Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation
Abstract
:1. Introduction
1.1. Bioenergy Industry Profile
1.2. The Study Motivation
2. Literature Review
2.1. Empirical Background
2.2. Theoretical Background
3. Methods and Materials
3.1. Empirical Model Development
3.2. Panel Regression Technique
4. Results and Discussion
4.1. Descriptive Statistics and Correlation Matrix Tests
4.2. Panel Data Analysis of Bioenergy Intensity in the ECC
4.3. The Economic Determinants of Bioenergy Intensity in the ECC
5. Conclusions and Recommendation
Author Contributions
Funding
Conflicts of Interest
References
- Calderon, C.; Gauthier, G.; Jossart, J.M. Emerging Central European Bioenergy Fund; European Biomass Association Statistical Report; European Biomass Association: Brussels, Belgium, 2015. [Google Scholar]
- Albani, M.; Blaschke, B.B.; Denis, N.; Granskog, A. Bioenergy in Europe: A New Beginning—or the End of the Road? McKinsey on Sustainability & Resource Productivity; Mckinsey & Company: Rome, Italy, 2014. [Google Scholar]
- Meyer, M.A.; Priess, J.A. Indicators of bioenergy-related certification schemes an analysis of the quality and comprehensiveness for assessing local/regional environmental impacts. Biomass Bioenergy 2014, 65, 151–169. [Google Scholar] [CrossRef]
- Rimppi, H.; Uusitalo, V.; Väisänen, S.; Soukka, S. Sustainability criteria and indicators of bioenergy systems from steering, research and Finnish bioenergy business operators’ perspectives. Ecol. Indic. 2016, 66, 357–368. [Google Scholar] [CrossRef]
- Khishtandar, S.; Zandieh, M.; Dorri, B. A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran. Renew. Sustain. Energy Rev. 2017, 77, 1130–1145. [Google Scholar] [CrossRef]
- Nybakk, E.; Lunnan, A. Introduction to special issue on bioenergy markets. Biomass Bioenergy 2013, 57, 1–3. [Google Scholar] [CrossRef]
- Zhang, S.; Gilless, J.K.; Stewart, W. Modeling price-driven interactions between wood bioenergy and global wood product markets. Biomass Bioenergy 2013, 60, 68–78. [Google Scholar] [CrossRef]
- Dam, J.; Faaij, A.P.C.; Hilbert, J.; Petruzzi, H.; Turkenburg, W.C. Large-scale bioenergy production from soybeans and switch grass in Argentina Part A: Potential and economic feasibility for national and international markets. Renew. Sustain. Energy Rev. 2009, 13, 1710–1733. [Google Scholar]
- Ahn, S.; Schmidt, P. Efficient estimation of models with dynamic panel data. J. Econ. 1995, 68, 5–28. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Abdullah, W.N.N.W.; Leh, C.P. Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects. Renew. Sustain. Energy Rev. 2011, 15, 4521–4536. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S.; Mohd-Shahwahid, H.O. An Empirical Analysis for Technical Efficiency of Bioenergy Industry in EU28 Region Based on Data Envelopment Analysis Method. Int. J. Energy Econ. Policy 2016, 6, 290–304. [Google Scholar]
- Raitano, M.; Romano, E.; Zoppoli, P. Renewable energy sources in Italy: Sectorial intensity and effects on earnings. Renew. Sustain. Energy Rev. 2017, 72, 117–127. [Google Scholar] [CrossRef]
- Goldemberg, J.; Prado, L.T.S. The decline of the world’s energy intensity. Energy Policy 2011, 39, 1802–1805. [Google Scholar] [CrossRef]
- Lan-yue, Z.; Yao, L.; Jing, Z.; Bing, L.; Ji-min, H.; Shi-huai, D.; Xin, H.; Fei, S.; Hong, X.; Yan-zong, Z.; et al. The relationships among energy consumption, economic output and energy intensity of countries at different stage of development. Renew. Sustain. Energy Rev. 2017, 74, 258–264. [Google Scholar]
- Samuelson, R.D. The unexpected challenges of using energy intensity as a policy objective: Examining the debate over the APECC energy intensity goal. Energy Policy 2014, 64, 373–381. [Google Scholar] [CrossRef]
- Filipovic, S.; Verbic, M.; Radovanovic, M. Determinants of energy intensity in the European Union: A panel data Analysis. Energy 2015, 92, 547–555. [Google Scholar] [CrossRef]
- Wang, C. Changing energy intensity of economies in the world and its decomposition. Energy Econ. 2013, 40, 637–644. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Feng, T.; Zhu, C. How to reduce energy intensity in China: A regional comparison perspective. Energy Policy 2013, 61, 513–522. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. The improvement gap in energy intensity: Analysis of China’s thirty provincial regions using the improved DEA (data envelopment analysis) model. Energy 2015, 84, 589–599. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. The nonlinear impacts of industrial structure on China’s energy Intensity. Energy 2014, 69, 258–265. [Google Scholar] [CrossRef]
- Adom, P.F. Determinants of energy intensity in South Africa: Testing for structural effects in parameters. Energy 2015, 89, 334–346. [Google Scholar] [CrossRef]
- Hao, J.X.; Ark, B.V. Intangible Investment and Intangible of Energy Use. Available online: http://www.neujobs.eu/sites/default/files/NEUJOBS_Deliverable%203%204%20_pdf.pdf (accessed on 20 February 2019).
- Ibrahim, M.H.; Law, S.H. Social capital and CO2 emission-output relations: A panel analysis. Renew. Sustain. Energy Rev. 2014, 29, 528–534. [Google Scholar] [CrossRef]
- Jiang, L.; Folmer, H.; Ji, M. The drivers of energy intensity in China: A spatial panel data approach. China Econ. Rev. 2014, 31, 351–360. [Google Scholar] [CrossRef]
- He, T.; Li, Z.; He, L. On the relationship between energy intensity and industrial structure in China. Energy Procedia 2011, 5, 2499–2503. [Google Scholar] [Green Version]
- Dong, F.; Li, X.; Long, R. Laspeyres Decomposition of Energy Intensity including Household-energy Factors. Energy Procedia 2011, 5, 1482–1487. [Google Scholar] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econ. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Wu, Y. Energy intensity and its determinants in China’s regional economies. Energy Policy 2012, 41, 703–711. [Google Scholar] [CrossRef]
- Wang, X.; Tian, D. Laspeyres Decomposition of Energy Intensity in Hebei Province. Energy Procedia 2012, 14, 1798–1803. [Google Scholar] [Green Version]
- Adom, P.F. Asymmetric impacts of the determinants of energy intensity in Nigeria. Energy Econ. 2015, 49, 570–580. [Google Scholar] [CrossRef]
- Elliott, R.J.R.; Sun, P.; Zhu, T. The direct and indirect effect of urbanization on energy intensity: A province-level study for China. Energy 2017, 123, 677–692. [Google Scholar] [CrossRef]
- Adom, P.F. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria. Energy 2015, 88, 334–350. [Google Scholar] [CrossRef]
- Fan, R.; Luo, M.; Zhang, P. A study on evolution of energy intensity in China with heterogeneity and rebound effect. Energy 2016, 99, 159–169. [Google Scholar] [CrossRef]
- Yang, G.; Li, W.; Wang, J.; Zhang, D. A comparative study on the influential factors of China’s provincial energy intensity. Energy Policy 2015, 88, 74–85. [Google Scholar] [CrossRef]
- Yu, H. The influential factors of China’s regional energy intensity and its spatial linkages: 1988–2007. Energy Policy 2012, 45, 583–593. [Google Scholar] [CrossRef]
- Zheng, Y.; Qi, J.; Chen, X. The effect of increasing exports on industrial energy intensity in China. Energy Policy 2011, 39, 2688–2698. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, K.; Zhou, D.; Zhang, W.; Gao, H. Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method. Energy Policy 2016, 92, 369–381. [Google Scholar] [CrossRef]
- Loschel, A.; Pothen, F.; Schymura, M. Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union. Energy Econ. 2015, 52, S63–S75. [Google Scholar] [CrossRef] [Green Version]
- Verbic, M.; Filipovic, S.; Radovanovic, M. Electricity prices and energy intensity in Europe. Utilities Policy 2017, 47, 58–68. [Google Scholar] [CrossRef]
- Mileva, E. Using Arellano—Bond Dynamic Panel GMM Estimators in Stata: Tutorial with Examples Using Stata 9.0; Economics Department, Fordham University: New York, NY, USA, 2007. [Google Scholar]
- Hajko, V. The energy intensity convergence in the transport sector. Procedia Econ. Finance 2014, 12, 199–205. [Google Scholar] [CrossRef]
- Mulder, P.; de Groot, H.L. Dutch sectoral energy intensity developments in international perspective, 1987–2005. Energy Policy 2012, 52, 501–512. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyzaniak, M.; Tworkowski, J.; Szczukowski, S.; Gołaszewski, J. Energy intensity and energy ratio in producing willow chips as feedstock for an integrated biorefinery. Biosyst. Eng. 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Sulaiman, C.; Abdul-Rahim, A.S.; Chin, L.; Mohd-Shahwahid, H.O. Wood fuel consumption and mortality rates in Sub-Saharan Africa: Evidence from a dynamic panel study. Chemosphere 2017, 177, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Yuxiang, K.; Chen, Z. Government expenditure and energy intensity in China. Energy Policy 2009, 38, 691–694. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S.; Mohd-Shahwahid, H.O. Determinants of technical efficiency in the bioenergy industry in the EU28 region. Renew. Sustain. Energy Rev. 2017, 78, 1331–1349. [Google Scholar] [CrossRef]
- Sulaiman, C.; Abdul-Rahim, A.S.; Chin, L.; Mohd-Shahwahid, H.O. Wood fuel consumption, institutional quality, and forest degradation in sub-Saharan Africa: Evidence from a dynamic panel framework. Ecol. Indic. 2017, 74, 414–419. [Google Scholar] [CrossRef]
- Timma, L.; Toms Zoss, T.; Blumberga, D. Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia. Appl. Energy 2015, 162, 1586–1592. [Google Scholar] [CrossRef]
European Continental Countries | |||
---|---|---|---|
Country | Status | Country | Status |
Albania | Developing | Austria | Developed |
Andorra | Developing | Belgium | Developed |
Armenia | Developing | Denmark | Developed |
Azerbaijan | Developing | Finland | Developed |
Belarus | Developing | France | Developed |
Bosnia and Herzegovina | Developing | Germany | Developed |
Bulgaria | Developing | Greece | Developed |
Croatia | Developing | Iceland | Developed |
Cyprus | Developing | Ireland | Developed |
Czech Republic | Developing | Italy | Developed |
Estonia | Developing | Luxembourg | Developed |
Georgia | Developing | Netherlands | Developed |
Hungary | Developing | Norway | Developed |
Kazakhstan | Developing | Portugal | Developed |
Kosovo | Developing | Spain | Developed |
Latvia | Developing | Sweden | Developed |
Liechtenstein | Developing | Switzerland | Developed |
Lithuania | Developing | United Kingdom | Developed |
Macedonia | Developing | Russia | Developing |
Malta | Developing | San Marino | Developing |
Moldova | Developing | Serbia | Developing |
Monaco | Developing | Slovakia | Developing |
Montenegro | Developing | Slovenia | Developing |
Poland | Developing | Turkey | Developing |
Romania | Developing | Ukraine | Developing |
Variables | Observations | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
EI | 450 | 55.037 | 232.806 | 0.0422 | 1870.782 |
GDP | 450 | 52.607 | 5.666 | 33.017 | 94.04 |
INV | 450 | 91.506 | 156.816 | 9.23 × 10−10 | 732.9188 |
CON | 450 | 791517 | 301,390 | 406.1 | 2.14 × 107 |
CI | 450 | 860.250 | 1944.151 | 0.254 | 26,992.99 |
Variables | GDP | INV | CON | CI |
---|---|---|---|---|
GDP | 1.000 | |||
INV | 0.2582 | 1.000 | ||
CON | −0.1246 | 0.2250 | 1.000 | |
CI | 0.1974 | 0.4869 | −0.1479 | 1.000 |
Variables | Difference GMM | System GMM |
---|---|---|
Coefficients | Coefficients | |
GDP | 0.603 * (0.073) | 1.754 ** (0.014) |
INV | 0.106 (0.425) | 0.049 ** (0.045) |
CON | 1.082 *** (0.000) | 0.005 (0.846) |
CI | 0.218 (0.229) | 0.061 (0.370) |
Instruments | 10 | 9 |
No of groups | 50 | 50 |
AR1: p-value | 0.095 | 0.868 |
AR2: p-value | 0.756 | 0.940 |
Hansen J-test | 0.510 | 0.883 |
Diff-in-Hansen test | 0.271 | 0.048 |
Variables | Difference GMM | System GMM |
---|---|---|
Coefficients | Coefficients | |
GDP | 0.500 * (0.061) | 2.11 *** (0.006) |
INV | 0.216 (0.167) | 0.054 (0.107) |
CON | 0.996 *** (0.000) | 0.005 (0.933) |
CI | 0.074 (0.586) | 0.061 (0.248) |
Instruments | 10 | 9 |
No of groups | 32 | 32 |
AR1: p-value | 0.059 | 0.107 |
AR2: p-value | 0.866 | 0.147 |
Hansen J-test | 0.291 | 0.895 |
Diff-in-Hansen test | 0.450 | 0.056 |
Variables | Difference GMM | System GMM |
---|---|---|
Coefficients | Coefficients | |
GDP | 0.083 (0.550) | 1.161 * (0.068) |
INV | 0.073 (0.400) | 0.087 (0.337) |
CON | 1.022 *** (0.000) | 0.004 (0.938) |
CI | 0.168 ** (0.033) | 0.043 (0.179) |
Instruments | 10 | 9 |
No of groups | 18 | 18 |
AR1: p-value | 0.451 | 0.009 |
AR2: p-value | 0.598 | 0.399 |
Hansen J-test | 0.695 | 0.611 |
Diff-in-Hansen test | 0.134 | 0.856 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaleh, M.; Abdul-Rahim, A.S. Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation. Resources 2019, 8, 43. https://doi.org/10.3390/resources8010043
Alsaleh M, Abdul-Rahim AS. Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation. Resources. 2019; 8(1):43. https://doi.org/10.3390/resources8010043
Chicago/Turabian StyleAlsaleh, Mohd, and A. S. Abdul-Rahim. 2019. "Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation" Resources 8, no. 1: 43. https://doi.org/10.3390/resources8010043
APA StyleAlsaleh, M., & Abdul-Rahim, A. S. (2019). Bioenergy Intensity and Its Determinants in European Continental Countries: Evidence Using GMM Estimation. Resources, 8(1), 43. https://doi.org/10.3390/resources8010043