Electrochemical Direct Lithium Extraction: A Review of Electrodialysis and Capacitive Deionization Technologies
Abstract
:1. Introduction
2. Conventional Lithium Extraction
3. Direct Lithium Extraction (DLE)
4. Electrochemical DLE
4.1. ED
4.2. CDI
5. Pilot Scale of Lithium Recovery
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil-Alana, L.A.; Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Xu, P.; Hong, J.; Qian, X.; Xu, Z.; Xia, H.; Tao, X.; Xu, Z.; Ni, Q.-Q. Materials for Lithium Recovery from Salt Lake Brine. J. Mater. Sci. 2021, 56, 16–63. [Google Scholar] [CrossRef]
- Maxwell, P. Transparent and opaque Pricing: The Interesting case of Lithium. Resour. Policy 2015, 45, 92–97. [Google Scholar] [CrossRef]
- Zavahir, S.; Elmakki, T.; Gulied, M.; Ahmad, Z.; Al-Sulaiti, L.; Shon, H.K.; Chen, Y.; Park, H.; Batchelor, B.; Han, D.S. A review on lithium recovery using electrochemical capturing systems. Desalination 2021, 500, 114883. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z. Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Sep. Purif. Technol. 2018, 206, 335–342. [Google Scholar] [CrossRef]
- Maxwell, P. Analysing the lithium industry: Demand, Supply, and emerging developments. Miner. Econ. 2014, 26, 97–106. [Google Scholar] [CrossRef]
- Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. [Google Scholar] [CrossRef]
- Mineral Commodity Summaries 2024; USGS: Reston, VA, USA, 2024.
- Vera, M.L.; Torres, W.R.; Galli, C.I.; Chagnes, A.; Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 2023, 4, 149–165. [Google Scholar] [CrossRef]
- Khakmardan, S.; Rolinck, M.; Cerdas, F.; Herrmann, C.; Crawford, R.; Li, W. Comparative Life Cycle Assessment of Lithium Mining, Extraction, and Refining Technologies: A Global Perspective. Procedia CIRP 2023, 116, 606–611. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Asif, M.B.; Roychand, R.; Shu, L.; Jegatheesan, V.; Bhuiyan, M.; Hai, F.I. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere 2020, 260, 127623. [Google Scholar] [CrossRef]
- Ding, T.; Zheng, M.; Peng, S.; Lin, Y.; Zhang, X.; Li, M. Lithium extraction from salt lakes with different hydrochemical types in the Tibet Plateau. Geosci. Front. 2023, 14, 101485. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Wang, Y.; Sha, Z. Review on the Electrochemical Extraction of Lithium from Seawater/Brine. J. Electroanal. Chem. 2019, 850, 113389. [Google Scholar] [CrossRef]
- Bardi, U. Extracting Minerals from Seawater: An Energy Analysis. Sustainability 2010, 2, 980–992. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Z.; Qin, X.; Gao, X.; Wang, M.; Xiang, X. Recent advances in lithium extraction from salt lake brine using coupled and tandem technologies. Desalination 2023, 547, 116225. [Google Scholar] [CrossRef]
- Khalil, A.; Mohammed, S.; Hashaikeh, R.; Hilal, N. Lithium recovery from brine: Recent developments and challenges. Desalination 2022, 528, 115611. [Google Scholar] [CrossRef]
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, M.; Cao, X.; Wang, T.; Wang, Y.; Xu, Y.; Liu, W.; Chen, L.; Huang, Y.; Liu, X. Highly Flexible Interconnected Li+ Ion-Sieve Porous Hydrogels with Self-Regulating Nanonetwork Structure for Marine Lithium Recovery. Chem. Eng. J. 2022, 445, 136780. [Google Scholar] [CrossRef]
- Boroumand, Y.; Razmjou, A. Adsorption-Type Aluminium-Based Direct Lithium Extraction: The Effect of Heat, Salinity and Lithium Content. Desalination 2024, 557, 117406. [Google Scholar] [CrossRef]
- Zhong, J.; Lin, S.; Yu, J. Li+ Adsorption Performance and Mechanism Using Lithium/Aluminum Layered Double Hydroxides in Low Grade Brines. Desalination 2021, 505, 114983. [Google Scholar] [CrossRef]
- Su, H.; Li, Z.; Zhang, J.; Zhu, Z.; Wang, L.; Qi, T. Recovery of Lithium from Salt Lake Brine Using a Mixed Ternary Solvent Extraction System Consisting of TBP, FeCl3 and P507. Hydrometallurgy 2020, 197, 105487. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-Based Technologies for Lithium Recovery from Water Lithium Resources: A Review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, J.; Kim, S.; Yoon, J. Review of Concepts and Applications of Electrochemical Ion Separation (EIONS) Process. Sep. Purif. Technol. 2019, 215, 190–207. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, M.; Huang, S.; Wang, J.; Zhang, X. Limiting Concentration during Batch Electrodialysis Process for Concentrating High Salinity Solutions: A Theoretical and Experimental Study. Desalination 2021, 498, 114793. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- Zhao, R.; Porada, S.; Biesheuvel, P.M.; van der Wal, A. Energy Consumption in Membrane Capacitive Deionization for Different Water Recoveries and Flow Rates, and Comparison with Reverse Osmosis. Desalination 2013, 330, 35–41. [Google Scholar] [CrossRef]
- Yang, P.; Hai, C.; Sun, Y.; Dong, S.; He, X.; Xu, Q.; Ma, L.; Zhou, Y. Accelerating Adsorption Capacity and Structural Stability of Li1.6Mn1.6O4-Type Adsorbents via Synergetic Effect of in-Situ Configured Li2MnO3 Layer. Chem. Eng. J. 2024, 495, 153330. [Google Scholar] [CrossRef]
- Farahbakhsh, J.; Arshadi, F.; Mofidi, Z.; Mohseni-Dargah, M.; Kok, C.; Assefi, M.; Soozanipour, A.; Zargar, M.; Asadnia, D.; Boroumand, Y.; et al. Direct Lithium Extraction: A New Paradigm for Lithium Production and Resource Utilization. Desalination 2024, 575, 117249. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, S.; Srinivasakannan, C.; Li, S.; Yin, S.; Zhang, L.; Jiang, X.; Zhou, G.; Zhang, N. Lithium Extraction from Salt Lake Brines with High Magnesium/Lithium Ratio: A Review. Environ. Chem. Lett. 2023, 21, 1611–1626. [Google Scholar] [CrossRef]
- Luo, G.; Li, X.; Chen, L.; Chao, Y.; Zhu, W. Electrochemical Lithium Ion Pumps for Lithium Recovery: A Systematic Review and Influencing Factors Analysis. Desalination 2023, 548, 116228. [Google Scholar] [CrossRef]
- Mends, E.A.; Chu, P. Lithium Extraction from Unconventional Aqueous Resources—A Review on Recent Technological Development for Seawater and Geothermal Brines. J. Environ. Chem. Eng. 2023, 11, 110710. [Google Scholar] [CrossRef]
- Cerda, A.; Quilaqueo, M.; Barros, L.; Seriche, G.; Gim-Krumm, M.; Santoro, S.; Aveci, A.H.; Romero, J.; Curcio, E.; Estay, H. Recovering Water from Lithium-Rich Brines by a Fractionation Process Based on Membrane Distillation-Crystallization. J. Water Process Eng. 2021, 41, 102063. [Google Scholar] [CrossRef]
- An, J.W.; Kang, D.J.; Tran, K.T.; Kim, M.J.; Lim, T.; Tran, T. Recovery of Lithium from Uyuni Salar Brine. Hydrometallurgy 2012, 117–118, 64–70. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Cao, H.; Zheng, X.; Van Gerven, T.; Hu, Y.; Sun, Z. Lithium Carbonate Recovery from Lithium-Containing Solution by Ultrasound Assisted Precipitation. Ultrason. Sonochem. 2019, 52, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Murphy, O.; Haji, M.N. A Review of Technologies for Direct Lithium Extraction from Low Li+ Concentration Aqueous Solutions. Front. Chem. Eng. 2022, 30, 1008680. [Google Scholar] [CrossRef]
- Krishnan, R.; Gopan, G. A Comprehensive Review of Lithium Extraction: From Historical Perspectives to Emerging Technologies, Storage, and Environmental Considerations. Clean. Eng. Technol. 2024, 20, 100749. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Wang, L.; Sun, W. Systematic Review of Lithium Extraction from Salt-Lake Brines via Precipitation Approaches. Miner. Eng. 2019, 139, 105868. [Google Scholar] [CrossRef]
- Agusdinata, D.B.; Liu, W.; Eakin, H.; Romero, H. Socio-Environmental Impacts of Lithium Mineral Extraction: Towards a Research Agenda. Environ. Res. Lett. 2018, 13, 123001. [Google Scholar] [CrossRef]
- Figueroa, L.T.; Razmillic, B.; Zumeata, O.; Aranda, G.N.; Barton, S.A.; Schull, W.J.; Young, A.H.; Kamiya, Y.M.; Hoskins, J.A.; Ilgren, E.B. Environmental Lithium Exposure in the North of Chile—II. Natural Food Sources. Biol. Trace Elem. Res. 2013, 151, 122–131. [Google Scholar] [CrossRef]
- Wanger, T.C. The Lithium Future—Resources, Recycling, and the Environment. Conserv. Lett. 2011, 4, 202–206. [Google Scholar] [CrossRef]
- Wang, X.; Numedhl, N.; Jiang, C. Direct Lithium Extraction from Canadian Oil and Gas Produced Water Using Functional Ionic Liquids—A Preliminary Study. Appl. Geochem. 2024, 172, 106126. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Wang, P.; Yu, T.; Du, X.; Hao, X.; Abudula, A.; Guan, G. Electrochemical Technologies for Lithium Recovery from Liquid Resources: A Review. Renew. Sustain. Energy Rev. 2022, 154, 111813. [Google Scholar] [CrossRef]
- Lee, D.-H.; Ryu, T.; Shin, J.; Ryu, J.C.; Chung, K.-S.; Kim, Y.H. Selective Lithium Recovery from Aqueous Solution Using a Modified Membrane Capacitive Deionization System. Hydrometallurgy 2017, 173, 283–288. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Yuan, M.; Nan, C. Li Ion Exchanged α-MnO2 Nanowires as Efficient Catalysts for Li-O2 Batteries. Chem. Res. 2020, 36, 1261–1264. [Google Scholar] [CrossRef]
- Schenker, V.; Oberschelp, C.; Pfister, S. Regionalized Life Cycle Assessment of Present and Future Lithium Production for Li-Ion Batteries. Resour. Conserv. Recycl. 2022, 187, 106611. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, M.; Chen, X.; Zhao, Z. Separating Lithium and Magnesium in Brine by Aluminum-Based Materials. Hydrometallurgy 2018, 176, 73–77. [Google Scholar] [CrossRef]
- Choubey, P.K.; Chung, K.-S.; Kim, M.-S.; Lee, J.-C.; Srivastava, R.R. Advance Review on the Exploitation of the Prominent Energy-Storage Element Lithium. Part II_ From Sea Water and Spent Lithium Ion Batteries (LIBs). Miner. Eng. 2017, 110, 104–121. [Google Scholar] [CrossRef]
- Luo, G.; Li, X.; Chen, L.; Zhang, Y.; Gu, J.; Chao, Y.; Zhu, W.; Liu, Z.; Xu, C. Island-like CeO2 Decorated LiMn2O4: Surface Modification Enhancing Electrochemical Lithium Extraction and Cycle Performance. Chem. Eng. J. 2023, 455, 140928. [Google Scholar] [CrossRef]
- Zhan, H.; Qiao, Y.; Qian, Z.; Li, J.; Wu, Z.; Liu, Z. Electrochemical Behaviors of Porous Spherical Spinel H1.6Mn1.6O4 with High Li+ Adsorption Capacity. Sep. Purif. Technol. 2023, 305, 122485. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Ji, Z.-Y.; Wang, J.; Chen, H.-Y.; Liu, J.; Zhao, Y.-Y.; Li, F.; Yuan, J.-S. Development of Electrochemical Lithium Extraction Based on a Rocking Chair System of LiMn2O4/Li1-xMn2O4: Self-Driven plus External Voltage Driven. Sep. Purif. Technol. 2021, 259, 118154. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C.; Kim, S.; Hatton, T.A.; Mo, H.; Waite, T.D. Lithium Recovery Using Electrochemical Technologies: Advances and Challenges. Water Res. 2022, 221, 118822. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, R.; Bai, L.; Wu, W.; Luo, D.; Li, Z.; Asahi, T.; Mai, Y.; Liu, Z.; Yamauchi, Y.; et al. Insights into Electrochemical Paradigms for Lithium Extraction: Electrodialysis versus Capacitive Deionization. Coord. Chem. Rev. 2024, 516, 215923. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a Mature Technology with a Multitude of New Applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Oren, Y. Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Trócoli, R.; Battistel, A.; Mantia, F.L. Selectivity of a Lithium-Recovery Process Based on LiFePO4. Chem.—A Eur. J. 2014, 20, 9888–9891. [Google Scholar] [CrossRef]
- Kim, Y.; Walker, W.S.; Lawler, D.F. Competitive Separation of Di- vs. Mono-Valent Cations in Electrodialysis: Effects of the Boundary Layer Properties. Water Res. 2012, 46, 2042–2056. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.A.I.; Torrejos, R.E.C.; Kim, H.; Lee, S.-P.; Chung, W.-J. Li1−xNi0.5Mn1.5O4/Ag for Electrochemical Lithium Recovery from Brine and Its Optimized Performance via Response Surface Methodology. Sep. Purif. Technol. 2019, 212, 416–426. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, Q.; Yuan, J.; Liu, J.; Zhao, Y.; Feng, W. Preliminary Study on Recovering Lithium from High Mg2+/Li+ Ratio Brines by Electrodialysis. Sep. Purif. Technol. 2017, 172, 168–177. [Google Scholar] [CrossRef]
- Joo, H.; Ahn, J.; Jeon, S.; Yoon, J. Electrochemical Ion Separation Technology for Carbon Neutrality. Appl. Chem. Eng. 2023, 34, 331–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, D.-H.; Jia, C.-Y.; Sun, L.-Y.; Tong, A.; Wnag, Y.; Wang, Y.-X.; Huang, L.-J.; Tang, J.-G. Advances and Promotion Strategies of Membrane-Based Methods for Extracting Lithium from Brine. Desalination 2023, 566, 116891. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis Desalination for Water and Wastewater: A Review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Bajestani, M.B.; Moheb, A.; Dinari, M. Preparation of Lithium Ion-Selective Cation Exchange Membrane for Lithium Recovery from Sodium Contaminated Lithium Bromide Solution by Electrodialysis Process. Desalination 2020, 486, 114476. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Chlanda, F.P.; Liu, K.-J. Use of Bipolar Membranes for Generation of ACID and Base—An Engineering and Economic Analysis. J. Membr. Sci. 1977, 2, 109–124. [Google Scholar] [CrossRef]
- Jarma, Y.A.; Çermikli, E.; Ipekçi, D.; Altıok, E.; Kabay, N. Comparison of Two Electrodialysis Stacks Having Different Ion Exchange and Bipolar Membranes for Simultaneous Separation of Boron and Lithium from Aqueous Solution. Desalination 2021, 500, 114850. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K. Recent Developments on Ion-Exchange Membranes and Electro-Membrane Processes. Adv. Colloid Interface Sci. 2006, 119, 97–130. [Google Scholar] [CrossRef]
- Xu, T. Ion Exchange Membranes: State of Their Development and Perspective. J. Membr. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Nie, X.-Y.; Sun, S.-Y.; Song, X.; Yu, J.-G. Further Investigation into Lithium Recovery from Salt Lake Brines with Different Feed Characteristics by Electrodialysis. J. Membr. Sci. 2017, 530, 185–191. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Ji, Z.-Y.; Chen, Q.-B.; Liu, J.; Zhao, Y.-Y.; Li, F.; Liu, Z.-Y.; Yuan, J.-S. Prefractionation of LiCl from Concentrated Seawater/Salt Lake Brines by Electrodialysis with Monovalent Selective Ion Exchange Membranes. J. Clean. Prod. 2018, 193, 338–350. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Jia, H.; He, L. Sandwiched Liquid-Membrane Electrodialysis: Lithium Selective Recovery from Salt Lake Brines with High Mg/Li Ratio. J. Membr. Sci. 2020, 596, 117685. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; He, L. Highly Selective Lithium Recovery from High Mg/Li Ratio Brines. Desalination 2020, 474, 114185. [Google Scholar] [CrossRef]
- Dammak, L.; Fouilloux, J.; Bdiri, M.; Larchet, C.; Renard, E.; Baklouti, L.; Sarapulova, V.; Kozmai, A.; Pismenskaya, N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. Membranes 2021, 11, 789. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Gonzalez, M.; Culcasi, A.; Tamburini, A.; Ibanez, R.; Cipollina, A.; Micale, G. Techno-Economic Feasibility of Photovoltaic Solar Electrodialysis with Bipolar Membranes. Desalination 2024, 582, 117624. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, W.; Van der Bruggen, B.; Gao, C.; Shen, J. Tunable Nanoscale Interlayer of Graphene with Symmetrical Polyelectrolyte Multilayer Architecture for Lithium Extraction. Adv. Mater. Interfaces 2018, 5, 1701449. [Google Scholar] [CrossRef]
- Hoshino, T. Innovative Lithium Recovery Technique from Seawater by Using World-First Dialysis with a Lithium Ionic Superconductor. Desalination 2015, 359, 59–63. [Google Scholar] [CrossRef]
- Nie, X.-Y.; Sun, S.-Y.; Sun, Z.; Song, X.; Yu, J.-G. Ion-Fractionation of Lithium Ions from Magnesium Ions by Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Bunani, S.; Yoshizuka, K.; Nishihama, S.; Arda, M.; Kabay, N. Application of Bipolar Membrane Electrodialysis (BMED) for Simultaneous Separation and Recovery of Boron and Lithium from Aqueous Solutions. Desalination 2017, 424, 37–44. [Google Scholar] [CrossRef]
- Bunani, S.; Arda, M.; Kabay, N.; Yoshizuka, K.; Nishihama, S. Effect of Process Conditions on Recovery of Lithium and Boron from Water Using Bipolar Membrane Electrodialysis (BMED). Desalination 2017, 416, 10–15. [Google Scholar] [CrossRef]
- İpekçi, D.; Altıok, E.; Bunanai, S.; Yoshizuka, K.; Nishihama, S.; Arda, M.; Kabay, N. Effect of Acid-Base Solutions Used in Acid-Base Compartments for Simultaneous Recovery of Lithium and Boron from Aqueous Solution Using Bipolar Membrane Electrodialysis (BMED). Desalination 2018, 448, 69–75. [Google Scholar] [CrossRef]
- İpekçi, D.; Kabay, N.; Bunani, S.; Altıok, E.; Arda, M.; Yoshizuka, K.; Nishihama, S. Application of Heterogeneous Ion Exchange Membranes for Simultaneous Separation and Recovery of Lithium and Boron from Aqueous Solution with Bipolar Membrane Electrodialysis (EDBM). Desalination 2020, 479, 114313. [Google Scholar] [CrossRef]
- Chen, Q.-B.; Ji, Z.-Y.; Liu, J.; Zhao, Y.-Y.; Wang, S.-Z.; Yuan, J.-S. Development of Recovering Lithium from Brines by Selective-Electrodialysis: Effect of Coexisting Cations on the Migration of Lithium. J. Membr. Sci. 2018, 548, 408–420. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Wang, J.; Ji, Z.-Y.; Ji, P.-Y.; Liu, J.; Zhao, Y.-Y.; Li, F.; Yuan, J.-S. Preparation of Li2CO3 from High Mg2+/Li+ Brines Based on Selective-Electrodialysis with Feed and Bleed Mode. J. Environ. Chem. Eng. 2021, 9, 106635. [Google Scholar] [CrossRef]
- Ji, P.-Y.; Ji, Z.-Y.; Chen, Q.-B.; Liu, J.; Zhao, Y.-Y.; Wang, S.-Z.; Li, F.; Yuan, J.-S. Effect of Coexisting Ions on Recovering Lithium from High Mg2+/Li+ Ratio Brines by Selective-Electrodialysis. Sep. Purif. Technol. 2018, 207, 1–11. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, H.; Wang, X.; Wu, L.; Wang, Y.; Xu, T. Electrodialytic Concentrating Lithium Salt from Primary Resource. Desalination 2018, 425, 30–36. [Google Scholar] [CrossRef]
- Hoshino, T. Preliminary Studies of Lithium Recovery Technology from Seawater by Electrodialysis Using Ionic Liquid Membrane. Desalination 2013, 317, 11–16. [Google Scholar] [CrossRef]
- Hoshino, T. Development of Technology for Recovering Lithium from Seawater by Electrodialysis Using Ionic Liquid Membrane. Fusion Eng. Des. 2013, 88, 2956–2959. [Google Scholar] [CrossRef]
- Shi, W.; Liu, X.; Ye, C.; Cao, X.; Gao, C.; Shen, J. Efficient Lithium Extraction by Membrane Capacitive Deionization Incorporated with Monovalent Selective Cation Exchange Membrane. Sep. Purif. Technol. 2019, 210, 885–890. [Google Scholar] [CrossRef]
- Huang, Q.; Sheng, L.; Wu, T.; Huang, L.; Yan, J.; Li, M.; Chen, Z.; Zhang, H. Research Progress on the Application of Carbon-Based Composites in Capacitive Deionization Technology. Desalination 2025, 593, 118197. [Google Scholar] [CrossRef]
- Song, Z.; Chen, Y.; Ren, N.; Duan, X. Recent Advances in the Fixed-Electrode Capacitive Deionization (CDI): Innovations in Electrode Materials and Applications. Environ. Funct. Mater. 2023, 2, 290–303. [Google Scholar] [CrossRef]
- Zhao, X.; Song, X.; Yang, S.; Hou, Y.; Wang, Y.; Yang, H.Y. Exploring Ion-Selective Electrode Materials for Enhanced Capacitive Deionization. Green Energy Resour. 2023, 1, 100043. [Google Scholar] [CrossRef]
- Qu, Y.; Campbell, P.G.; Gu, L.; Knipe, J.M.; Dzenitis, E.; Santiago, J.G.; Stadermann, M. Energy Consumption Analysis of Constant Voltage and Constant Current Operations in Capacitive Deionization. Desalination 2016, 400, 18–24. [Google Scholar] [CrossRef]
- Rommerskirchen, A.; Ohs, B.; Hepp, K.A.; Femmer, R.; Wessling, M. Modeling Continuous Flow-Electrode Capacitive Deionization Processes with Ion-Exchange Membranes. J. Membr. Sci. 2018, 546, 188–196. [Google Scholar] [CrossRef]
- Yang, J.; Shang, X.; Hu, B.; Zhang, B.; Wang, Y.; Yang, J.; Liu, J. In Situ Growth of LiMn2O4 on Graphene Oxide for Efficient Lithium Extraction by Capacitive Deionization. J. Solid State Electrochem. 2023, 27, 2029–2037. [Google Scholar] [CrossRef]
- Choi, J.; Dorji, P.; Shon, H.K.; Hong, S. Applications of Capacitive Deionization: Desalination, Softening, Selective Removal, and Energy Efficiency. Desalination 2019, 449, 118–130. [Google Scholar] [CrossRef]
- Yu, H.; Hossain, S.M.; Wang, C.; Choo, Y.; Naidu, G.; Han, D.S.; Shon, H.K. Selective Lithium Extraction from Diluted Binary Solutions Using Metal-Organic Frameworks (MOF)-Based Membrane Capacitive Deionization (MCDI). Desalination 2023, 556, 116569. [Google Scholar] [CrossRef]
- Folaranmi, G.; Bechelany, M.; Sistat, P.; Cretin, M.; Zaviska, F. Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization. Membranes 2020, 10, 96. [Google Scholar] [CrossRef]
- Jeon, S.; Park, H.; Yeo, J.; Yang, S.; Cho, C.H.; Han, M.H.; Kim, D.K. Desalination via a New Membrane Capacitive Deionization Process Utilizing Flow-Electrodes. Environ. Sci. 2013, 6, 1471. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, J.; Wu, L.; Sun, J.; Wang, L.; Li, T.; Waite, T.D. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. Environ. Sci. Technol. 2021, 55, 4243–4267. [Google Scholar] [CrossRef]
- Saif, H.M.; Crespo, J.G.; Pawlowski, S. Lithium Recovery from Brines by Lithium Membrane Flow Capacitive Deionization (Li-MFCDI)—A Proof of Concept. J. Membr. Sci. Lett. 2023, 3, 100059. [Google Scholar] [CrossRef]
- Choi, S.; Chang, B.; Kang, J.H.; Diallo, M.S.; Choi, J.W. Energy-Efficient Hybrid FCDI-NF Desalination Process with Tunable Salt Rejection and High Water Recovery. J. Membr. Sci. 2017, 541, 580–586. [Google Scholar] [CrossRef]
- Bae, S.; Jeon, S.-I.; Lee, W.; Kim, Y.; Cho, K. Four-Step Constant Voltage Operation of Hybrid Capacitive Deionization with Composite Electrodes for Bifunctional Deionization and Lithium Recovery. Desalination 2023, 565, 116883. [Google Scholar] [CrossRef]
- Siekierka, A. Lithium and Magnesium Separation from Brines by Hybrid Capacitive Deionization. Desalination 2022, 527, 115569. [Google Scholar] [CrossRef]
- Jin, W.; Hu, M.; Sun, Z.; Huang, C.-H.; Zhao, H. Simultaneous and Precise Recovery of Lithium and Boron from Salt Lake Brine by Capacitive Deionization with Oxygen Vacancy-Rich CoP/Co3O4-Graphene Aerogel. Chem. Eng. J. 2021, 420, 127661. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Z.; Ji, W.; Li, H. Synthesis of Lithium Vanadate/Reduced Graphene Oxide with Strong Coupling for Enhanced Capacitive Extraction of Lithium Ions. Sep. Purif. Technol. 2021, 262, 118294. [Google Scholar] [CrossRef]
- Hu, B.; Shang, X.; Nie, P.; Zhang, B.; Yang, J.; Liu, J. Lithium Ion Sieve Modified Three-Dimensional Graphene Electrode for Selective Extraction of Lithium by Capacitive Deionization. J. Colloid Interface Sci. 2022, 612, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Ryu, T.; Lee, D.-H.; Ryu, J.C.; Shin, J.S.; Chung, K.-S.; Kim, Y.H. Lithium Recovery System Using Electrostatic Field Assistance. Hydrometallurgy 2015, 151, 78–83. [Google Scholar] [CrossRef]
- Ha, Y.; Jung, H.B.; Lim, H.; Jo, P.S.; Yoon, H.; Yoo, C.-Y.; Pham, T.K.; Ahn, W.; Cho, Y. Continuous Lithium Extraction from Aqueous Solution Using Flow-Electrode Capacitive Deionization. Energies 2019, 12, 2913. [Google Scholar] [CrossRef]
- Lim, J.; Lee, H.; Lee, S.; Hong, S. Capacitive Deionization Incorporating a Fluidic MOF-CNT Electrode for the High Selective Extraction of Lithium. Desalination 2024, 578, 117403. [Google Scholar] [CrossRef]
- Siekierka, A.; Tomaszewska, B.; Bryjak, M. Lithium Capturing from Geothermal Water by Hybrid Capacitive Deionization. Desalination 2018, 436, 8–14. [Google Scholar] [CrossRef]
- Siekierka, A.; Kujawa, J.; Kujawski, W.; Bryjak, M. Lithium Dedicated Adsorbent for the Preparation of Electrodes Useful in the Ion Pumping Method. Sep. Purif. Technol. 2018, 194, 231–238. [Google Scholar] [CrossRef]
- Siekierka, A.; Bryjak, M. Selective Sorbents for Recovery of Lithium Ions by Hybrid Capacitive Deionization. Desalination 2021, 520, 115324. [Google Scholar] [CrossRef]
- Siekierka, A. Lithium Iron Manganese Oxide as an Adsorbent for Capturing Lithium Ions in Hybrid Capacitive Deionization with Different Electrical Modes. Sep. Purif. Technol. 2020, 236, 116234. [Google Scholar] [CrossRef]
- Siekierka, A.; Bryjak, M. Novel Anion Exchange Membrane for Concentration of Lithium Salt in Hybrid Capacitive Deionization. Desalination 2019, 452, 279–289. [Google Scholar] [CrossRef]
- Shang, X.; Hu, B.; Nie, P.; Shi, W.; Hussain, T.; Liu, J. LiNi0.5Mn1.5O4-Based Hybrid Capacitive Deionization for Highly Selective Adsorption of Lithium from Brine. Sep. Purif. Technol. 2021, 258, 118009. [Google Scholar] [CrossRef]
- Anderson, M.A.; Cudero, A.L.; Palma, J. Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete? Electrochim. Acta 2010, 55, 3845–3856. [Google Scholar] [CrossRef]
- Chai, S.; Xi, J.; Chen, L.; He, W.; Shen, J.; Gong, H. Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. Processes 2022, 10, 1075. [Google Scholar] [CrossRef]
- Melnikov, S. Pilot Scale Complex Electrodialysis Technology for Processing a Solution of Lithium Chloride Containing Organic Solvents. Sep. Purif. Technol. 2017, 189, 74–81. [Google Scholar] [CrossRef]
- Joo, H.; Kim, S.; Kim, S.; Choi, M.; Kim, S.-H.; Yoon, J. Pilot-Scale Demonstration of an Electrochemical System for Lithium Recovery from the Desalination Concentrate. Environ. Sci. 2020, 6, 290–295. [Google Scholar] [CrossRef]
- Alotaibi, Z.S.; Alharbi, K.N.; Alharbi, Y.; Almoiqli, M.S. Innovative Pilot Plant Capacitive Deionization for Desalination Brackish Water. Appl. Water Sci. 2024, 14, 26. [Google Scholar] [CrossRef]
- Yoon, H.; Jeon, S.B.; Min, T.; Lee, C.K.; Lee, G. Pilot-Scale Capacitive Deionization for Water Softening: Performance, Energy Consumption, and Ion Selectivity. J. Environ. Chem. Eng. 2024, 12, 114259. [Google Scholar] [CrossRef]
Methods | Lithium Source | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Ion exchange | Seawater | High selectivity (>94.1% Li+ extraction efficiency) Excellent recyclability (>90% capacity after 5 cycles) Lithium adsorption capacity (λ-MnO2@IG 20.6 mg/g) | Limited adsorption kinetics due to pore structure Potential Mn loss during operation | [18] |
Adsorption | Brine | Eco-friendly, high extraction efficiency (>90%) Low regeneration losses, long-term stability (>12 cycles) High lithium adsorption capacity (varies by adsorbent type) (Li1.6Mn1.6O4 42.7 mg/g) | Requires high temperature (>50 °C) Lower LiCl concentration than ion exchange Challenges in maintaining high Li+ recovery efficiency due to Mg2+ interference and washing losses | [19,20,27] |
Solvent extraction | Brine | High lithium recovery (99.8%) Good selectivity of Li over Mg (>9 cycles) Effective lithium stripping using water Reusable organic phase without regeneration Cost effective for high Mg/Li ratio brines | Limited commercial applications due to high organic phase consumption Mg impurities require additional steps | [21] |
Membrane separation | Seawater, geothermal brine | Cost effective (USD 5–7/kg), moderate energy consumption (35–48 kWh/kg) (Nano Filtration) High selectivity for Li+ recovery (>95%) Low energy consumption (supported liquid membrane) | Membrane fouling limits long-term use, limited separation selectivity for Mg2+/Li+(NF) High membrane and maintenance costs (SLM) | [22] |
Electrochemical | Brine, seawater | Energy efficient for low-salinity brines (0.5–2.5 kWh/m3) (Capacitive Ion Deionization) High energy efficiency (7–15 kWh/m3), achieving high lithium chloride concentrations (23.15%) (Electrodialysis) | Limited performance for high Mg2+/Li+ ratio, Co-ion expulsion reduces efficiency (CDI) Limited by fouling and concentration polarization (ED) | [23] |
Methods | Classification | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
ED | ED BMED SED ILM-ED Combination of ED and other methods | Suitable for aqueous solutions with high salinity High extraction efficiency Higher stability of the extraction process Mature technological development Well suited for large-scale industrial applications | Difficult to eliminate interference with monovalent ions High energy consumption Narrow selective range of electrode materials Produces concentrated brine, disposal challenges Higher operational cost due to periodic membrane replacement | [52,53] |
CDI | CDI MCDI FCDI HCDI Derived from CDI | Simple and efficient extraction process Highly selective Li extraction Lower energy consumption for extraction More selective range of electrode materials Minimal chemical use Environmentally friendly | High operation voltage facilitates the side reaction like water splitting Potential Li loss during desorption Limited effectiveness for high salinity brine Electrode lifespan limits long-term operational efficiency Not yet mature for very large-scale desalination projects | [52,54] |
Methods | Membrane | Source of Li | Li+ Concentration (M) | Flow Rate (LPM) | Recovery Ratio (%) | Separation Factor | Selectivity Factor | Applied Voltage(V) | Energy Consumption (Wh/mol) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
ED | CEM | Salt Lake brines | 0.02 | 1.3 | 75.4 | FMg/Li from 60 to 7 | N.A. | 5 | N.A. | [58] |
rGO-SDDS rGO CEM | Salt Lake brines | 0.02 | N.A. | N.A. | N.A. | SLi/Na = 1.19, SLi/Mg = 5.27, SLi/Ca = 4.72 | N.A. | N.A. | [74] | |
Lithium separation membrane | Seawater | N.A. | N.A. | 7.0 | N.A. | N.A. | 2 | N.A. | [75] | |
CEM | LiBr | 2 | N.A. | N.A. | N.A. | SLi/Na = 32.2 | 5 | N.A. | [62] | |
CEM | LiCl + MgCl2 | 0.02 | 16.67 | 96.1 | N.A. | SLi/Mg = 17.9 | 6 | 5.4 | [76] | |
BMED | AHA, BP-1E bipolar membrane | Li2B4O7·5H2O | 0.05 | N.A. | 97.8 | N.A. | N.A. | 30 | N.A. | [77] |
Bipolar membrane | Li2B4O7·5H2O | 0.1 | 0.75-0.83 | 86.4 | N.A. | N.A. | 20 | N.A. | [64] | |
Bipolar membrane | Li2B4O7·5H2O | 0.04 | N.A. | 88.4 | SLi = 99.6 | N.A. | 15 | N.A. | [78] | |
Bipolar membrane | Li2B4O7·5H2O | 0.05 | N.A. | 62.0 | SLi = 94.7 | N.A. | 30 | N.A. | [79] | |
Bipolar membrane | Li2B4O7·5H2O | 0.04 | 0.83 | 73.0 | SLi = 93 | N.A. | 25 | N.A. | [80] | |
SED | Monovalent selective CEM | LiCl + MgCl2 | 0.02 | 10-20 | 95.3 | FMg/Li reduced by 21.8 times | SLi/Mg = 20.2–33.0 | N.A. | 13.19 | [67] |
Monovalent selective CEM | Synthetic brine | 0.05 | N.A. | 77.5 | N.A. | N.A. | 5 | 32–850 | [81] | |
Monovalent selective CEM | Salt Lake brine | 0.02 | N.A. | 76.5 | FMg/Li from 35.18 to 3.91 | N.A. | 10 | 660 | [68] | |
Monovalent selective IEM | Salt Lake brine | 0.07 | 0.02 | 68.0 | N.A. | N.A. | 10 | 1770 | [82] | |
Monovalent selective IEM | LiCl+MgCl2+NaCl | 0.05 | N.A. | 71.9 | FMg/Li from 8.73 to 1.83 | N.A. | 7 | 270 | [83] | |
Monovalent selective CEM | Li2SO4 | 0.6 | 0.42 | 75.8 | N.A. | N.A. | 6 | N.A. | [84] | |
ILM-ED | PP13-TFSI | Seawater | 2.45 × 10−5 | N.A. | 22.2 | SLi = 95 | N.A. | 2 | N.A. | [85] |
SELEMION CSO | Seawater | 2.45 × 10−5 | N.A. | 63.0 | N.A. | N.A. | 2–3 | N.A. | [86] | |
TBP+ 4mim TFSI liquid membrane | Simulated brine | 0.1 | N.A. | 68.0 | N.A. | N.A. | 3 | 111.04 | [70] | |
Sandwiched TBP + ClO4 liquid membrane | Brine | 0.1 | N.A. | N.A. | N.A. | N.A. | 3 | 130 | [69] |
Methods | Cathode | Anode | Source of Li | Concentration (ppm) | Flow Rate (mL/min) | Adsorption Capacity (mg/g) | Separation Factor | Selectivity Factor | Energy Consumption (Wh/mol) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
CDI | GA/CoP/Co3O4 | C/CoP/Co3O4 | Salt Lake brine | 50 | N.A. | 37 | N.A. | N.A. | N.A. | [103] |
LVO-rGO | AC | LiCl | 610 | 40 | 39.53 | N.A. | N.A. | N.A. | [104] | |
LMO-GO | AC | LiCl | 69 | 16 | 5 | = 47.8 | N.A. | N.A. | [93] | |
λ-MnO2/rGO | AC | LiCl | 69 | 10 | 4.17 | = 8 | N.A. | N.A. | [105] | |
MCDI | AC (monovalent selective CEM) | AC (AEM) | LiCl+MgCl2 | 40 | 30 | N.A. | N.A. | SLi/Mg = 2.95 | 1.8 | [87] |
HMO | AC (AEM) | LiOH+LiCl | 694 | 20 | 2.43 | N.A. | N.A. | 161.4 | [43] | |
LMO, LiMn2O4 | AC (AEM) | LiOH | 50 | 20 | 1.36 | N.A. | N.A. | N.A. | [106] | |
AC/ZIF-8-PDA | AC (AEM) | LiCl | 69 | 20 | N.A. | N.A. | ρLi/Na = 0.95, ρLi/K = 0.97, ρLi/Mg = 0.28, ρLi/Ca = 0.41 | 60.4–145 | [95] | |
FCDI | Nanoporous AC (CEM) | Nanoporous AC (AEM) | LiCl | 1–100 | 3-9 | N.A. | N.A. | N.A. | N.A. | [107] |
ZIF-8/CNT | AC (AEM) | LiCl | 58 | 5 | N.A. | N.A. | S Li/Na =6.3, S Li/Ni = 6.8, S Li/Mg = 7.2 | N.A. | [108] | |
AC | AC (AEM) | LiCl | 16 | 10 | N.A. | = 3 | N.A. | 115.9 | [99] | |
HCDI | LMO-ACC | Ag-ACC | LiCl+NaCl | 69 | 1 | N.A. | N.A. | N.A. | N.A. | [101] |
LMTO | AC (AEM) | Geothermal brine | 13 | 100 | 28.6 | = 2.14 | N.A. | 477–3704 | [102] | |
LMTO | AC (AEM) | Geothermal brine | 16 | 67 | N.A. | N.A. | N.A. | N.A. | [109] | |
LMTO/graphite | AC | LiCl | 70 | 67 | 36.5 | N.A. | N.A. | N.A. | [110] | |
P500-LiMn3Ti0.15 | AC (AEM) | Geothermal water | 16 | 100 | 34 | N.A. | SLi/Mg > 3 | N.A. | [111] | |
LiO-FeO-Mn2O3 | AC (AEM) | LiCl | 26 | 67 | 32 | N.A. | N.A. | N.A. | [112] | |
LMTO | AC (AEM) | LiCl | 139 | 67 | N.A. | N.A. | N.A. | N.A. | [113] | |
LNMO | AC(AEM) | LiCl | 70 | 10 | 1.8 | = 11 | N.A. | 4.1 | [114] |
Technology | Feed Water | Flow Rate | Energy Consumption | Lithium Recovery Rate | Purity of Recovered Product | Operating Voltage | Specific Advantages/Challenges | Ref. |
---|---|---|---|---|---|---|---|---|
ED | Lithium chloride with 1.8–59% organics | 0.25 m3/h | 0.15 kWh/mol | N.A. | 100% | N.A. | Handles organic solvents; moderate energy consumption | [117] |
Brine concentrate, Li+: 0.035 mM | 0.25 m3/h | N.A. | 88% | 88% | N.A. | High selectivity over Na+, Mg2+, Ca2+ | [118] | |
CDI | Brackish water, Li+: 1 g/L | 200 L/h | N.A. | N.A. | - | 0.85–0.9 V | High water recovery and energy efficiency | [119] |
Brackish water, low salinity | N.A. | N.A. | N.A. | Enhanced Li+ selectivity | N.A. | Effective at low concentrations, moderate scalability | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, J.; Shim, I.-T.; Kim, E.; Nam, S.-H.; Koo, J.-W.; Hwang, T.-M. Electrochemical Direct Lithium Extraction: A Review of Electrodialysis and Capacitive Deionization Technologies. Resources 2025, 14, 27. https://doi.org/10.3390/resources14020027
Park J, Lee J, Shim I-T, Kim E, Nam S-H, Koo J-W, Hwang T-M. Electrochemical Direct Lithium Extraction: A Review of Electrodialysis and Capacitive Deionization Technologies. Resources. 2025; 14(2):27. https://doi.org/10.3390/resources14020027
Chicago/Turabian StylePark, Jeongbeen, Juwon Lee, In-Tae Shim, Eunju Kim, Sook-Hyun Nam, Jae-Wuk Koo, and Tae-Mun Hwang. 2025. "Electrochemical Direct Lithium Extraction: A Review of Electrodialysis and Capacitive Deionization Technologies" Resources 14, no. 2: 27. https://doi.org/10.3390/resources14020027
APA StylePark, J., Lee, J., Shim, I.-T., Kim, E., Nam, S.-H., Koo, J.-W., & Hwang, T.-M. (2025). Electrochemical Direct Lithium Extraction: A Review of Electrodialysis and Capacitive Deionization Technologies. Resources, 14(2), 27. https://doi.org/10.3390/resources14020027