Sustainable Production of Coffee Husk Pellets: Applying Circular Economy in Waste Management and Renewable Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Biomass Characterization
2.3. Pellet Production and Characterization
2.4. Statistical Analysis
3. Results
3.1. Biomass Characterization
3.2. Pellet Characterization
3.3. Pellet Classification
3.4. Pelletizer Productivity
4. Discussion
4.1. Biomass Characterization
4.2. Pellet Characterization
4.3. Pellet Classification
4.4. Pelletizer Productivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CONAB Acompanhamento Da Safra Brasileira de Café. Available online: https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe/item/download/55032_1ef4a3bd8d138d2e3cb0aee24fea056c (accessed on 10 December 2024).
- Lee, Y.G.; Cho, E.J.; Maskey, S.; Nguyen, D.T.; Bae, H.J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef] [PubMed]
- Mihai, F.C.; Gündogdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; et al. Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. Sustainability 2022, 14, 20. [Google Scholar] [CrossRef]
- ICO. Annual Review: 2022–2023; ICO: London, UK, 2024. [Google Scholar]
- Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Energy Quality of Pellets Produced from Coffee Residue: Characterization of the Products Obtained via Slow Pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
- De Souza, E.C.; Gomes, J.P.S.; Pimenta, A.S.; de Azevedo, T.K.B.; Pereira, A.K.S.; Gomes, R.M.; Brito, J.O.; Dias Júnior, A.F. Briquette Production as a Sustainable Alternative for Waste Management in the Tannin Extraction Industry. Environ. Sci. Pollut. Res. 2023, 30, 18078–18090. [Google Scholar] [CrossRef]
- Tadesse, Y.; Kassahun, S.K.; Kiflie, Z. Effects of Operational Parameters on Torrefaction Performance of Coffee Husk and Cotton Stalk Mixed Biomass: A Surface Response Methodology Approach. Biomass. Convers. Biorefin. 2023, 13, 7955–7970. [Google Scholar] [CrossRef]
- Visser, L.; Hoefnagels, R.; Junginger, M. Wood Pellet Supply Chain Costs—A Review and Cost Optimization Analysis. Renew. Sustain. Energy Rev. 2020, 118, 109506. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Jen, T.C.; Mahamood, R.M.; Akinlabi, E.T. Densification of Agro-Residues for Sustainable Energy Generation: An Overview. Bioresour. Bioprocess. 2021, 8, 75. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Meng, F.; Zhang, Y.; Zhang, B. A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets. Energies 2022, 15, 7303. [Google Scholar] [CrossRef]
- Picchio, R.; Latterini, F.; Venanzi, R.; Stefanoni, W.; Suardi, A.; Tocci, D.; Pari, L. Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies 2020, 13, 2937. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Chen, D.; Cen, K.; Zhang, J.; Cao, X. Upgrading of Biomass Pellets by Torrefaction and Its Influence on the Hydrophobicity, Mechanical Property, and Fuel Quality. Biomass. Convers. Biorefin. 2022, 12, 2061–2070. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Meda, V.; Dalai, A.K. Densification of Waste Biomass for Manufacturing Solid Biofuel Pellets: A Review. Environ. Chem. Lett. 2023, 21, 231–264. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J.; Henrikson, G.; Frodeson, S.; Ståhl, M. A Review of the Mechanism of Bonding in Densified Biomass Pellets. Renew. Sustain. Energy Rev. 2021, 148, 111249. [Google Scholar] [CrossRef]
- Mian, I.; Li, X.; Dacres, O.D.; Wang, J.; Wei, B.; Jian, Y.; Zhong, M.; Liu, J.; Ma, F.; Rahman, N. Combustion Kinetics and Mechanism of Biomass Pellet. Energy 2020, 205, 117909. [Google Scholar] [CrossRef]
- Tesfaye, A.; Workie, F.; Kumar, V.S. Production and Characterization of Coffee Husk Fuel Briquettes as an Alternative Energy Source. Adv. Mater. Sci. Eng. 2022, 2022, 9139766. [Google Scholar] [CrossRef]
- Scariot, M.R.; Dal-Bó, V.; da Silva Arrieche, L. Emergy Accounting of Coffee Husks for the Generation of Energy. Fuel 2024, 362, 130862. [Google Scholar] [CrossRef]
- Dal-Bó, V.; Lira, T.; Arrieche, L.; Bacelos, M. Process Synthesis for Coffee Husks to Energy Using Hierarchical Approaches. Renew Energy 2019, 142, 195–206. [Google Scholar] [CrossRef]
- DIN DIN EN 14774-1; Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method. DIN: Berlin, Germany, 2010.
- DIN DIN EN 15103; Determination of Bulk Density. DIN: Berlin, Germany, 2010.
- ABNT NBR 8112; Carvão Vegetal: Análise Imediata. ABNT: Rio de Janeiro, Brazil, 1986.
- DIN DIN EN 15104:2011; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods. DIN: Berlin, Germany, 2011.
- DIN DIN EN 15296; Conversion of Analytical Results from One Basis to Another. DIN: Berlin, Germany, 2011.
- ABNT NBR 8633; Carvão Vegetal: Determinação Do Poder Calorífico. ABNT: Rio de Janeiro, Brazil, 1984.
- ABNT NBR 6923; Carvão Vegetal: Amostragem e Preparação Da Amostra. ABNT: Rio de Janeiro, Brazil, 1981.
- TAPPI T 264 Om-88; Preparation of Wood for Chemical Analysis. TAPPI: Atlanta, GA, USA, 1996.
- Gomide, J.L.; Demuner, B.J. Determinação Do Teor de Lignina Em Material Lenhoso: Método Klason Modificado. O Pap. 1986, 47, 36–38. [Google Scholar]
- Goldschimid, O. Ultraviolet Spectra. In Lignins: Occurrence, Formation, Structure and Reactions; Sarkanen, K.V., Ludwig, C.H., Eds.; Wiley Interscience: New York, NY, USA, 1971; pp. 241–266. [Google Scholar]
- DIN EN 16127:2012-05; Solid Biofuels—Determination of Length and Diameter of Pellets. DIN: Berlin, Germany, 2012.
- DIN DIN EN 15210-1:2010; Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes—Part 1: Pellets. DIN: Berlin, Germany, 2010.
- DIN DIN EN 14961-6; Solid Biofuels—Fuel Specifications and Classes—Part 6: Non-Woody Pellets for Non-Industrial Use. DIN: Berlin, Germany, 2012.
- Cangussu, L.B.; Melo, J.C.; Franca, A.S.; Oliveira, L.S. Chemical Characterization of Coffee Husks, a by-Product of Coffea Arabica Production. Foods 2021, 10, 3125. [Google Scholar] [CrossRef]
- Barzegar, R.; Yozgatligil, A.; Olgun, H.; Atimtay, A.T. TGA and Kinetic Study of Different Torrefaction Conditions of Wood Biomass under Air and Oxy-Fuel Combustion Atmospheres. J. Energy Inst. 2020, 93, 889–898. [Google Scholar] [CrossRef]
- Lunguleasa, A.; Spirchez, C.; Zeleniuc, O. Evaluation of the Calorific Values of Wastes from Some Tropical Wood Species. Maderas Cienc. Y Tecnol. 2020, 22, 269–280. [Google Scholar] [CrossRef]
- Esteves, B.; Sen, U.; Pereira, H. Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies 2023, 16, 4226. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Odusote, J.K.; Ikubanni, P.P.; Lasode, O.A.; Malathi, M.; Paswan, D. The Ignitability, Fuel Ratio and Ash Fusion Temperatures of Torrefied Woody Biomass. Heliyon 2020, 6, e03582. [Google Scholar] [CrossRef] [PubMed]
- Arous, S.; Koubaa, A.; Bouafif, H.; Bouslimi, B.; Braghiroli, F.L.; Bradai, C. Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets. Energies 2021, 14, 6529. [Google Scholar] [CrossRef]
- Wang, L.; Riva, L.; Skreiberg, Ø.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.; Wang, X.; Chen, D.; Rudolfsson, M.; et al. Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. Energy Fuels 2020, 34, 15343–15354. [Google Scholar] [CrossRef]
- Greco, G.; Videgain, M.; Di Stasi, C.; Pires, E.; Manyà, J.J. Importance of Pyrolysis Temperature and Pressure in the Concentration of Polycyclic Aromatic Hydrocarbons in Wood Waste-Derived Biochars. J. Anal. Appl. Pyrolysis 2021, 159, 105337. [Google Scholar] [CrossRef]
- Ahmed, A.; Hidayat, S.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Thermochemical Characterisation of Acacia Auriculiformis Tree Parts via Proximate, Ultimate, TGA, DTG, Calorific Value and FTIR Spectroscopy Analyses to Evaluate Their Potential as a Biofuel Resource. Biofuels 2021, 12, 9–20. [Google Scholar] [CrossRef]
- De Meira, A.M.; Nolasco, A.M.; Klingenberg, D.; de Souza, E.C.; Dias Júnior, A.F. Insights into the Reuse of Urban Forestry Wood Waste for Charcoal Production. Clean Technol. Environ. Policy 2021, 23, 2777–2787. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Schmidt, F.L.; Ferreira, M.M.C. Analysis of the Lignocellulosic Components of Biomass Residues for Biorefinery Opportunities. Talanta 2015, 144, 696–703. [Google Scholar] [CrossRef]
- Ramirez, N.; Sardella, F.; Deiana, C.; Schlosser, A.; Müller, D.; Kißling, P.A.; Klepzig, L.F.; Bigall, N.C. Capacitive Behavior of Activated Carbons Obtained from Coffee Husk. RSC Adv. 2020, 10, 38097–38106. [Google Scholar] [CrossRef]
- Ghorbannezhad, P.; Firouzabadi, M.D.; Ghasemian, A.; de Wild, P.J.; Heeres, H.J. Sugarcane Bagasse Ex-Situ Catalytic Fast Pyrolysis for the Production of Benzene, Toluene and Xylenes (BTX). J. Anal. Appl. Pyrolysis 2018, 131, 1–8. [Google Scholar] [CrossRef]
- Mišljenović, N.; Čolović, R.; Vukmirović, D.; Brlek, T.; Bringas, C.S. The Effects of Sugar Beet Molasses on Wheat Straw Pelleting and Pellet Quality. A Comparative Study of Pelleting by Using a Single Pellet Press and a Pilot-Scale Pellet Press. Fuel Process. Technol. 2016, 144, 220–229. [Google Scholar] [CrossRef]
- Vieira, T.A.S.; Trugilho, P.F.; Carabineiro, S.A.C.; Zanuncio, A.J.V.; Carvalho, A.G.; Branco-Vieira, M. Impact of Chemical Composition on Eucalyptus Wood Clones for Sustainable Energy Production. Forests 2023, 14, 2240. [Google Scholar] [CrossRef]
- Silva, D.A.L.; Filleti, R.A.P.; Musule, R.; Matheus, T.T.; Freire, F. A Systematic Review and Life Cycle Assessment of Biomass Pellets and Briquettes Production in Latin America. Renew. Sustain. Energy Rev. 2022, 157, 112042. [Google Scholar] [CrossRef]
- Pedišius, N.; Praspaliauskas, M.; Pedišius, J.; Dzenajavičienė, E.F. Analysis of Wood Chip Characteristics for Energy Production in Lithuania. Energies 2021, 14, 3931. [Google Scholar] [CrossRef]
- Apaydın Varol, E.; Mutlu, Ü. TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin. Energies 2023, 16, 3674. [Google Scholar] [CrossRef]
- Iftikhar, M.; Asghar, A.; Ramzan, N.; Sajjadi, B.; Chen, W.-y. Biomass Densification: Effect of Cow Dung on the Physicochemical Properties of Wheat Straw and Rice Husk Based Biomass Pellets. Biomass. Bioenergy 2019, 122, 1–16. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, W.; Jiang, X.; Khan, M.U.; Zhang, Q.; Cai, H. Effect of Extractives on the Physicochemical Properties of Biomass Pellets: Comparison of Pellets from Extracted and Non-Extracted Sycamore Leaves. BioResources 2020, 15, 544–556. [Google Scholar] [CrossRef]
- Pua, F.L.; Subari, M.S.; Ean, L.W.; Krishnan, S.G. Characterization of Biomass Fuel Pellets Made from Malaysia Tea Waste and Oil Palm Empty Fruit Bunch. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 31, pp. 187–190. [Google Scholar]
- Whittaker, C.; Shield, I. Factors Affecting Wood, Energy Grass and Straw Pellet Durability—A Review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Surup, G.R.; Leahy, J.J.; Timko, M.T.; Trubetskaya, A. Hydrothermal Carbonization of Olive Wastes to Produce Renewable, Binder-Free Pellets for Use as Metallurgical Reducing Agents. Renew. Energy 2020, 155, 347–357. [Google Scholar] [CrossRef]
- Mack, R.; Schön, C.; Kuptz, D.; Hartmann, H.; Brunner, T.; Obernberger, I.; Behr, H.M. Influence of Pellet Length, Content of Fines, and Moisture Content on Emission Behavior of Wood Pellets in a Residential Pellet Stove and Pellet Boiler. Biomass. Convers. Biorefinery 2022, 14, 26827–26844. [Google Scholar] [CrossRef]
- Lisowski, A.; Matkowski, P.; Dąbrowska, M.; Piątek, M.; Świętochowski, A.; Klonowski, J.; Mieszkalski, L.; Reshetiuk, V. Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste Biomass Valoriz. 2020, 11, 63–75. [Google Scholar] [CrossRef]
- Gilvari, H.; de Jong, W.; Schott, D.L. The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1. Energies 2020, 13, 3000. [Google Scholar] [CrossRef]
- Harun, N.Y.; Afzal, M.T. Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 148, pp. 93–99. [Google Scholar]
- Siyal, A.A.; Liu, Y.; Mao, X.; Ali, B.; Husaain, S.; Dai, J.; Zhang, T.; Fu, J.; Liu, G. Characterization and Quality Analysis of Wood Pellets: Effect of Pelletization and Torrefaction Process Variables on Quality of Pellets. Biomass. Convers. Biorefinery 2021, 11, 2201–2217. [Google Scholar] [CrossRef]
Properties | Unit | Granulometry | ||
---|---|---|---|---|
I (>5.3 mm) | II (>2.6 mm e <5.3 mm) | III (<1.77 mm) | ||
Bulk Density | kg/m3 | 272.96(3.6) a | 254.2(4.2) a | 313.5(4.8) b |
C | % | 48.8(2.3) a | 46.57(2.1) b | 45.41(1.0) c |
N | % | 2.8(4.6) a | 2.74(5.1 a | 1.62(5.3) b |
H | % | 5.26(4.3) a | 5.28(4.5 a | 5.2(4.8) a |
O | % | 34.75(3.3) a | 36.933.5 b | 35.1(4.5) a |
S | % | 0.6(5.2) a | 0.6(6.7) a | 0.58(6.3) a |
O/C | % | 0.71(4.3) a | 0.79(4.6) a | 0.77(5.6) a |
H/C | % | 0.11(6.2) a | 0.11(6.7) a | 0.11(6.2) a |
C/N | % | 17.55(5.4) a | 16.99(7.1) a | 28.03(5.6) b |
Ashes | % | 7.78(10.1) a | 7.88(11.5) a | 12.09(9.9) b |
Volatile Matter | % | 72.59(3.5) a | 75.26(4.2) b | 71.89(4.3) a |
Fixed Carbon | % | 19.63(4.3) a | 16.86(4.7) b | 16.02(4.3) b |
Extractives | % | 33.34(4.4) a | 30.34(5.4) b | 22.81(4.3) c |
Total Lignin | % | 25.87(4.3) a | 25.54(4.6) a | 31.14(4.1) b |
Holocellulose | % | 33.03(4.2) a | 36.42(5.8) b | 33.97(5.9) a |
Higher Calorific Value | MJ/kg | 17.92(5.6) a | 15.89(6.3) b | 16.61(4.1) c |
Parameter | Knife height | Granulometry | ||
I (<5.3 mm) | II (>2.6 and <5.3 mm) | III (<1.8 mm) | ||
Moisture | 15 mm | 14.91(2.3) bB | 15.31(2.2) aB | 15.25(2.6) abB |
20 mm | 22.45(2.3) aA | 22.46(3.2) abA | 22.09(3.6) bA | |
Mean | 18.68 | 18.85 | 18.67 | |
Parameter | Knife height | Granulometry | ||
I (<5.3 mm) | II (>2.6 and <5.3 mm) | III (<1.8 mm) | ||
Density (kg/m3) | 15 mm | 680.3(5.6) bA | 665.8(4.5) bA | 721.59(4.6) aA |
20 mm | 670.6(4.8) bA | 660.7(4.5) bA | 719.20(4.2) aA | |
Mean | 675.4 | 653.2 | 720.4 | |
Parameter | Knife height | Granulometry | ||
I (<5.3 mm) | II (>2.6 and <5.3 mm) | III (<1.8 mm) | ||
Pellet length (mm) | 15 mm | 14.91(3.2) bB | 15.31(3.4) aB | 15.25(4.3) abB |
20 mm | 22.45(4.2) aA | 22.46(4.4) abA | 22.09(4.5) bA | |
Mean | 18.68 | 18.85 | 18.67 | |
Parameter | Knife height | Granulometry | ||
I (<5.3 mm) | II (>2.6 and <5.3 mm) | III (<1.8 mm) | ||
Mechanical durability (%) | 15 mm | 98.5(5.3) Aa | 98.7(5.2) Aa | 98.6(5.8) Aa |
20 mm | 98.6(4.7) Aa | 98.5(4.9) Aa | 98.7(5.1) Aa | |
Mean | 98.55 | 98.6 | 98.65 | |
Parameter | Knife height | Granulometry | ||
I (<5.3 mm) | II (>2.6 and <5.3 mm) | III (<1.8mm) | ||
Fines (%) | 15 mm | 0.21(3.2) bB | 0.19(3.3) abB | 0.15(3.6) aA |
20 mm | 0.11(5.3) aA | 0.07(5.3) aA | 0.12(5.8) aA | |
Mean | 0.16 | 0.13 | 0.14 | |
Parameter | Knife height | Granulometry | ||
I (<5.3 mm) | II (>2.6 and <5.3 mm) | III (<1.8mm) | ||
Hardness (kgf) | 15 mm | 13.92(4.1) bA | 16.62(4.6) aA | 15.84(4.2) aA |
20 mm | 11.13(4.8) aB | 9.55(5.3) bB | 10.94(6.2) aB | |
Mean | 12.54 | 13.09 | 13.39 |
Properties | Unit | A | B | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|---|---|---|
Diameter | mm | 25 ± 1 | 25 ± 1 | A | A | A | A | A | A |
Length | mm | 3.15 < L < 4.0 | 3.15 < L < 4.0 | A | A | A | A | A | A |
Moisture | % | <12 | <15 | B | X | B | X | B | B |
Ashes | % | <5 | <10 | B | B | B | B | X | X |
Mechanical Durability | % | >97.5 | >96.0 | A | A | A | A | A | A |
Fines | % | <2.0 | <3.0 | A | A | A | A | A | A |
Higher calorific value | MJ/kg | >14.1 | >13.2 | A | A | A | A | A | A |
Bulk Density | kg/m3 | >600 | >600 | A | A | A | A | A | A |
Nitrogen | (%) | <1.5 | <2.0 | X | X | X | X | B | B |
Pellets Length | Granulometry I | Granulometry II | Granulometry III |
---|---|---|---|
15 mm | 13.02 Bc | 11.64 Ab | 25.26 Aa |
20 mm | 15.25 Ab | 11.67 Ac | 23.53 Ba |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, A.d.C.O.; Zanuncio, A.J.V.; Carvalho, A.G.; Jorge, J.A.C.G.; dos Santos, R.J.C.; Demuner, I.F.; Peres, L.C.; Winter, S.G.; de Castro, V.R.; Branco-Vieira, M.; et al. Sustainable Production of Coffee Husk Pellets: Applying Circular Economy in Waste Management and Renewable Energy Production. Resources 2025, 14, 26. https://doi.org/10.3390/resources14020026
Carneiro AdCO, Zanuncio AJV, Carvalho AG, Jorge JACG, dos Santos RJC, Demuner IF, Peres LC, Winter SG, de Castro VR, Branco-Vieira M, et al. Sustainable Production of Coffee Husk Pellets: Applying Circular Economy in Waste Management and Renewable Energy Production. Resources. 2025; 14(2):26. https://doi.org/10.3390/resources14020026
Chicago/Turabian StyleCarneiro, Angélica de Cassia Oliveira, Antonio José Vinha Zanuncio, Amélia Guimarães Carvalho, Júlia Almeida Cunha Guimarães Jorge, Raquel Julia Cipriano dos Santos, Iara Fontes Demuner, Letícia Costa Peres, Shoraia Germani Winter, Vinícius Resende de Castro, Monique Branco-Vieira, and et al. 2025. "Sustainable Production of Coffee Husk Pellets: Applying Circular Economy in Waste Management and Renewable Energy Production" Resources 14, no. 2: 26. https://doi.org/10.3390/resources14020026
APA StyleCarneiro, A. d. C. O., Zanuncio, A. J. V., Carvalho, A. G., Jorge, J. A. C. G., dos Santos, R. J. C., Demuner, I. F., Peres, L. C., Winter, S. G., de Castro, V. R., Branco-Vieira, M., & Araújo, S. d. O. (2025). Sustainable Production of Coffee Husk Pellets: Applying Circular Economy in Waste Management and Renewable Energy Production. Resources, 14(2), 26. https://doi.org/10.3390/resources14020026