Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation
Abstract
:1. Introduction
1.1. Calcareous Soil
1.2. The Function of Ca2+, K+, and Na+ in Soil and Plants
1.3. An Overview of Soil Electrokinetics
2. Materials and Methods
3. Results
3.1. Effects of Different Pulsed Electric Field Types on the pH Distribution of Soil
3.2. Impact of Various Pulsed Electric Field Modes on the Na+, K+, and Ca2+ Distribution
3.3. The Effects of Different Pulsed Electric Field Modes on the pH of Anolyte and Catholyte
3.4. Effects of Different Electric Field Pulse Types on Current Passing
3.5. Effects on the Cumulative Electroosmosis Flow Rate of Different Pulsed Electric Field Modes
4. Discussion
5. Perspectives for the Future of Using Soil Electrokinetics to Reclaim Soil Damaged by Salt (Salt-Affected Soil)
6. Conclusions
- At the longest interval of 120 min, the pulsed 25% time OFF strategy demonstrated an improvement in the current passing; at the shorter and longer intervals of 15, 60, and 120 min, the pulsed 50% time OFF strategy demonstrated an improvement in the current passing; however, a negative impact was noted with the interval of 30 min.
- In the majority of pulsed-mode investigations, the removal of Na+ exceeded half (50%) of the total.
- The 25 and 50% pulsed modes of the electric field demonstrated an economic advantage over the control experiment, which operated with a continuous electric field, by lowering the removed K+, which is essential for plant growth.
- Very little Ca2+ was removed from any of the sections during the control experiment, which was carried out with a constant electric field applied. However, using the electric field’s pulsed mode increased the amount of Ca2+ removed, and the removal percentages were higher for the pulsed 50% strategy than the pulsed 25% strategy.
- The pulsed 25% showed an improvement in the cumulative EO flow at the time OFF interval of 60 min during the first seven days of operation, and by the end of the trial, the control experiment shown high values; however, the pulsed 50% time OFF interval of 60 min displayed the highest values.
- In contrast to the control experiment, the majority of the time OFF intervals for the pulsed 25% strategy showed high catholyte pH values, with the exception of the time OFF interval of 15 min. In contrast, the time OFF intervals for the pulsed 50% strategy showed higher pH values for the time OFF intervals of 30 and 60 min.
- For either pulsed strategy of 25% or 50%, the anolyte pH dropped during the majority of time OFF intervals over the first seven days of the experiment.
Funding
Data Availability Statement
Conflicts of Interest
References
- Bontpart, T.; Weiss, A.; Vile, D.; Gérard, F.; Lacombe, B.; Reichheld, J.-P.; Mari, S. Growing on calcareous soils and facing climate change. Trends Plant Sci. 2024, 29, 1319–1330. [Google Scholar] [CrossRef]
- Dou, X.; Zhang, C.; Zhang, J.; Ma, D.; Chen, L.; Zhou, G.; Duan, Y.; Tao, L.; Chen, J. Relationship between calcium forms and organic carbon content in aggregates of calcareous soils in northern China. Soil Tillage Res. 2024, 244, 106210. [Google Scholar] [CrossRef]
- Ma, S.; Hu, Y.; Nan, Z.; Zhao, C.; Zang, F.; Zhao, C. Recalcification stabilizes cadmium but magnifies phosphorus limitation in wastewater-irrigated calcareous soil. Environ. Res. 2024, 252, 118920. [Google Scholar] [CrossRef] [PubMed]
- Firouzi, A.F.; Homaee, M.; Kasteel, R.; Klumpp, E. Transport and deposition of bacteria in undisturbed calcareous soils under saturated and unsaturated conditions. Soil Tillage Res. 2024, 244, 106229. [Google Scholar] [CrossRef]
- Liu, Z.; Ning, X.; Long, S.; Wang, S.; Li, S.; Dong, Y.; Nan, Z. Arsenic and cadmium simultaneous immobilization in arid calcareous soil amended with iron-oxidizing bacteria and organic fertilizer. Sci. Total Environ. 2024, 920, 170959. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zeng, Q.; Li, S.; Wang, R.; Hu, Y. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. J. Environ. Manag. 2024, 355, 120553. [Google Scholar] [CrossRef]
- Patil, B.M.; Patil, V.L.; Bhosale, S.R.; Bhosale, R.R.; Ingavale, D.R.; Patil, S.S.; Kamble, P.D.; Bhosale, A.G.; Mane, S.M.; Lee, J.; et al. Field application of Ca-doped ZnO nanoparticles to maize and wheat plants. Plant Physiol. Biochem. 2024, 210, 108552. [Google Scholar] [CrossRef]
- Jing, T.; Li, J.; He, Y.; Shankar, A.; Saxena, A.; Tiwari, A.; Maturi, K.C.; Solanki, M.K.; Singh, V.; Eissa, M.A.; et al. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions—A comprehensive review. Plant Physiol. Biochem. 2024, 210, 108602. [Google Scholar] [CrossRef]
- Mostofa, M.G.; Rahman, M.M.; Ghosh, T.K.; Kabir, A.H.; Abdelrahman, M.; Rahman Khan, M.A.; Mochida, K.; Tran, L.-S.P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol. Biochem. 2022, 186, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Remadevi, P.; Parameswari, E.; Vadakkan, K. Enhancing potassium assimilation in soil for Zingiber officinale plant by rhizosphere bacterial isolate and optimization studies by response surface modeling. Waste Manag. Bull. 2024, 2, 264–269. [Google Scholar] [CrossRef]
- Cocozza, C.; Brilli, F.; Miozzi, L.; Pignattelli, S.; Rotunno, S.; Brunetti, C.; Giordano, C.; Pollastri, S.; Centritto, M.; Accotto, G.P.; et al. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Plant Sci. 2019, 289, 110260. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, T.; Zhang, B.; Feng, H.; Siddique, K.H.M. Adverse effects of Ca2+ on soil structure in specific cation environments impacting macropore-crack transformation. Agric. Water Manag. 2024, 302, 108987. [Google Scholar] [CrossRef]
- Hansen, H.K.; Ottosen, L.M.; Ribeiro, A.B. Electrokinetic Soil Remediation: An Overview BT—Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development; Ribeiro, A.B., Mateus, E.P., Couto, N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–18. ISBN 978-3-319-20179-5. [Google Scholar]
- Abou-Shady, A.; Ali, M.E.A.; Ismail, S.; Abd-Elmottaleb, O.; Kotp, Y.H.; Osman, M.A.; Hegab, R.H.; Habib, A.A.M.; Saudi, A.M.; Eissa, D.; et al. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: Process design modifications with brief summaries of main output. S. Afr. J. Chem. Eng. 2023, 44, 156–256. [Google Scholar] [CrossRef]
- Abou-Shady, A.; El-Araby, H. Electro-agric, a novel environmental engineering perspective to overcome the global water crisis via marginal water reuse. Nat. Hazards Res. 2021, 1, 202–226. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, L. Laboratory tests of electro-osmotic consolidation combined with vacuum preloading on kaolinite using electrokinetic geosynthetics. Geotext. Geomembr. 2019, 47, 166–176. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Z.; Lei, Y.; Zheng, S.; Ju, B.; Wang, W. Effects of electrokinetics on bioavailability of soil nutrients. Soil Sci. 2006, 171, 638–647. [Google Scholar] [CrossRef]
- Abou-Shady, A. Reclaiming salt-affected soils using electro-remediation technology: PCPSS evaluation. Electrochim. Acta 2016, 190, 511–520. [Google Scholar] [CrossRef]
- Mohamedelhassan, E.; Shang, J.Q. Analysis of electrokinetic sedimentation of dredged Welland River sediment. J. Hazard. Mater. 2001, 85, 91–109. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Eissa, D.; Abdelmottaleb, O.; Hegab, R. New approaches to remediate heavy metals containing polluted soil via improved PCPSS. J. Environ. Chem. Eng. 2018, 6, 1322–1332. [Google Scholar] [CrossRef]
- Selim, E.-M.M.; Abou-Shady, A.; Ghoniem, A.E.; Abdelhamied, A.S. Enhancement of the electrokinetic removal of heavy metals, cations, anions, and other elements from soil by integrating PCPSS and a chelating agent. J. Taiwan Inst. Chem. Eng. 2022, 134, 104306. [Google Scholar] [CrossRef]
- Abou-Shady, A.; El-Araby, H. A comprehensive analysis of the advantages and disadvantages of pulsed electric fields during soil electrokinetic remediation. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Osman, M.A.; El-Araby, H.; Khalil, A.K.A.; Kotp, Y.H. Electrokinetics-Based Phosphorus Management in Soils and Sewage Sludge. Sustainability 2024, 16, 10334. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Eissa, D.; Abd-Elmottaleb, O.; Bahgaat, A.K.; Osman, M.A. Optimizing electrokinetic remediation for pollutant removal and electroosmosis/dewatering using lateral anode configurations. Sci. Rep. 2024, 14, 25380. [Google Scholar] [CrossRef]
- Abou-Shady, A.; El-Araby, H. Reverse Polarity-Based Soil Electrokinetic Remediation: A Comprehensive Review of the Published Data during the Past 31 Years (1993–2023). ChemEngineering 2024, 8, 82. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Ismail, S.; Yossif, T.M.H.; Yassin, S.A.; Ali, M.E.A.; Habib, A.A.M.; Khalil, A.K.A.; Tag-Elden, M.A.; Emam, T.M.; Mahmoud, A.A.; et al. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, part II. No.1: Materials additives for enhancing the intensification process during 2017–2020. S. Afr. J. Chem. Eng. 2023, 45, 182–200. [Google Scholar] [CrossRef]
- Abou-Shady, A.; El-Araby, H.; El-Harairy, A.; El-Harairy, A. Utilizing the approaching/movement electrodes for optimizing the soil electrokinetic remediation: A comprehensive review. S. Afr. J. Chem. Eng. 2024, 50, 75–88. [Google Scholar] [CrossRef]
- Abou-Shady, A. A critical review of enhanced soil electrokinetics using perforated electrodes, pipes, and nozzles. Int. J. Electrochem. Sci. 2024, 19, 100406. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Yu, W. Recent advances in electrokinetic methods for soil remediation. A critical review of selected data for the period 2021–2022. Int. J. Electrochem. Sci. 2023, 18, 100234. [Google Scholar] [CrossRef]
- Peng, C.; Almeira, J.O.; Abou-Shady, A. Enhancement of ion migration in porous media by the use of varying electric fields. Sep. Purif. Technol. 2013, 118, 591–597. [Google Scholar] [CrossRef]
- Wang, X.; Mašek, O.; Li, H.; Yu, F.; Wurzer, C.; Wang, J.; Yan, B.; Cui, X.; Chen, G.; Hou, L. Coupling electrokinetic technique with hydrothermal carbonization for phosphorus-enriched hydrochar production and heavy metal separation from sewage sludge. Chem. Eng. J. 2024, 481, 148144. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Qu, G.; Yang, J.; Jin, C.; Wu, F.; Ren, Y.; Liu, Y.; Liu, X.; Qin, J.; et al. Aluminium sulfate synergistic electrokinetic separation of soluble components from phosphorus slag and simultaneous stabilization of fluoride. J. Environ. Manag. 2023, 328, 116942. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Chen, B.; Qu, G.; Qin, J.; Yang, J.; Liu, Y.; Li, H.; Wu, F.; He, M. NaHCO3 synergistic electrokinetics extraction of F, P, and Mn from phosphate ore flotation tailings. J. Water Process Eng. 2023, 54, 104013. [Google Scholar] [CrossRef]
- Wang, X.; Cui, X.; Fang, C.; Yu, F.; Zhi, J.; Mašek, O.; Yan, B.; Chen, G.; Dan, Z. Agent-assisted electrokinetic treatment of sewage sludge: Heavy metal removal effectiveness and nutrient content characteristics. Water Res. 2022, 224, 119016. [Google Scholar] [CrossRef]
- Traina, G.; Ferro, S.; De Battisti, A. Electrokinetic stabilization as a reclamation tool for waste materials polluted by both salts and heavy metals. Chemosphere 2009, 75, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.K.; Rojo, A. Testing pulsed electric fields in electroremediation of copper mine tailings. Electrochim. Acta 2007, 52, 3399–3405. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Usman, A.; Jarrah, N.; Alagha, O. Pulsed Electrokinetic Removal of Chromium, Mercury and Cadmium from Contaminated Mixed Clay Soils. Soil Sediment Contam. Int. J. 2016, 25, 757–775. [Google Scholar] [CrossRef]
- Li, H.; Marie Kirkelund, G. Pulsed stirring for energy efficiency improvements during electrodialytic extraction of As, Cd, Cr, Cu, Pb, and Zn from municipal solid waste incineration fly ash and air pollution control residue. Sep. Purif. Technol. 2022, 290, 120835. [Google Scholar] [CrossRef]
- Sun, T.R.; Ottosen, L.M. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Electrochim. Acta 2012, 86, 28–35. [Google Scholar] [CrossRef]
- Ryu, B.-G.; Yang, J.-S.; Kim, D.-H.; Baek, K. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil. J. Appl. Electrochem. 2010, 40, 1039–1047. [Google Scholar] [CrossRef]
- Suzuki, T.; Moribe, M.; Okabe, Y.; Niinae, M. A mechanistic study of arsenate removal from artificially contaminated clay soils by electrokinetic remediation. J. Hazard. Mater. 2013, 254–255, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, Q.; Wang, Z.; Hu, Y.; Hu, Y.; Li, R. In situ electrokinetic isolation of cadmium from paddy soil through pore water drainage: Effects of voltage gradient and soil moisture. Chem. Eng. J. 2018, 337, 210–219. [Google Scholar] [CrossRef]
- Benamar, A.; Tian, Y.; Portet-Koltalo, F.; Ammami, M.T.; Giusti-Petrucciani, N.; Song, Y.; Boulangé-Lecomte, C. Enhanced electrokinetic remediation of multi-contaminated dredged sediments and induced effect on their toxicity. Chemosphere 2019, 228, 744–755. [Google Scholar] [CrossRef]
- Benamar, A.; Ammami, M.T.; Song, Y.; Portet-Koltalo, F. Scale-up of electrokinetic process for dredged sediments remediation. Electrochim. Acta 2020, 352, 136488. [Google Scholar] [CrossRef]
- Maturi, K.; Reddy, K.R. Cosolvent-enhanced Desorption and Transport of Heavy Metals and Organic Contaminants in Soils during Electrokinetic Remediation. Water Air Soil Pollut. 2008, 189, 199–211. [Google Scholar] [CrossRef]
- Ammami, M.T.; Portet-Koltalo, F.; Benamar, A.; Duclairoir-Poc, C.; Wang, H.; Le Derf, F. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 2015, 125, 1–8. [Google Scholar] [CrossRef]
- Tian, Y.; Boulangé-Lecomte, C.; Benamar, A.; Giusti-Petrucciani, N.; Duflot, A.; Olivier, S.; Frederick, C.; Forget-Leray, J.; Portet-Koltalo, F. Application of a crustacean bioassay to evaluate a multi-contaminated (metal, PAH, PCB) harbor sediment before and after electrokinetic remediation using eco-friendly enhancing agents. Sci. Total Environ. 2017, 607–608, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Maturi, K.; Reddy, K.R. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere 2006, 63, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Reddy, K.R. Effects of Periodic Electric Potential and Electrolyte Recirculation on Electrochemical Remediation of Contaminant Mixtures in Clayey Soils. Water Air Soil Pollut. 2013, 224, 1636. [Google Scholar] [CrossRef]
- Hassan, I.A.; Mohamedelhassan, E.E.; Yanful, E.K.; Weselowski, B.; Yuan, Z.-C. Isolation and characterization of novel bacterial strains for integrated solar-bioelectrokinetic of soil contaminated with heavy petroleum hydrocarbons. Chemosphere 2019, 237, 124514. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; Mohamedelhassan, E.; Yanful, E.; Bo, M.W. Enhanced electrokinetic bioremediation by pH stabilisation. Environ. Geotech. 2018, 5, 222–233. [Google Scholar] [CrossRef]
- Qin, J.; Moustafa, A.; Harms, H.; El-Din, M.G.; Wick, L.Y. The power of power: Electrokinetic control of PAH interactions with exfoliated graphite. J. Hazard. Mater. 2015, 288, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Darko-Kagya, K.; Al-Hamdan, A.Z. Electrokinetic Remediation of Pentachlorophenol Contaminated Clay Soil. Water Air Soil Pollut. 2011, 221, 35–44. [Google Scholar] [CrossRef]
- Wen, D.; Guo, X.; Li, Q.; Fu, R. Enhanced electrokinetically-delivered persulfate and alternating electric field induced thermal effect activated persulfate in situ for remediation of phenanthrene contaminated clay. J. Hazard. Mater. 2022, 423, 127199. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.L.; Saéz, C.; Llanos, J.; Lanza, M.R.V.; Cañizares, P.; Rodrigo, M.A. Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochim. Acta 2016, 190, 371–377. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jung, J.-M.; Jo, S.-U.; Kim, W.-S.; Baek, K. Photovoltaic Powered Electrokinetic Restoration of Saline Soil. Sep. Sci. Technol. 2012, 47, 2235–2240. [Google Scholar]
- Kim, D.-H.; Jo, S.-U.; Yoo, J.-C.; Baek, K. Ex situ pilot scale electrokinetic restoration of saline soil using pulsed current. Sep. Purif. Technol. 2013, 120, 282–288. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Pedersen, A.J.; Rörig-Dalgaard, I. Salt-related problems in brick masonry and electrokinetic removal of salts. J. Build. Apprais. 2007, 3, 181–194. [Google Scholar] [CrossRef]
- Jo, S.-U.; Kim, D.-H.; Yang, J.-S.; Baek, K. Pulse-enhanced electrokinetic restoration of sulfate-containing saline greenhouse soil. Electrochim. Acta 2012, 86, 57–62. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lee, Y.-J.; Maruthamuthu, S.; Lee, H.-G.; Ha, T.-H. Restoration of saline greenhouse soil and its effect on crop’s growth through in situ field-scale electrokinetic technology. Sep. Sci. Technol. 2016, 51, 1227–1237. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, S.; Liu, F.; Zhou, D. Pulse-enhanced electrokinetic remediation of fluorine-contaminated soil. Korean J. Chem. Eng. 2014, 31, 2008–2013. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, S.; Liu, Y.; Wang, X. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy. Environ. Sci. Pollut. Res. 2013, 20, 5806–5812. [Google Scholar] [CrossRef]
- Rojo, A.; Hansen, H.K.; Monárdez, O. Electrokinetic remediation of mine tailings by applying a pulsed variable electric field. Miner. Eng. 2014, 55, 52–56. [Google Scholar] [CrossRef]
- Rojo, A.; Hansen, H.K.; del Campo, J. Electrodialytic remediation of copper mine tailings with sinusoidal electric field. J. Appl. Electrochem. 2010, 40, 1095–1100. [Google Scholar] [CrossRef]
- Rojo, A.; Hansen, H.K.; Cubillos, M. Electrokinetic remediation using pulsed sinusoidal electric field. Electrochim. Acta 2012, 86, 124–129. [Google Scholar] [CrossRef]
- Ma, H.; Duan, Z.; Guo, J.; Zhu, X.; Shi, X.; Zhou, W.; Jiang, M.; Xiong, J.; Li, T. Lead dissociation and redistribution properties of actual contaminated farmland soil after long-term EKAPR treatment. Environ. Geochem. Health 2022, 45, 9507–9524. [Google Scholar] [CrossRef]
- Siyar, R.; Doulati Ardejani, F.; Farahbakhsh, M.; Norouzi, P.; Yavarzadeh, M.; Maghsoudy, S. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere 2020, 246, 125802. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S.; Urréjola, S. Sustainable Soil Remediation. Phytoremediation Amended with Electric Current BT—Environmental Geotechnology; Springer: Singapore, 2019; pp. 51–61. [Google Scholar]
- Guedes, P.; Dionísio, J.; Couto, N.; Mateus, E.P.; Pereira, C.S.; Ribeiro, A.B. Electro-bioremediation of a mixture of structurally different contaminants of emerging concern: Uncovering electrokinetic contribution. J. Hazard. Mater. 2021, 406, 124304. [Google Scholar] [CrossRef]
- Maturi, K.; Reddy, K.R.; Cameselle, C. Surfactant-enhanced Electrokinetic Remediation of Mixed Contamination in Low Permeability Soil. Sep. Sci. Technol. 2009, 44, 2385–2409. [Google Scholar] [CrossRef]
- Deng, W.; Lai, Z.; Hu, M.; Han, X.; Su, Y. Effects of frequency and duty cycle of pulsating direct current on the electro-dewatering performance of sewage sludge. Chemosphere 2020, 243, 125372. [Google Scholar] [CrossRef]
- Lamont-Black, J.; Jones, C.J.F.P.; Alder, D. Electrokinetic strengthening of slopes—Case history. Geotext. Geomembr. 2016, 44, 319–331. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Mujumdar, A.S.; Weber, M.E. Optimal off-time in interrupted electroosmotic dewatering. Sep. Technol. 1996, 6, 197–200. [Google Scholar] [CrossRef]
- Rabie, H.R.; Mujumdar, A.S.; Weber, M.E. Interrupted electroosmotic dewatering of clay suspensions. Sep. Technol. 1994, 4, 38–46. [Google Scholar] [CrossRef]
- Micic, S.; Shang, J.Q.; Lo, K.Y.; Lee, Y.N.; Lee, S.W. Electrokinetic strengthening of a marine sediment using intermittent current. Can. Geotech. J. 2001, 38, 287–302. [Google Scholar] [CrossRef]
- Micic, S.; Shang, J.Q.; Lo, K.Y. Electrokinetic strengthening of marine clay adjacent to offshore foundations. Int. J. Offshore Polar Eng. 2002, 12, 64–73. [Google Scholar]
- Hassan, I.; Mohamedelhassan, E. Improving the Characteristics of a Lean Clay by Electrokinetic Treatment. Int. J. Civ. Eng. 2021, 19, 911–922. [Google Scholar] [CrossRef]
- Wang, D.; Tang, X.; Li, R.; Wu, X. Electrokinetic geosynthetics restrained nitrogen release from sediment to overlying water through porewater drainage. Chemosphere 2022, 307, 135674. [Google Scholar] [CrossRef] [PubMed]
- Gingine, V.; Cardoso, R. Secondary consolidation of a consolidated kaolin slurry during electrokinetic treatment. Eng. Geol. 2017, 220, 31–42. [Google Scholar] [CrossRef]
- Jin, R.J.; Peng, C.S.; Abou-Shady, A.; Zhang, K.D. Recovery of Precious Metal Material Ni from Nickel Containing Wastewater Using Electrolysis. Appl. Mech. Mater. 2012, 164, 263–267. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Peng, C.; Bi, J.; Xu, H.; Almeria, O.J. Recovery of Pb (II) and removal of NO3−from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process. Desalination 2012, 286, 304–315. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Peng, C.; Xu, H. Effect of pH on separation of Pb (II) and NO3−from aqueous solutions using electrodialysis. Desalination 2012, 285, 46–53. [Google Scholar] [CrossRef]
- Abou-Shady, A. Effect of separated cathode on the removal of dissolved organic carbon using anode oxidation, Fenton oxidation, and coagulation. J. Environ. Chem. Eng. 2016, 4, 704–710. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Shabanloo, A.; Ansari, A.; Esfandiari, M.; Mousazadeh, M.; Tari, K. Anodic oxidation of ciprofloxacin antibiotic and real pharmaceutical wastewater with Ti/PbO2 electrocatalyst: Influencing factors and degradation pathways. J. Water Process Eng. 2024, 57, 104662. [Google Scholar] [CrossRef]
- Bi, J.; Peng, C.; Xu, H.; Ahmed, A.-S. Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization. Desalin. Water Treat. 2011, 34, 394–401. [Google Scholar] [CrossRef]
- Abou-Shady, A. Recycling of polluted wastewater for agriculture purpose using electrodialysis: Perspective for large scale application. Chem. Eng. J. 2017, 323, 1–18. [Google Scholar] [CrossRef]
- Asaithambi, P.; Sajjadi, B.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Bin Performance evaluation of hybrid electrocoagulation process parameters for the treatment of distillery industrial effluent. Process Saf. Environ. Prot. 2016, 104, 406–412. [Google Scholar] [CrossRef]
- Diba, F.; Goodarzi, A.R.; Sobhanardakani, S.; Cheraghi, M.; Lorestani, B. An enhanced electrokinetic system for remediation of Cu-polluted clay soils by integrating purging solutions and intermittent power. Appl. Clay Sci. 2024, 262, 107605. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, R.; Huang, Q.; Cang, L. Peroxymonosulfate enhanced electrokinetic remediation of PAHs-contaminated soil: Effects of periodic electric field. J. Ind. Eng. Chem. 2024. [Google Scholar] [CrossRef]
- Wang, G.; Liang, X.; Ling, B.; Xu, J.; Ran, L.; Wei, J.; Zhu, R.; Zhu, J.; He, H. Recovery of rare earth elements from weathering crust soils using electrokinetic mining technology. J. Rare Earths 2024, in press. [CrossRef]
- Shalaby, O.A.; Ramadan, M.E. Effect of seed soaking and foliar spraying with selenium on the growth and yield of lettuce under saline stress. Egypt. J. Desert Res. 2017, 67, 255–267. [Google Scholar] [CrossRef]
- Mahmoud, N.E. Biochemical indicators for salt tolerance and their relationship to nutritional compounds in sorghum under ras sudr conditions, south sinai. Egypt. J. Desert Res. 2023, 73, 311–341. [Google Scholar] [CrossRef]
- Omer, A.M. Inducing plant resistance against salinity using some rhizobacteria. Egypt. J. Desert Res. 2017, 67, 187–208. [Google Scholar] [CrossRef]
- Salama, Y.A. Effect of glycine betaine, chitosan and salicylic acid on pepper plants under salt water irrigation conditions. Egypt. J. Desert Res. 2022, 72, 353–363. [Google Scholar] [CrossRef]
- Abou Youssef, M.; El-Cossy, S.; Abdel-Azez, S. Integration between some soil improvers and salt-resistant microbes to improve some soil properties and their productivity in Ras Suder, South Sinai Egypt. New Val. J. Agric. Sci. 2023, 3, 590–602. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ismail, S.M.; Abd El-Monem, A.; Darwish, M. Magnetically Treated Brackish Water New Approach for Mitigation Salinity Stress on Sunflower Productivity and Soil Properties under South Sinai Region, Egypt. Alex. Sci. Exch. J. 2019, 40, 451–470. [Google Scholar] [CrossRef]
- Choi, J.-H.; Maruthamuthu, S.; Lee, H.-G.; Ha, T.-H.; Bae, J.-H.; Alshawabkeh, A.N. Removal of phosphate from agricultural soil by electrokinetic remediation with iron electrode. J. Appl. Electrochem. 2010, 40, 1101–1111. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Standard Operating Procedure for Soil Calcium Carbonate Equivalent. Volumetric Calcimeter Method; FAO: Rome, Italy, 2020; pp. 1–13. [Google Scholar]
- Xiao, J.; Pang, Z.; Zhou, S.; Chu, L.; Rong, L.; Liu, Y.; Li, J.; Tian, L. The mechanism of acid-washed zero-valent iron/activated carbon as permeable reactive barrier enhanced electrokinetic remediation of uranium-contaminated soil. Sep. Purif. Technol. 2020, 244, 116667. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Peng, C. New process for ex situ electrokinetic pollutant removal. I: Process evaluation. J. Ind. Eng. Chem. 2012, 18, 2162–2176. [Google Scholar] [CrossRef]
- Vocciante, M.; Caretta, A.; Bua, L.; Bagatin, R.; Ferro, S. Enhancements in ElectroKinetic Remediation Technology: Environmental assessment in comparison with other configurations and consolidated solutions. Chem. Eng. J. 2016, 289, 123–134. [Google Scholar] [CrossRef]
- López-Vizcaíno, R.; Risco, C.; Isidro, J.; Rodrigo, S.; Saez, C.; Cañizares, P.; Navarro, V.; Rodrigo, M.A. Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species. Chemosphere 2017, 166, 540–548. [Google Scholar] [CrossRef]
- Fourie, A.B.; Jones, C.J.F.P. Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs). Geotext. Geomembr. 2010, 28, 181–190. [Google Scholar] [CrossRef]
- Xu, S.; Guo, S.; Wu, B.; Li, F.; Li, T. An assessment of the effectiveness and impact of electrokinetic remediation for pyrene-contaminated soil. J. Environ. Sci. 2014, 26, 2290–2297. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, H.; Zhang, X.; Fan, X.; Qian, Y. In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode. Chemosphere 2006, 64, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, S.; Cheng, F.; Guo, P.; Guo, S. Enhancement of electrokinetic-bioremediation by ryegrass: Sustainability of electrokinetic effect and improvement of n-hexadecane degradation. Environ. Res. 2020, 188, 109717. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cang, L.; Xu, H.; Wu, S.; Zhou, D. Migration and decomplexation of metal-chelate complexes causing metal accumulation phenomenon after chelate-enhanced electrokinetic remediation. J. Hazard. Mater. 2019, 377, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Xu, J.; Zhu, S.; Wang, Y.; Gao, H. Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy. Sep. Purif. Technol. 2018, 190, 297–306. [Google Scholar] [CrossRef]
- Xu, H.; Ding, M.; Shen, K.; Cui, J.; Chen, W. Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology. Chemosphere 2017, 173, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jin, C.; Zhao, Z.; Tian, G. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil. J. Hazard. Mater. 2010, 177, 1126–1133. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Choi, J.-H.; Lee, H.-G.; Ha, T.-H.; Bae, J.-H. Pilot-scale study on in situ electrokinetic removal of nitrate from greenhouse soil. Sep. Purif. Technol. 2011, 79, 254–263. [Google Scholar] [CrossRef]
- Zhu, N.; Chen, M.; Guo, X.; Hu, G.; Deng, Y. Electrokinetic removal of Cu and Zn in anaerobic digestate: Interrelation between metal speciation and electrokinetic treatments. J. Hazard. Mater. 2015, 286, 118–126. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Z.; Wang, B.; Fang, C.; Chen, G.; Zhou, A.; Jiang, P.; Wang, L. Experimental investigation on electro-osmotic treatment combined with vacuum preloading for marine clay. Geotext. Geomembr. 2021, 49, 1495–1505. [Google Scholar] [CrossRef]
- Zhuang, Y. Field Test on Consolidation of Hydraulically Filled Sludge via Vertical Gradient Electro-osmotic Dewatering. Int. J. Geosynth. Ground Eng. 2022, 8, 62. [Google Scholar] [CrossRef]
- Ishaq, M.; Kamran, K.; Jamil, Y.; Sarfraz, R.A. Electric potential and current distribution in contaminated porous building materials under electrokinetic desalination. Mater. Struct. 2021, 54, 175. [Google Scholar] [CrossRef]
- Kumpanenko, I.V.; Ivanova, N.A.; Shapovalova, O.V.; Dyubanov, M.V.; Skryl’nikov, A.M.; Roshchin, A. V Empirical Mathematical Analysis of Electrokinetic Decontamination of Soils Polluted With Heavy Metals. Russ. J. Phys. Chem. B 2022, 16, 917–925. [Google Scholar] [CrossRef]
- Chen, F.; Li, Y.; Zhu, Y.; Sun, Y.; Ma, J.; Wang, L. Enhanced electrokinetic remediation by magnetic induction for the treatment of co-contaminated soil. J. Hazard. Mater. 2023, 452, 131264. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.; Peng, M.; Cheng, Y.; Zhang, W.; Hu, L.; Mao, L. Preparation of ternary composite (WS2-FeOCl-PANI) and its performance as auxiliary electrode in electrokinetic remediation of simulated Cr(VI) contaminated soil. J. Environ. Chem. Eng. 2021, 9, 106748. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhang, A.; Héroux, P.; Sun, Z.; Liu, Y. Remediation of atrazine-polluted soil using dielectric barrier discharge plasma and biochar sequential batch experimental technology. Chem. Eng. J. 2023, 458, 141406. [Google Scholar] [CrossRef]
- Kumagai, A.; Kabir, M.; Okuda, S.; Komachi, H.; Obara, N.; Sato, Y.; Saito, T.; Sato, M.; Tomioka, M.; Kumagai, S.; et al. Flexible Ion Adsorption Electrodes Using Natural Zeolite and Rice Husk Charcoal for FEM-EK Treatment. Metals 2023, 13, 320. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Hartog, N. Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochim. Acta 2012, 85, 228–234. [Google Scholar] [CrossRef]
- Wang, J.; Li, F.; Li, X.; Wang, X.; Li, X.; Su, Z.; Zhang, H.; Guo, S. Effects of electrokinetic operation mode on removal of polycyclic aromatic hydrocarbons (PAHs), and the indigenous fungal community in PAH-contaminated soil. J. Environ. Sci. Health Part A 2013, 48, 1677–1684. [Google Scholar] [CrossRef]
- Almeira, O.J.; Peng, C.-S.; Abou-Shady, A. Simultaneous removal of cadmium from kaolin and catholyte during soil electrokinetic remediation. Desalination 2012, 300, 1–11. [Google Scholar] [CrossRef]
- Almeira, J.; Peng, C.; Abou-Shady, A. Enhancement of ion transport in porous media by the use of a continuously reoriented electric field. J. Zhejiang Univ. Sci. A 2012, 13, 546–558. [Google Scholar] [CrossRef]
Trials No. | Strategy for Reducing Energy Use | The Period of Applied Voltage Connection (Time ON) | The Period of Applied Voltage Disconnection (Time OFF) | Applied Voltage |
---|---|---|---|---|
1 | Control experiment | 24 h | Zero | 1 V/cm |
2 | 25% | 45 min | 15 min | 1 V/cm |
3 | 25% | 90 min | 30 min | 1 V/cm |
4 | 25% | 180 min | 60 min | 1 V/cm |
5 | 25% | 360 min | 120 min | 1 V/cm |
6 | 50% | 15 min | 15 min | 1 V/cm |
7 | 50% | 30 min | 30 min | 1 V/cm |
8 | 50% | 60 min | 60 min | 1 V/cm |
9 | 50% | 120 min | 120 min | 1 V/cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Shady, A. Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation. Resources 2025, 14, 16. https://doi.org/10.3390/resources14010016
Abou-Shady A. Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation. Resources. 2025; 14(1):16. https://doi.org/10.3390/resources14010016
Chicago/Turabian StyleAbou-Shady, Ahmed. 2025. "Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation" Resources 14, no. 1: 16. https://doi.org/10.3390/resources14010016
APA StyleAbou-Shady, A. (2025). Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation. Resources, 14(1), 16. https://doi.org/10.3390/resources14010016