Next Issue
Volume 14, February
Previous Issue
Volume 13, December
 
 

Resources, Volume 14, Issue 1 (January 2025) – 18 articles

Cover Story (view full-size image): Oyster farming plays a critical role in global food security, and there is significant potential to enhance environmental sustainability. The utilization of oil-based plastics and packaging represents one of the primary constraints to sustainability. To identify the potential strategies for improving the industry's sustainability, alternative packaging options and substitutes for the petroleum-based plastics used in the growing phase were investigated. The findings demonstrate that the non-optimized production process for bio-based plastics and their durability constitute significant constraints. However, there are several aspects that must be considered, such as the advantage of biodegradable materials and natural fibers in terms of microplastics pollution. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
29 pages, 1507 KiB  
Article
Determining Priority Areas for the Technological Development of Oil Companies in Mexico
by Tatyana Semenova and Juan Yair Martínez Santoyo
Resources 2025, 14(1), 18; https://doi.org/10.3390/resources14010018 - 20 Jan 2025
Viewed by 437
Abstract
The technological development of oil companies in Mexico is essential for ensuring their economic sustainability. A mechanism for the effective management of the technological development of oil companies, and the industry as a whole, is to determine its priority areas. This article provides [...] Read more.
The technological development of oil companies in Mexico is essential for ensuring their economic sustainability. A mechanism for the effective management of the technological development of oil companies, and the industry as a whole, is to determine its priority areas. This article provides a calculation for the choice of planning directions for the development of the oil sector in Mexico and related studies. Currently, the most promising technologies are offshore drilling and production. To achieve the study goals, we analyzed the patent activity of the oil sector. The results showed an unfavorable trend: the number of private and public patents in Mexico is decreasing. For example, from 2017 to 2023, the number of patents for offshore technologies decreased by more than 10 times. This dynamic significantly hinders the development of the oil industry. Despite the general measures taken within the framework of energy policy, the volume of oil production is constantly declining. Thus, in order to ensure the continued reproduction potential of the oil sector, it is necessary to take into account the importance of research and development. The innovation rating of the Mexican Petroleum Institute, a state-funded research center for the hydrocarbon sector, has been declining, having fallen by more than 50% from 102 international patents in 2014 to 40 in 2024. Today, the Mexican Institute of Petroleum is in the 48th percentile in terms of research performance among research institutes. The present authors’ approach considers that the intensification of technological development, which is costly, should not be an end in itself but rather an important means of increasing the efficiency of the integrated activities of oil companies. To integrate the patent-technological component of the strategic planning of oil companies, the concept of sub-potentials is proposed. The potential for the functioning and development of an oil enterprise from the point of view of the systems approach is decomposed into the sub-potentials of reproduction, defense, management, and reserve, which, under adverse conditions, can transition to the sub-potentials of threat and containment. An important task is to determine these transition points. The patent-technological component is taken into account in the sub-potential of reproduction. The remaining components of company development are taken into account within the framework of other sub-potentials, which are not discussed in detail in this article. At the same time, due to the unified conceptual approach, the integration of goals and objectives for technological development into a single economic and socio-ecological strategy for oil enterprises is ensured, which is the most effective approach to ensure their sustainable development. The dynamics of patent generation are an important factor in assessing the technological component and, in general, the effectiveness of projects in the energy sector. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

31 pages, 12289 KiB  
Article
A Dynamic Evaluation of the Use of Natural Resources in Crop Rotation in Family Farming Production Units
by Dayhanna Stephania Vargas, Juan Carlos Osorio and Juan José Bravo
Resources 2025, 14(1), 17; https://doi.org/10.3390/resources14010017 - 20 Jan 2025
Viewed by 388
Abstract
A total of 35.4% of the earth’s surface is used for agriculture, and 32.7% of it for crops. Agricultural activity uses 70% of the world’s freshwater, and due to the intensive use of agrochemical inputs and energy, a high percentage of greenhouse gas [...] Read more.
A total of 35.4% of the earth’s surface is used for agriculture, and 32.7% of it for crops. Agricultural activity uses 70% of the world’s freshwater, and due to the intensive use of agrochemical inputs and energy, a high percentage of greenhouse gas emissions, pollution, and waste are generated. With the increase in population and fluctuating consumption trends, it is necessary to increase crop production and productivity to meet present and future demands. A relevant factor for the analysis of the production of agricultural goods is the size of the productive unit since about 84% is less than 2 ha in size and distributed over 12% of arable land; however, it is important to highlight other factors, such as the availability of family labour, crop diversification and the development of other agricultural activities that have a lower use of insecticides, pesticides, and chemical fertilisers compared to industrial crops. Therefore, food is produced, providing social and ecological benefits. Thus, a dynamic simulation is presented to evaluate the use of natural resources in developing different rotations of transient and permanent crops in a municipality in Colombia. This study assesses the impact on land use, soil degradation due to crop development, and the total water footprint associated with each rotation. Full article
Show Figures

Figure 1

19 pages, 5364 KiB  
Article
Effect of Pulsed Electric Field on the Cations Removal from Salt-Affected Soils to Optimize Energy Use Efficiency in Reclamation
by Ahmed Abou-Shady
Resources 2025, 14(1), 16; https://doi.org/10.3390/resources14010016 - 20 Jan 2025
Viewed by 488
Abstract
In arid and semi-arid zones, reclaiming/restoring salt-affected soil is considered a significant challenge because of the limited amount of water available for soil washing. The reclaimed salt-affected soil is regarded as a valuable resource for increasing the production of food and feed. In [...] Read more.
In arid and semi-arid zones, reclaiming/restoring salt-affected soil is considered a significant challenge because of the limited amount of water available for soil washing. The reclaimed salt-affected soil is regarded as a valuable resource for increasing the production of food and feed. In the current study, soil electrokinetics (SEK) under pulsed-mode electric field operation was used to evaluate and optimize energy use efficiency for reclaiming salt-affected soils, which is one of the electro-agric technology branches that was suggested in 2021 to address the water crisis in arid and semi-arid regions. Under a fixed applied voltage of 5 V, or 1 V/cm, the calcareous, highly salinized soil under investigation was reclaimed. A 25% reduction in applied voltages with time OFF set at 15, 30, 60, and 120 min and a 50% reduction with time OFF set at 15, 30, 60, and 120 min were the two pulsed electric field techniques that were examined. The findings demonstrated that the removal of Na+ surpasses half (50%) in the majority of pulsed-mode studies. By decreasing the removed K+, which is crucial for plant growth, the pulsed modes of electric fields 25 and 50% showed an economic advantage over the control experiment, which operated with a continuous electric field. Throughout the control experiment, very little Ca2+ was removed. However, the amount of Ca2+ removed rose when the electric field’s pulsed mode was applied, and the removal percentages were higher for the pulsed 50% strategy than the pulsed 25% strategy. In nearly every segment of every experiment (control, pulsed 25%, and pulsed 50%), the pH levels exceeded the initial value of 8.05. The pulsed 25% strategy of the OFF time showed an improvement in current passing at the longest interval of 120 min; the pulsed 50% strategy of the OFF time showed an improvement in current passing at the shorter and longer intervals of 15, 60, and 120 min; however, the interval of 30 min had a negative effect. The cumulative EO flow at the time OFF interval of 60 min was improved by the pulsed 25% strategy throughout the first seven days of operation, and by the end of the trial, the control experiment exhibited high values. The highest values, however, were displayed by the pulsed 50% field at the time OFF interval of 60 min. The anolyte pH decreased for the majority of the time OFF intervals over the first seven days of the trial for both the 25% and 50% pulsed strategies. Lastly, in order to minimize the overall energy consumption, it is strongly advised that the pulsed mode of the electric field be used while reclaiming salt-affected soil. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

14 pages, 3445 KiB  
Article
Sustainable Fruit Preservation Using Algae-Based Bioactive Coatings on Textile Packaging
by Zoha Shabbir, Kashif Javed, Imran Ahmad Khan, Asfandyar Khan and Muhammad Junaid Saleem
Resources 2025, 14(1), 15; https://doi.org/10.3390/resources14010015 - 16 Jan 2025
Viewed by 590
Abstract
This study explores the potential of using natural textile packaging infused with algae-based coatings as an eco-friendly alternative to traditional plastic packaging for extending fruit shelf life. Traditional plastic packaging is known to release harmful chemicals into both food and the environment, which [...] Read more.
This study explores the potential of using natural textile packaging infused with algae-based coatings as an eco-friendly alternative to traditional plastic packaging for extending fruit shelf life. Traditional plastic packaging is known to release harmful chemicals into both food and the environment, which underscores the need for safer, more sustainable alternatives. This study investigates algae from three distinct groups—green, red, and brown algae—renowned for their rich bioactive compounds that exhibit natural preservative properties. Algae powders were prepared via immersion in purified water, boiling, and mixing with gum arabic to form a gelatinous coating solution. The algae coating was applied to knitted fabric, which was then crafted into bags for storing fruits such as tomatoes and apples. Over 21 days, the texture, weight loss, and juice content of the fruits stored in algae-coated bags were monitored and compared to those stored in uncoated packaging. The results showed that fruits in algae-coated packaging demonstrated significantly less weight loss and retained better texture. In terms of weight, the combination of red, green, and brown algae-coated packaging demonstrated the lowest reduction in weight for tomatoes (4.2%) and apples (3.8%) after 21 days, outperforming uncoated packaging, which exhibited reductions of 11.2% and 10.8%, respectively. These findings support the potential of algae-coated textile packaging to reduce reliance on conventional plastics while maintaining fruit quality during storage. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

7 pages, 463 KiB  
Editorial
Theoretical and Practical Approaches in Watershed Management Across Different Environmental Contexts
by Demetrio Antonio Zema and Manuel Esteban Lucas-Borja
Resources 2025, 14(1), 14; https://doi.org/10.3390/resources14010014 - 15 Jan 2025
Viewed by 470
Abstract
A watershed is defined as ‘a topographically delineated area that is drained by a stream system’ [...] Full article
Show Figures

Figure 1

21 pages, 1900 KiB  
Review
Plants from Arid Zones of Mexico: Bioactive Compounds and Potential Use for Food Production
by Isabel Márquez-Rangel, Mario Cruz, Alberto A. Neira-Vielma, Sonia N. Ramírez-Barrón, Pedro Aguilar-Zarate and Ruth Belmares
Resources 2025, 14(1), 13; https://doi.org/10.3390/resources14010013 - 9 Jan 2025
Viewed by 706
Abstract
(1) Background: Climate change has several consequences; one of them is increasing the severity of droughts. This has led to an opportunity to study arid zone plants as food sources that have potential biological activities and improve consumer health. (2) Methods: In this [...] Read more.
(1) Background: Climate change has several consequences; one of them is increasing the severity of droughts. This has led to an opportunity to study arid zone plants as food sources that have potential biological activities and improve consumer health. (2) Methods: In this work, we review recent research focused on the traditional use and importance of arid zone plants, their nutritional contribution, and their beneficial effects on health when they are consumed; these effects are primarily because of their antioxidant activity, which inhibits free radicals and contributes to improved nutrition and benefits consumer health. (3) Results: Several plant-based functional food studies have shown that the consumption of bioactive compounds is a complement to drugs for preventing some chronic degenerative diseases, such as gastrointestinal diseases, diabetes, and obesity. (4) Conclusions: Given all of the previously mentioned factors, plants from arid zones are potential sources for obtaining bioactive compounds with low water requirements. Full article
Show Figures

Figure 1

25 pages, 8142 KiB  
Article
Life Cycle Assessment of Methanol Production from Municipal Solid Waste: Environmental Comparison with Landfilling and Incineration
by Cristiano Queiroz Cerqueira, Electo Eduardo Silva Lora, Lidiane La Picirelli de Souza, Márcio Montagnana Vicente Leme, Regina Mambeli Barros and Osvaldo José Venturini
Resources 2025, 14(1), 12; https://doi.org/10.3390/resources14010012 - 9 Jan 2025
Viewed by 686
Abstract
Inadequate waste management strategies play a significant role in exacerbating environmental challenges, such as increased greenhouse gas emissions, resource depletion, and other adverse ecological impacts. These issues are aggravated by the global rise in municipal solid waste (MSW) generation, surpassing the rate of [...] Read more.
Inadequate waste management strategies play a significant role in exacerbating environmental challenges, such as increased greenhouse gas emissions, resource depletion, and other adverse ecological impacts. These issues are aggravated by the global rise in municipal solid waste (MSW) generation, surpassing the rate of population growth. Simultaneously, there is an urgent demand for sustainable energy solutions to combat climate change and its wide-ranging impacts. In response, this study addresses a critical question: is methanol production from MSW, a waste-to-chemical (WtC) alternative based on circular economy principles, a more environmentally sustainable approach compared to traditional waste-to-energy (WtE) methods like landfilling with biogas recovery and incineration? To answer this, this study evaluates the environmental performance of MSW-to-methanol technologies using life cycle assessment (LCA), focusing on key indicators such as global warming potential, resource depletion, and impacts on human health and ecosystem quality. The results reveal that methanol production from MSW significantly reduces global warming potential (GWP) by 87% compared to landfilling and 56% compared to incineration. Additionally, the process demonstrates high energy efficiency in electricity generation, achieving 80% of the output of incineration. These findings position MSW-to-methanol as a promising alternative for advancing sustainable waste management and renewable energy transitions. While the technology is still in its developmental stages, this research highlights the need for further advancements and policy support to enhance feasibility and scalability. By providing a comparative environmental analysis, this study contributes to identifying innovative pathways for addressing pressing waste management and energy sustainability challenges. Full article
Show Figures

Graphical abstract

26 pages, 6563 KiB  
Article
Strategic Approaches to Define the Production Rate in Conceptual Projects of Critical Raw Materials
by Lucas Zucchi Silva and Anna Luiza Marques Ayres da Silva
Resources 2025, 14(1), 11; https://doi.org/10.3390/resources14010011 - 8 Jan 2025
Viewed by 503
Abstract
Mining projects are intricate, requiring significant time and investment for feasibility studies, despite a low likelihood of reaching execution. Accurate project factors can optimize costs across the study, execution, and operation phases. This work proposes a strategic approach to define the production rate [...] Read more.
Mining projects are intricate, requiring significant time and investment for feasibility studies, despite a low likelihood of reaching execution. Accurate project factors can optimize costs across the study, execution, and operation phases. This work proposes a strategic approach to define the production rate in conceptual projects of critical raw materials, based on well-established formulae from Taylor, Long, and Singer, focusing on copper, zinc, and lead. Copper and zinc are crucial for renewable energy systems and low-carbon technologies, while lead supports energy storage applications. A dataset containing mine production and mineral resources from several mine projects, gathered from a specialized global company, was used to create a production rate equation and then compared using an adherence indicator to validate the formulae. The best adherence indicator from earlier studies was 59%. Copper projects did not show good adherence to the new formulae. Zinc and lead projects showed very good results, generating three formulae with good adherence numbers (above 70%), and they can be taken as a reference to calculate the production rate of new open-pit and underground mining projects. These findings offer a reliable strategic approach for estimating production rates in early-stage zinc and lead projects, enhancing the efficiency of the conceptual study phase in mining. Full article
Show Figures

Figure 1

21 pages, 4146 KiB  
Article
How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia
by Daniela Summa, Elena Tamisari, Mattia Lanzoni, Giuseppe Castaldelli and Elena Tamburini
Resources 2025, 14(1), 10; https://doi.org/10.3390/resources14010010 - 8 Jan 2025
Viewed by 519
Abstract
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be [...] Read more.
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be addressed. A life cycle assessment (LCA) was conducted on oyster farming in La Spezia (Italy) as a case study, utilizing 1 kg of packaged oysters as the functional unit. Fossil-based plastics and wooden packaging were identified as the primary environmental concerns. To analyze potential strategies for reducing the environmental impact of oyster farming, alternative scenarios were considered wherein fossil-based materials were replaced with bio-based materials. Specifically, this study examined the substitution of the current packaging, consisting of a wooden box and a polypropylene (PP) film, with a fully recyclable PP net. Additionally, polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and bio-based polyethylene terephthalate (Bio-PET) were proposed as alternatives to virgin high-density polyethylene (HDPE) and PP for buoys, oyster bags, and boxes. Among the scenarios analyzed, the sole effective strategy to reduce the impact of plastics on the process is to replace them with PHA. In the other cases, the high energy consumption of their non-optimized production renders them disadvantageous options. However, the assessment must include the effects of degradation that traditional plastics can have in the marine environment, an aspect that potentially renders natural fibers more advantageous. The use of PP net packaging has demonstrated high efficacy in reducing impacts and provides a foundation for considering the need to combine sustainability and marketing with current legislation regarding food packaging. Full article
Show Figures

Figure 1

20 pages, 6169 KiB  
Article
Effects of Green Mussel Shells (Perna viridis) and Chitosan Extracted from Milkfish (Chanos chanos) Scales on the Compressive Strength of Mortar and Concrete
by Bernardo Lejano, Kenneth Jae Elevado, Lorenzo Martin Chua, Simon Rohi Cuartero, Vince Philip Fabian and Alyanna Ysabel Rase
Resources 2025, 14(1), 9; https://doi.org/10.3390/resources14010009 - 31 Dec 2024
Viewed by 803
Abstract
It is estimated that in the construction industry, cement production contributes to 7% of global CO2 emissions. Because of this, alternative materials, including biological resources and wastes, are being explored to determine their viability as substitutes for conventional concrete aggregates. This study [...] Read more.
It is estimated that in the construction industry, cement production contributes to 7% of global CO2 emissions. Because of this, alternative materials, including biological resources and wastes, are being explored to determine their viability as substitutes for conventional concrete aggregates. This study investigates the feasibility of using green mussel shells (GMSs) as a partial cement replacement and chitosan derived from milkfish scales as an additive in concrete. Addressing environmental concerns tied to cement production, the research evaluates the potential of GMSs and chitosan to enhance mortar and concrete properties. This study was conducted in two phases: phase one focused on mortar with varying percentages of GMSs (0%, 5%, 10%, 15%, and 20%) and chitosan (0%, 0.25%, 0.50%, 0.75%, and 1%), while phase two applied the phase one results that resulted in the highest compressive strength of concrete. The results indicate that 10% GMS and 0.25% chitosan improved mortar strength by 38.74%, although high GMS levels reduced workability. In concrete, 10% GMS without chitosan decreased compressive strength by up to 47% due to magnesium impurities in GMSs, verified by FTIR analysis. This study highlights GMSs’ and chitosan’s potential but emphasizes impurity management for its application feasibility. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

27 pages, 5540 KiB  
Article
Influence of Physicochemical Properties of Oil Sludge on Syngas Production for Energy Applications
by Hiago Oliveira, Isabela Pinheiro, Ana Ramos, Osvaldo Venturini, Adriano Mariano and York Santiago
Resources 2025, 14(1), 8; https://doi.org/10.3390/resources14010008 - 28 Dec 2024
Viewed by 650
Abstract
Oil sludge (OS) is a hazardous waste generated in the refinery and platform production chain. Its recovery is globally limited by methods like incineration, landfilling, and stabilization, which are costly and environmentally harmful. In Brazil, advanced techniques such as gasification are still underdeveloped [...] Read more.
Oil sludge (OS) is a hazardous waste generated in the refinery and platform production chain. Its recovery is globally limited by methods like incineration, landfilling, and stabilization, which are costly and environmentally harmful. In Brazil, advanced techniques such as gasification are still underdeveloped compared to established practices elsewhere. This study aims to characterize the chemical and physical properties of OS to enable its recovery through energy methods, reducing environmental impacts. OS samples from oil storage tanks were analyzed using mass spectrometry, thermogravimetry, atomic absorption, proximate analysis, X-ray fluorescence, and X-ray diffraction. The viscosity was approximately 34,793 cP, with 36.41% carbon and 56.80% oxygen. The ash content was 43.218% (w/w), and the lower and upper heating values were 17.496 and 19.044 MJ/kg, respectively. Metal analysis identified lead, vanadium, manganese, and chromium. The high ash content of OS reduced gasification temperatures, increasing char yield (44.6%). Increasing the equivalence ratio (ER) led to higher gasification temperatures, producing energetic species such as H2, CH4, and CO, raising the calorific value of the resulting syngas. Subsequently, this syngas was used in gas turbine models with GasTurb software 14.0, achieving electrical output and thermal efficiency of 66.9 kW and 22.4%, respectively. OS is a persistent waste requiring gasification treatment, offering a promising solution that converts these residues into valuable syngas for energy conversion with minimal environmental impact. Full article
Show Figures

Figure 1

20 pages, 2510 KiB  
Article
Monitoring Brazilian Food Security Based on Emergy Concepts: A Proposed Approach
by Rafael Araujo Nacimento, Mario Duarte Canever, Luiz Carlos Terra dos Santos, Cecília Almeida, Feni Agostinho and Biagio Fernando Giannetti
Resources 2025, 14(1), 7; https://doi.org/10.3390/resources14010007 - 28 Dec 2024
Viewed by 397
Abstract
This study enhances the discussion on food security by examining trade equity between food consumers and the supply chain from an emergy perspective. The objective is to develop a food security indicator for Brazil as a case study that provides a holistic view [...] Read more.
This study enhances the discussion on food security by examining trade equity between food consumers and the supply chain from an emergy perspective. The objective is to develop a food security indicator for Brazil as a case study that provides a holistic view of the historical relationship (from 1995 to 2022) between the emergy and money received by consumers and the emergy and money supplied by the food chain. Each item in the Brazilian food basket was evaluated using the Emergy Exchange Ratio (EER) indicator, which measures the advantages and disadvantages that consumers and the food chain experience in their exchanges. The results indicate that processed food items such as oils and butter generally provide greater net emergy benefits to consumers compared to fresh food items like meat, bananas, tomatoes, and potatoes, which often favor the supply chain. Furthermore, the findings highlight that vulnerable populations face significant challenges in achieving food security due to their increased efforts to generate income relative to the emergy they receive for their social welfare. The proposed food security indicator reveals that consumers enjoyed a more balanced trade since the mid-1990s; however, this trend has recently begun to reverse, underscoring the need for policies that ensure fairer exchanges. This work contributes to discussions on food security by considering an emergy-based approach with the modified Emergy per Money Ratio (EMR) as a complement to traditionally used approaches. Full article
Show Figures

Figure 1

12 pages, 577 KiB  
Article
Fungal Submerged Fermentation of Coffee Silverskin: A Sustainable Source of Natural Meat Additives
by Stephany Carolina Terán-Rivera, Gastón Ramón Torrescano-Urrutia, Brisa del Mar Torres-Martínez, Martín Esqueda-Valle, Félix Joel Ibarra-Arias, Armida Sánchez-Escalante and Rey David Vargas-Sánchez
Resources 2025, 14(1), 6; https://doi.org/10.3390/resources14010006 - 27 Dec 2024
Viewed by 614
Abstract
The coffee industry, while processing coffee beans, generates residues like husk, pulp, and silverskin, which have been considered a promising source of bioactive metabolites. Recovering these metabolites offers a sustainable strategy to obtain natural food additives. Based on the above, this study aimed [...] Read more.
The coffee industry, while processing coffee beans, generates residues like husk, pulp, and silverskin, which have been considered a promising source of bioactive metabolites. Recovering these metabolites offers a sustainable strategy to obtain natural food additives. Based on the above, this study aimed to determine the effect of the aqueous extract obtained from maceration and fungal fermented coffee silverskin (CSS) on ground pork meat’s oxidative and microbiological stability. Treatments used to recover bioactive compounds from CSS were the following: maceration extraction (ME) using 0, 1.5, and 3.0% of CSS (ME–0%, ME–1.5%, and ME–3%); fungal submerged fermentation extraction (FE) using 0, 1.5, and 3.0% of CSS (FE–0%, FE–1.5%, and FE–3%) and Pleurotus pulmonarius mycelium. Concerning metabolite content and bioactivity, results showed a decrease in the carbohydrate content of the ME and FE-obtained, as well as an increase in the phenol, flavonoid, and caffeoylquinic acid content. Also, an increase in radical cation scavenging activity, reducing power values and antibacterial activity of the extracts obtained with FE, was observed. Regarding pork meat homogenate treated with ME and FE extracts and subjected to oxidation with potassium ferrocyanide, results demonstrated that inclusion of FE-obtained extract led to decreased pH, lipid oxidation, metmyoglobin, and color changes (L*, a*, b*, C*, and h*), and microbial growth. These results demonstrate that CSS aqueous extract obtained with FE can be considered a potential additive for the meat industry with antioxidant and antibacterial activity. Nevertheless, further research is necessary to assess the sensory impact, biochemical mechanism, food safety, sustainability, and industrial feasibility of these extracts for broader applications. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

16 pages, 2379 KiB  
Article
Impact of Wash Oil Composition on Degradation: A Comparative Analysis of “Light” and “Heavy” Oils
by Denis Miroshnichenko, Artem Bannikov, Leonid Bannikov, Olexandr Borisenko, Andrei Shishkin, Pavels Gavrilovs and Volodymyr Tertychnyi
Resources 2025, 14(1), 5; https://doi.org/10.3390/resources14010005 - 27 Dec 2024
Viewed by 636
Abstract
This study aims to address the limited understanding of wash oil degradation in benzene units by analysing changes in the composition and properties of fresh and operating oils from different manufacturers. The findings will provide insights into the degradation pathways and stability of [...] Read more.
This study aims to address the limited understanding of wash oil degradation in benzene units by analysing changes in the composition and properties of fresh and operating oils from different manufacturers. The findings will provide insights into the degradation pathways and stability of these oils. Gas chromatography/mass spectrometry was used to analyse the provided samples, and the dynamic viscosity of the oils was determined using a Brookfield LV DV2T rotational viscometer. During operation, the “heavy” oil (HO) becomes less volatile, while the ”light” oil (LO) becomes slightly more volatile. The viscosity of the HO increases 1.25 times during operation. The LO is characterised by a higher total concentration of alkyl derivatives (48 wt.% compared to 44 wt.% for the HO). LO is enriched with naphthalene and indene, while HO loses 1- and 2-methylnaphthalenes and shows an increase in the concentrations of dibenzofuran, fluorene, anthracene, and phenanthrene. The oxidation products of LO include oxidised alkyl groups, while HO shows oxidised non-substituted hydrocarbons. The practical value of such studies lies in guiding the selection of fresh oil under current operating conditions. LO is more resistant to degradation as an absorbent than heavier wash oil. Full article
Show Figures

Figure 1

23 pages, 9067 KiB  
Article
Chemistry of Hydrothermally Destabilized Rare-Metal and Radioactive Minerals in Deformed A-Type Granite in the Vicinity of Nugrus Shear Zone, South Eastern Desert, Egypt
by Adel A. Surour, Amira M. El-Tohamy and Gehad M. Saleh
Resources 2025, 14(1), 4; https://doi.org/10.3390/resources14010004 - 26 Dec 2024
Viewed by 563
Abstract
In the Wadi Nugrus area, south Eastern Desert of Egypt, A-type granite is highly deformed in a prominent NW-SE trending shear zone, likely related to the Najd shear system. Deformation of this post-collisional leucogranite allows the propagation of hydrothermal alterations due to fluid [...] Read more.
In the Wadi Nugrus area, south Eastern Desert of Egypt, A-type granite is highly deformed in a prominent NW-SE trending shear zone, likely related to the Najd shear system. Deformation of this post-collisional leucogranite allows the propagation of hydrothermal alterations due to fluid circulation inside the so-called “Nugrus Shear Zone (NSZ)”. This results in the remarkable destabilization of the magmatic dissemination of rare-metal and U-Th minerals in the granite. Relict magmatic minerals that survived destabilization are represented by (1) ferrocolumbite with 14–63–16.39 wt% FeOt, (2) fresh igneous zircon, and (3) thorite. The destabilized ore minerals (hydrothermal) dominate over the fresh magmatic relict minerals. The former comprises the following: (1) altered columbite in the form of three distinct phases of niobates (fergusonite–petscheckite–uranopyrochlore), (2) altered thorite (Ce-bearing and P-F-rich), (3) betafite, (4) altered uranothorite, and (5) sulfides (mainly pyrite). It is evident that the destabilization of magmatic thorite can be distinguished into three stages of hydrothermal alteration, namely low-Zr Ce-bearing thorite (stage I), moderate-Zr Ce-bearing thorite (stage II), and high-Zr U-Nb-Y-bearing thorite (stage III). The two varieties of Ce-bearing thorite are sodic with 1.33–2.28 wt% and 1.51–1.80 wt% Na2O, respectively, whereas the U-Nb-Y-bearing thorite is Na2O-poor (0.06–0.07 wt%). Similarly, thorite in stages I and II are Ca-, P-, F-, and S-rich. Considerable P2O5 content (up to ~17 wt%) is reported in stage II Ce-bearing thorite, whereas stage III thorite is Si-rich (14.56–18.79 wt% SiO2). Upon hydrothermal destabilization, the three niobate minerals replacing the dissemination of magmatic ferrocolumbite become enriched in UO2 (up to 15.24 wt%, 7.86 wt%, and 10.88 wt%, respectively), and similarly, ThO2 (up to 7.13 wt%, 5.71 wt%, and 9.52 wt%, respectively). Hydrothermal destabilization results in the complete dissolution of magmatic fluorite and phosphate minerals at pH = 2–7. This furnishes a source of Ca, P, Ce, Y, F, and Cl in the hydrothermal solution to destabilize/collapse the structure of magmatic ore minerals, particularly ferrocolumbite and thorite. Free elements in the hydrothermal solution are responsible for the crystallization of P- and F-rich Ce-bearing thorite minerals in three stages, as well as abnormal Y2O3 enrichment in three resulting niobates that contain up to 6.03 wt%, 2.93 wt%, and 2.65 wt%, respectively. The fresh undeformed Nugrus leucogranite is sulfide-poor. In contrast, sulfides are enriched in the deformed leucogranite inside the NSZ. Also, the intimate relationship of sulfides with destabilized rare-element minerals indicates the destabilization of these minerals during the hydrothermal stage under reduced conditions. Finally, the proposed paragenetic sequence suggests that most ore minerals are magmatic or hydrothermal primarily. In contrast, supergene minerals such as goethite, Fe-oxyhydroxide, altered betafite, and altered uranothorite are the least abundant. Full article
(This article belongs to the Special Issue Mineral Resource Management 2023: Assessment, Mining and Processing)
Show Figures

Figure 1

19 pages, 2005 KiB  
Article
Optimizing Growth and Bioactive Compound Production in Split Gill Mushroom (Schizophyllum commune) Using Methyl Jasmonate
by Preuk Chutimanukul, Siripong Sukdee, Kittichai Boonmee, Ornprapa Thepsilvisut, Onmanee Prajuabjinda, Ubonwan Saesiw, Pattama Sriumpai and Hiroshi Ehara
Resources 2025, 14(1), 3; https://doi.org/10.3390/resources14010003 - 26 Dec 2024
Viewed by 648
Abstract
The split gill mushroom (Schizophyllum commune) is a valuable natural resource with high nutritional value and diverse bioactive metabolites, underscoring its potential for sustainable applications. By applying elicitors, this study highlights the quality enhancement of S. commune fruiting bodies, a commercially [...] Read more.
The split gill mushroom (Schizophyllum commune) is a valuable natural resource with high nutritional value and diverse bioactive metabolites, underscoring its potential for sustainable applications. By applying elicitors, this study highlights the quality enhancement of S. commune fruiting bodies, a commercially significant resource. While elicitors have been shown to stimulate beneficial bioactive compound production, research on their use in S. commune remains limited. This study applied methyl jasmonate (MeJA) at various concentrations (0, 4, 13, 22, 31, and 40 µM) to optimize growth, improve nutritional value, promote triterpenoid and phenolic compound synthesis, and boost antioxidant activity in S. commune. The results demonstrated that MeJA’s effects on growth and bioactive compounds are concentration-dependent. A concentration of 22 µM was identified as the most effective, resulting in the highest growth performance, including cap diameter (2.01 cm), fresh weight (24.10 g), and biological efficiency (15.21%). Furthermore, all MeJA treatments significantly enhanced triterpenoid, phenolic compound, and antioxidant activity compared to the control. These findings present a promising approach to enhance the sustainable use of S. commune as a natural resource by improving its quality and bioactive properties. Additionally, this research contributes to understanding the role of MeJA in promoting the growth and production of bioactive compounds in mushrooms, offering insights for advancing mushroom-based natural resource management. Full article
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Impact of Hop Residue Reuse on the Chemical and Sensory Properties of Craft Beer
by Cesar I. Mejia-Llontop, Carlos E. Tirado-Rodríguez, Alanis Acosta-Baca, Maylee Aguayo-Flores, Manuel Ascate-Pasos, Carmen Ayala-Jara, Gilbert Rodriguez, Eudes Villanueva and Elza Aguirre
Resources 2025, 14(1), 2; https://doi.org/10.3390/resources14010002 - 26 Dec 2024
Viewed by 630
Abstract
Hops are an important component of beer brewing, providing aromatic and bittering properties that are essential to consumer appeal. A significant amount of hop residue is generated in the dry-hop brewing process that cannot be reused due to bittering residues that disqualify them [...] Read more.
Hops are an important component of beer brewing, providing aromatic and bittering properties that are essential to consumer appeal. A significant amount of hop residue is generated in the dry-hop brewing process that cannot be reused due to bittering residues that disqualify them as animal feed or other products. The purpose of this research was to reuse four varieties of hop waste (Citra, Mosaic, Hallertau Blanc, and Mandarina Bavaria) through a repalletization process with the objective of integrating them into a new craft beer brewing process. Chemical properties such as the phenolic content, antioxidant capacity, and α- and β-acids were significantly reduced (p < 0.05) due to the reuse of the repelletized hops, leading to a decrease in the bitterness levels in all of the craft beers brewed with dry-hop residues. Finally, the sensory study conducted with non-habitual craft beer consumers revealed significant general acceptability for beers brewed with repelletized dry-hop residues (Mandarina Bavaria, Citra, and Mosaic). The reuse of hop residues for brewing presents a promising opportunity for further development in the food industry. Full article
Show Figures

Graphical abstract

16 pages, 6561 KiB  
Article
Strategic Resource Extraction and Recycling from Waste: A Pathway to Sustainable Resource Conservation
by Inna Pitak, Anastasiia Sholokhova, Arūnas Baltušnikas and Rita Kriūkienė
Resources 2025, 14(1), 1; https://doi.org/10.3390/resources14010001 - 25 Dec 2024
Viewed by 626
Abstract
This study examines calcium extraction from Bottom Ash (BA) and the use of Solid Residue (SR) as a substitute for White Lump Clay (WLC) in brick production. Experimental analyses identified calcium and silicon as the main elements in BA, with 50% of calcium [...] Read more.
This study examines calcium extraction from Bottom Ash (BA) and the use of Solid Residue (SR) as a substitute for White Lump Clay (WLC) in brick production. Experimental analyses identified calcium and silicon as the main elements in BA, with 50% of calcium carbonate recovered through leaching. SR was a viable alternative to WLC in ceramic bricks, as SEM-EDS and FTIR analyses revealed changes in composition and microstructure. This approach promotes circular economy principles by recovering resources and reducing waste. Calcium extraction from BA can produce 29,000 tons of CaCO3 annually for industrial use, while substituting SR for WLC in brick production could replace 30% of clay, saving 1500 tons of clay and producing millions of bricks annually. Less than 50% of incinerated Municipal Solid Waste (MSW) would require landfilling. The process supports sustainable construction by conserving natural resources, reducing landfill waste, and lowering CO2 emissions. It offers annual cost savings of 2,639,250 USD and preserves 74,812.5 tons of resources through waste and clay reduction. By demonstrating a scalable model for waste valorization, this research aligns with global goals for sustainable development, resource efficiency, and ecological balance. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop