–0.53 | 4.12 | 0.25 | |
Orange County, Vermont | Elizabeth copper mine | 0.01–0.19 | 4.12 | 1.18 | |
Central Virginia | Kyanite mine | 0.0012–0.52 | 8.32 | 0.34 | |
China | Jincheng, Shanxi Province | Coal gangue | 0.08–0.46 | 3.95 | 0.54 |
National Average | Fly ash | 0.08–0.52 | 3.95 | 0.52 | |
Portugal | Sao Pedro Da Cova | Coal mine waste | 0.0007–0.53 | 7.68 | 0.22 |
Malaysia | Selinsing, Pahang | Gold mine waste | 0.19–0.50 | 4.01 | 0.49 |
Poland | Olkusz Zn–Pb ore District | Zn–Pb ore | 0.04–0.53 | 3.56 | 0.19 |
Morocco | Zgounder Millennium Silver Mining | Silver mine tailings | 0.01–0.41 | 5.36 | 0.75 |
Blieda Mining Site | Copper Mine Waste Rocks (CMWRs) | 0.02–0.49 | 7.35 | 0.39 | |
Agadir region | Moroccan Solid Mining Wastes | 0.02–0.47 | 7.35 | 0.41 | |
Mexico | Pachuca, Mining Waste | Metallurgical waste | 0.000098–0.28 | 10.05 | 0.85 |
Australia | Geo Discoveries, West Gosford, New South Wales | Pyritic Mine Waste | 0.05–0.28 | 3.42 | 0.64 |
Mining Waste | Potential Revenue (USD/metric ton) |
---|---|
Gold tailings | 1.24 |
Copper tailings | 4.33 |
Sulfidic tailings | 3.98 |
Phosphate mines in Utah | 3.38 |
Midnite uranium mine | 6.88 |
Sulfidic shale and copper mine waste | 0.94 |
Elizabeth copper mine | 4.49 |
Kyanite mine | 3.99 |
Coal gangue | 6.28 |
Fly ash | 6.08 |
Coal mine waste | 0.84 |
Gold mine waste | 5.70 |
Zn–Pb ore | 0.74 |
Silver mine tailings | 8.73 |
Copper mine waste rocks (CMWRs) | 4.50 |
Moroccan solid mining wastes | 4.79 |
Metallurgical waste | 3.82 |
Pyritic mine waste | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, Q.; Akhtar, M.S.; Al-Ghamdi, S.G. Evaluating the Global Processability of Anthropogenic Metals from Mining Waste. Resources 2024, 13, 126. https://doi.org/10.3390/resources13090126
Kanwal Q, Akhtar MS, Al-Ghamdi SG. Evaluating the Global Processability of Anthropogenic Metals from Mining Waste. Resources. 2024; 13(9):126. https://doi.org/10.3390/resources13090126
Chicago/Turabian StyleKanwal, Qudsia, Muhammad Saqib Akhtar, and Sami G. Al-Ghamdi. 2024. "Evaluating the Global Processability of Anthropogenic Metals from Mining Waste" Resources 13, no. 9: 126. https://doi.org/10.3390/resources13090126
APA StyleKanwal, Q., Akhtar, M. S., & Al-Ghamdi, S. G. (2024). Evaluating the Global Processability of Anthropogenic Metals from Mining Waste. Resources, 13(9), 126. https://doi.org/10.3390/resources13090126