Air Quality Planning and the Minimization of Negative Externalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality Planning in the Piemonte Region, Italy
- the baseline scenario for the reference year 2010;
- the scenario at 2030, current legislation (the CLE scenario);
- the Plan scenario at 2030, in which the application of all the measures and actions foreseen in the PRQA proposal were evaluated (the Plan scenario).
- the expected evolution of energy consumption and production activities;
- the control measures envisaged by CLE;
- the complex of actions foreseen by Piemonte’s regional regulations.
- “status” indicators, expressed as absolute or relative quantities, used to evaluate the air quality status with respect to the regulation limits;
- “performance” indicators, i.e., indicators that measure the degree of achievement of the objectives in absolute terms (effectiveness) and in relation to the resources used (efficiency).
2.2. Critical Analysis of Piemonte’s AQP
3. Case Study Definition and Results
Results
4. Discussion
- Shifting from “static” exposure models (i.e., static maps of population) to “dynamic” exposure models (i.e., considering hour-by-hour where the population is living/working, depending on age, gender, activity);
- Defining higher spatial and temporal distribution of pollutant concentrations;
- Performing local individual and population exposure studies to better link air quality data, health effects and monetary valuation;
- Elaborating procedures to evaluate and standardize HIA results.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Pigou, A.C. The Economics of Welfare; Macmillan: London, UK, 1920. [Google Scholar]
- Samet, J.; Krewski, D. Health effects associated with exposure to ambient air pollution. J. Toxicol. Environ. Health Part A 2007, 70, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Ferreira, J.; Silveira, C.; Costa, C.; Lopes, D.; Relvas, R.; Borrego, C.; Roebeling, P.; Miranda, A.I.; Teixeira, J. Integrating health on air quality assessment—Review report on health risks of two major European outdoor air pollutants: PM and NO2. J. Toxicol. Environ. Health Part B 2014, 17, 307–340. [Google Scholar] [CrossRef]
- European Community. Directive 2009/28/EC. On the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.2009.04.23. Off. J. EUL 2009, 140, 16–62. [Google Scholar]
- Santoyo-Castelazo, E.; Azapagic, A. Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. J. Clean. Prod. 2014, 80, 119–138. [Google Scholar] [CrossRef]
- Panepinto, D.; Brizio, E.; Genon, G. Atmospheric pollutants and air quality effects: Limitation costs and environmental advantages (a cost–benefit approach). Clean Technol. Environ. Policy 2014, 16, 1805–1813. [Google Scholar] [CrossRef]
- Thunis, P.; Rouïl, L.; Cuvelier, C.; Stern, R.; Kerschbaumer, A.; Bessagnet, B.; Schaap, M.; Builtjes, P.; Tarrason, L.; Douros, J.; et al. Analysis of model responses to emission-reduction scenarios within the CityDelta project. Atmos. Environ. 2007, 41, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Thunis, P.; Miranda, A.; Baldasano, J.M.; Blond, N.; Douros, J.; Graff, A.; Janssen, S.; Rezler, J.; Karvosenoja, N.; Maffeis, G.; et al. Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU. Environ. Sci. Policy 2016, 65, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Mediavilla-Sahagun, A.; ApSimon, H. Urban scale integrated assessment of options to reduce PM10 in London towards attainment of air quality objectives. Atmos. Environ. 2013, 37, 4651–4665. [Google Scholar] [CrossRef]
- University of Stuttgart. Institute of Energy Economics and the Rational Use of Energy (IER). ExternE—External Costs of Energy. Available online: http://www.externe.info/ (accessed on 6 December 2018).
- van der Kamp, J.; Bachmann, T.M. Health-related external cost assessment in Europe: Methodological developments from ExternE to the 2013 Clean Air Policy Package. Environ. Sci. Technol. 2015, 49, 2929–2938. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Haninger, K. Valuing nonfatal health risk as a function of illness severity and duration: Benefit transfer using QALYs. J. Environ. Econ. Manag. 2017, 82, 17–38. [Google Scholar] [CrossRef]
- Bachmann, T.M.; van der Kamp, J. Expressing air pollution-induced health-related externalities in physical terms with the help of DALYs. Environ. Int. 2017, 103, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.R.; Stevenson, D.; Fryback, D.G. HALYS and QALYS and DALYS, oh my: Similarities and differences in summary measures of population health. Annu. Rev. Public Health 2002, 23, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.I.; Ferreira, J.; Silveira, C.; Relvas, H.; Duque, L.; Roebeling, P.; Lopes, M.; Costa, S.; Monteiro, A.; Gama, C.; et al. A cost-efficiency and health benefit approach to improve urban air quality. Sci. Total Environ. 2016, 569–570, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijsen, M.J.; Khreis, H.; Verlinghieri, E.; Mueller, N.; Rojas-Rueda, D. Participatory quantitative health impact assessment of urban and transport planning in cities: A review and research needs. Environ. Int. 2017, 103, 61–72. [Google Scholar] [CrossRef]
- Silveira, C.; Roebeling, P.; Lopes, M.; Ferreira, J.; Costa, S.; Teixeira, J.P.; Borrego, C.; Miranda, A.I. Assessment of health benefits related to air quality improvement strategies in urban areas: An Impact Pathway Approach. J. Environ. Manag. 2016, 183, 694–702. [Google Scholar] [CrossRef] [PubMed]
- APPRAISAL EU FP7 Project. Available online: http://www.appraisal-fp7.eu (accessed on 6 December 2018).
- Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Guariso, G.; Gianfreda, R.; Maffeis, G.; Thunis, P.; White, L.; Triacchini, G. An integrated assessment tool to define effective air quality policies at regional scale. Environ. Model. Softw. 2012, 38, 306–315. [Google Scholar] [CrossRef]
- Vautard, R.; Builtjes, P.; Thunis, P.; Cuvelier, C.; Bedogni, M.; Bessagnet, B.; Honoré, C.; Moussiopoulos, N.; Pirovano, G.; Schaap, M.; et al. Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ. 2007, 41, 173–188. [Google Scholar] [CrossRef]
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modelling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Guariso, G.; Pirovano, G.; Volta, M. Multi-objective analysis of ground-level ozone concentration control. J. Environ. Manag. 2004, 71, 25–33. [Google Scholar] [CrossRef]
- Oxley, T.; ApSimon, H.; Dore, A.; Sutton, M.; Hall, J.; Heywood, E.; Gonzales del Campo, T.; Warren, R. The UK Integrated Assessment Model, UKIAM: A national scale approach to the analysis of strategies for abatement of atmospheric pollutants under the Convention on Long-Range Transboundary Air Pollution. Integr. Assess. 2003, 4, 236–249. [Google Scholar] [CrossRef]
- Zachary, D.S.; Drouet, L.; Leopold, U.; Aleluia Reis, L. Trade-offs between energy cost and health impact in a regional coupled energy–air quality model: The LEAQ model. Environ. Res. Lett. 2011, 6, 024021. [Google Scholar] [CrossRef]
- D’Elia, I.; Bencardino, M.; Ciancarella, L.; Contaldi, M.; Vialetto, G. Technical and Non-Technical Measures for air pollution emission reduction: The integrated assessment of the regional Air Quality Management Plans through the Italian national model. Atmos. Environ. 2009, 43, 6182–6189. [Google Scholar] [CrossRef]
- EEA, European Environmental Agency. Air Implementation Pilot: Lessons Learnt from the Implementation of Air Quality Legislation at Urban Level; European Environment Agency: Luxembourg, 2013; ISSN 1725-9177.
- Anenberg, S.C.; Belova, A.; Bramdt, J.; Fann, N.; Greco, S.; Guttikunda, S.; Heroux, M.E.; Hurley, F.; Krzyzanowski, M.; Medina, S.; et al. Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Anal. 2016, 36, 1718–1736. [Google Scholar] [CrossRef] [PubMed]
- Ravina, M.; Panepinto, D.; Zanetti, M.C. DIDEM—An integrated model for comparative health damage costs calculation of air pollution. Atmos. Environ. 2018, 173, 81–95. [Google Scholar] [CrossRef]
- Preiss, P.; Klotz, V. EcoSenseWeb V1.3 User’s Manual and Description of Updated and Extended Draft Tools for the Detailed Site Dependent Assessment of External Sosts; Institute of Energy Economics and the Rational Use of Energy (IER), University of Stuttgart: Stuttgart, Germany, 2008. [Google Scholar]
- IER Institute of Energy Economics and the Rational Use of Energy. EcoSense 4.0 User’s Manual; University of Stuttgart: Stuttgart, Germany, 2004. [Google Scholar]
- Brandt, J.; Silver, J.D.; Christensen, J.H.; Andersen, M.S.; Bønløkke, J.H.; Sigsgaard, T.; Geels, C.; Gross, A.; Hansen, A.B.; Hansen, K.M.; et al. Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system—An integrated modelling approach. Atmos. Chem. Phys. 2013, 13, 7725–7746. [Google Scholar] [CrossRef]
- Mediavilla-Sahagun, A.; Apsimon, H.; Warren, R.F. Integrated Assessment of Abatement Strategies to Improve Air Quality in Urban Environments, the USIAM Model. Water Air Soil Pollut. Focus 2002, 5, 689–701. [Google Scholar] [CrossRef]
- Mensink, C.; De Ridder, K.; Lewyckyj, N.; Lefebre, F.; Janssen, L.; Cornelis, J.; Adriaensen, S.; Ruts, M. AURORA: An Air Quality Model for Urban Regions Using an Optimal Resolution Approach. In Development and Application of Computer Techniques to Environmental Studies; Brebbia, C.A., Zannetti, P., Eds.; WIT Press: Southampton, UK, 2002; ISBN 1-85312-909-7. [Google Scholar]
- Derwent, R.G.; Dollard, G.J.; Metcalfe, S.E. On the nitrogen budget for the United Kingdom and north-west Europe. Q. J. R. Meteorol. Soc. 1988, 114, 1127–1152. [Google Scholar] [CrossRef]
- Olesen, H.R.; Løfstrøm, P.; Berkowicz, R.; Jensen, A.B. An Improved Dispersion Model for Regulatory Use—The OML Model. In Air Pollution Modeling and Its Application IX. NATO Challenges of Modern Society; Springer: Boston, MA, USA, 1992; pp. 29–38. [Google Scholar]
- Christensen, J.H. The Danish Eulerian Hemispheric Model—A three-dimensional air pollution model used for the Arctic. Atmos. Environ. 1997, 31, 4169–4191. [Google Scholar] [CrossRef]
- Silveira, C.; Lopes, M.; Roebeling, P.; Ferreira, J.; Costa, S.; Teixeira, J.P.; Borrego, C.; Miranda, A.I. Economic evaluation of air pollution impacts on human health: An overview of applied methodologies. WIT Trans. Ecol. Environ. 2015, 198, 181–192. [Google Scholar] [CrossRef]
- Carnevale, C.; Ferrari, F.; Gianfreda, G.; Guariso, G.; Janssen, S.; Maffeis, G.; Miranda, A.I.; Pederzoli, A.; Relvas, H.; Thunis, P. Two Illustrative Examples: Brussels and Porto. In Air Quality Integrated Assessment: A European Perspective; Volta, M., Guariso, G., Eds.; Springer International Publishing AG: Basel, Switzerland, 2017. [Google Scholar]
- Piemonte’s Regional Agency for the Environmental Protection. A Look to the Air. Annual Report on Data Monitored by the Regional Air Quality Network; Technical Report; Piemonte Region: Turin, Italy, 2012. (In Italian) [Google Scholar]
- Piemonte’s Regional Emission Inventory. Available online: http://www.sistemapiemonte.it/fedwinemar/elenco.jsp (accessed on 6 December 2018).
- The Climate Group. Under2Coalition. Available online: https://www.under2coalition.org/ (accessed on 6 December 2018).
- Piemonte’s Regional Air Quality Plan (PRQA). Available online: http://www.regione.piemonte.it/ambiente/aria/piano_regionale.htm (accessed on 6 December 2018). (In Italian).
- GAINS, Greenhouse Gas—Air Pollution Interactions and Synergies Model. Available online: http://www.iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.html (accessed on 6 December 2018).
- Aria Technologies Company. Available online: http://www.aria.fr/ (accessed on 6 December 2018).
- Arianet Company. Available online: http://www.aria-net.it/ (accessed on 6 December 2018).
- Dunker, A.M.; Yarwood, G.; Ortmann, J.; Wilson, G.W. The Decoupled Direct Method for Sensitivity Analysis in a Three-Dimensional Air Quality Model—Implementation, Accuracy, and Efficiency. Environ. Sci. Technol. 2002, 36, 2965–2976. [Google Scholar] [CrossRef] [PubMed]
- VIIAS Project (Valutazione Integrata dell’Impatto dell’Inquinamento Atmosferico sull’Ambiente e sulla Salute). Available online: https://www.viias.it/ (accessed on 6 December 2018). (In Italian).
- Liu, H.Y.; Kobernus, M.; Fredriksen, M.; Golumbic, Y.; Robinson, J. A Toolbox for Understanding and Implementing a Citizens’ Observatory on Air Monitoring. In Multimedia Tools and Applications for Environmental & Biodiversity Informatics; Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P., Eds.; Springer Nature AG: Basel, Switzerland, 2018. [Google Scholar]
- Lund, R.; Van Mathiesen, B. Large combined heat and power plants in sustainable energy systems. Appl. Energy 2015, 142, 389–395. [Google Scholar] [CrossRef]
- Werner, S. International review of district heating and cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Ravina, M.; Panepinto, D.; Zanetti, M.C.; Genon, G. Environmental analysis of a potential district heating network powered by a large-scale cogeneration plant. Environ. Sci. Pollut. Int. 2017, 24, 13424–13436. [Google Scholar] [CrossRef] [PubMed]
- JRC, European Joint Research Centre. Best Available Techniques (BAT) Reference Document for Large Combustion Plants; JRC Science for Policy Report; European Union: Seville, Spain, 2017. [Google Scholar]
- EPA, United States Environmental Protection Agency. Air Quality Dispersion Modelling—Preferred and Recommended Models. Available online: https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models (accessed on 6 December 2018).
- WHO, World Health Organization. Health Risks of Air Pollution in Europe—HRAPIE Project Recommendations for Concentration−Response Functions for Cost−Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; World Health Organization, Regional Office for Europe: Copenaghen, Denmark, 2013; p. 54. [Google Scholar]
- WHO, World Health Organization. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project; Technical Report; The WHO European Centre for Environment and Health: Bonn, Germany, 2013; p. 302. [Google Scholar]
- Holland, M. Implementation of the HRAPIE Recommendations for European Air Pollution CBA Work; Report; European Union: Edinburgh, UK, 2014. [Google Scholar]
- Ravina, M.; Panepinto, D.; Zanetti, M.C. A dispersion and externalities model supporting energy planning: Development and case study. WIT Trans. Ecol. Environ. 2018, 230, 153–164. [Google Scholar] [CrossRef]
- Bridges, A.; Felder, F.A.; McKelvey, K.; Niyogi, I. Uncertainty in energy planning: Estimating the health impacts of air pollution from fossil fuel electricity generation. Energy Res. Soc. Sci. 2015, 6, 74–77. [Google Scholar] [CrossRef]
- Lamson, A. Influence Analysis in Support of Characterizing Uncertainty in Human Health Benefits Analysis; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards (OAQPS), Air Benefit and Cost Group (ABCG): Research Triangle Park, NC, USA, 2009.
- Hurley, P.; Physick, W.; Luhar, K. TAPM: A practical approach to prognostic meteorological and air pollution modelling. Environ. Model. Softw. 2005, 20, 737–752. [Google Scholar] [CrossRef]
- Bachmann, T.M.; van der Kamp, J. Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant. Energy 2014, 68, 125–139. [Google Scholar] [CrossRef]
- European Commission. New Elements for the Assessment of External Costs from Energy Technologies (NewExt)—Final Report to the European Commission, DG Research, Technological Development and Demonstration (RTD); European Commission: Brussels, Belgium, 2004; p. 333. [Google Scholar]
- NEEDS2009, New Energy Externalities Developments for Sustainability. Available online: http://esu-services.ch/data/needs/ (accessed on 3 January 2019).
- Cropper, M.; Khanna, L. How Should the World Bank Estimate Air Pollution Damages? Discussion Paper; Resources for the Future: Washington, DC, USA, 2014. [Google Scholar]
- Sonnemann, G.W.; Pla, Y.; Schuhmacher, M.; Castells, F. Framework for the uncertainty assessment in the impact pathway analysis with an application on a local scale in Spain. Environ. Int. 2002, 28, 9–18. [Google Scholar] [CrossRef]
- Belis, C.; Blond, N.; Bouland, C.; Carnevale, C.; Clappier, A.; Douros, J.; Fragkou, E.; Guariso, G.; Miranda, A.I.; Nahorski, Z.; et al. Strengths and Weaknesses of the Current EU Situation. In Air Quality Integrated Assessment: A European Perspective; Volta, M., Guariso, G., Eds.; Springer International Publishing AG: Basel, Switzerland, 2017. [Google Scholar]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic model in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef]
- Oxley, T.; ApSimon, H. Space, time and nesting integrated assessment models. Environ. Model. Softw. 2007, 22, 1732–1749. [Google Scholar] [CrossRef]
- Hammitt, J.K. Admissible utility functions for health, longevity, and wealth: Integrating monetary and life-year measures. J. Risk Uncertain. 2013, 47, 311–325. [Google Scholar] [CrossRef]
- Chestnut, L.G.; De Civita, P. Policy Research. Economic Valuation of Mortality Risk Reduction: Review and Recommendations for Policy and Regulatory Analysis; PRI Project, Regulatory Strategy; Research Paper; Government of Canada: Ottawa, Canada, 2009.
Sector | Action/Measure |
---|---|
Mobility | Remodelling of fuel excises |
Limitation of diesel vehicles circulation | |
Electrification of railways | |
Development of local railways | |
Development of underground lines | |
Renovation of public transports | |
Introduction of a congestion charge | |
Management of low-emission zones | |
Promotion of teleworking | |
Development of bike lanes | |
Improvement of electric car sharing | |
Development of intelligent transport systems (ITS) | |
Mobility management | |
Extension of low-traffic zones and pedestrian ways | |
Improvement of urban logistics | |
Development of ticketing & users loyalty | |
Parking management | |
Energy | Energy storage in Alpine basins |
Residential buildings refurbishment | |
Building renovation | |
Efficiency improvement of thermal units | |
Regulation of the use of biomass for heating purposes | |
Promotion of non-combustion renewable installations | |
Promotion of small renewable installations in buildings | |
Information on energy saving | |
District heating improvement | |
Industry | Application of Best Available Technologies (BATs) to industrial processes |
Reduction of volatile organic carbon (VOC) emissions | |
Agriculture | Reduction of diffuse dust emissions |
Support to low-ammonia emission agricultural practices | |
Reduction of ammonia emission from the zootechnical sector | |
Urban forestry compensation activities | |
Limitation of combustion of agricultural residues |
Pollutant | Cause of Death | Parameter | 2010 | 2030 CLE | 2030 Plan |
---|---|---|---|---|---|
PM2.5 | Exposition 1 | 27.3 | 20.2 | 15.7 | |
Natural causes | Attributable cases | 4595 | 2822 | 1630 | |
YOLL | 47,256 | 29,014 | 16,716 | ||
Cardiovascular diseases | Attributable cases | 2401 | 1497 | 875 | |
YOLL | 20,084 | 12,514 | 7292 | ||
Respiratory system diseases | Attributable cases | 470 | 296 | 173 | |
YOLL | 3744 | 2353 | 1374 | ||
Trachea, bronchus, lung cancer | Attributable cases | 345 | 214 | 125 | |
YOLL | 5061 | 3143 | 1827 | ||
NOx | Exposition 1 | 30.7 | 20.9 | 16.9 | |
Natural causes | Attributable cases | 267 | 0 | 0 | |
YOLL | 2890 | 0 | 0 |
TON 1 Plant | TOS 2 Plant (Present) | TOS Plant (Scenario 1) | |
---|---|---|---|
Net electricity production (GWhe) 3 | 2070 | 2970 | 2970 |
Net thermal energy production (GWhth) 4 | 956 | 1156 | 1156 |
Fuel consumption (Sm3) | 4.36 × 108 | 6.024 × 108 | 4.572 × 108 |
CO2 emission (kt) 5 | 820.2 | 1133.1 | 859.9 |
NOx emission (t) 6 | 104.9 | 216.6 | 147.8 |
PM2.5 emission (t) 7 | 2.8 | 13.2 | 9.0 |
Confidence Level on CRF Data (Setting) | Delta External Costs MEAN (€/y) | Delta-External Costs MINIMUM (€/y) | Delta-External Costs MAXIMUM (€/y) | |||
---|---|---|---|---|---|---|
Scenario 1-Present | Scenario 2-Present | Scenario 1-Present | Scenario 2-Present | Scenario 1-Present | Scenario 2-Present | |
High (Group A*) | −365,000 | −213,000 | −532,000 | −307,000 | −136,000 | −91,000 |
Medium (Group A* + Group B*) | −1,790,700 | 1,056,000 | −2,668,400 | −1,563,000 | −999,000 | −588,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravina, M.; Panepinto, D.; Zanetti, M. Air Quality Planning and the Minimization of Negative Externalities. Resources 2019, 8, 15. https://doi.org/10.3390/resources8010015
Ravina M, Panepinto D, Zanetti M. Air Quality Planning and the Minimization of Negative Externalities. Resources. 2019; 8(1):15. https://doi.org/10.3390/resources8010015
Chicago/Turabian StyleRavina, Marco, Deborah Panepinto, and Mariachiara Zanetti. 2019. "Air Quality Planning and the Minimization of Negative Externalities" Resources 8, no. 1: 15. https://doi.org/10.3390/resources8010015
APA StyleRavina, M., Panepinto, D., & Zanetti, M. (2019). Air Quality Planning and the Minimization of Negative Externalities. Resources, 8(1), 15. https://doi.org/10.3390/resources8010015