Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects
Abstract
:1. Introduction
- What is the current development and state of reed resources in Kazakhstan?
- What are the driving forces of wetlands and reed bed areas change in Kazakhstan?
- What past, current, and future utilization of reed resources are documented and possible in the future?
2. Reed Ecology and Share of Kazakhstan in the Global Reed Biomass Potential
2.1. Ecology and Distribution of the Common Reed
2.2. Global Reed Biomass Potential and Share of Kazakhstan
3. Wetlands and Reed Bed Areas Distribution in Kazakhstan
3.1. Wetlands, Reed Beds, and the Transboundary Water Situation in Kazakhstan
3.2. Historical Distribution of Reed Bed Areas in Kazakhstan
3.3. A Showcase of a Historical Overview of Reed Resources in the Ili Delta
4. Driving Forces of Wetlands and Reed Bed Areas Change in Kazakhstan
4.1. Drivers of Wetlands and Reed Bed Areas Loss and Degradation
4.2. Drivers of Wetlands and Reed Beds Area Protection and Wise Use
5. Past, Current, and Prospect Developments of Reed Resources and Their Utilization in Kazakhstan
5.1. Reed Resources Development and Utilization in the Past
5.2. Current Development of Reed Resources and Their Utilization
5.3. Perspective for Reed Resources Development and Utilization
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Reed Distribution and Its Biomass Stocks by Administrative Levels in the 1960s
Appendix A.1. Almaty Province
Natural Landmark Names | The Total Reed Bed Area (ha) | Area of Production Reed Bed (ha) |
---|---|---|
Akkol Lake | 33,100 | 9900 |
Aksiyyr | 30,000 | 15,000 |
Topar | 9000 | 2700 |
Kokkul | 36,100 | 7200 |
Ak-Soya | 21,000 | 6800 |
Zhuzbay | 20,000 | 20,000 |
Zheltorangy | 11,300 | 4500 |
Zhideli (right bank) | 26,000 | 7800 |
Beginning of the duct Zhideli | 12,600 | 1200 |
Bokkore (left bank) Zhideli | 16,500 | 3300 |
Araltobe | 2000 | 800.0 |
Kur-Ili | 69,700 | 13,900 |
Bosingen | 6700 | 1500 |
Arkhar on the Zhideli River | 8400 | 4200 |
Kokkol | 11,500 | 3400 |
Muzdybai Arystan | 20,300 | 12,200 |
Tuzdykol and islands along the Ili River | 500.0 | 200.0 |
Along the banks of the Ili River and the banks of Lake Balkhash | 28,300 | 28,300 |
Total | 363,200 | 142,700 |
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Aksu | 1400 | 400 |
Alakol | 68,400 | 391,300 |
Balkhash | 433,100 | 1,340,600 |
Ili | 37,400 | 17,700 |
Karatal | 39,000 | 108,300 |
Panfilov | 16,600 | 64,400 |
Uigur | 16,200 | 33,000 |
Shelek | 12,400 | 26,900 |
Enbekshi-Kazakh | 14,500 | 40,300 |
Total | 639,000 | 2,022,900 |
District Names | Groups for Production Utilization | |||||||
---|---|---|---|---|---|---|---|---|
Industrial | Agricultural | |||||||
First | Second | Total of Two Groups | Area (ha) | Biomass Stock (t) | ||||
Area (ha) | Biomass Stock (t) | Area (ha) | Biomass Stock (t) | Area (ha) | Biomass Stock (t) | |||
Aksui | - | - | - | - | - | - | 1375 | 412 |
Alakol | 1020 | 4284 | 53,820 | 357,582 | 54,840 | 361,866 | 13,570 | 29,459 |
Balkhash | - | - | 142,875 | 958,728 | 142,875 | 958,728 | 290,235 | 381,850 |
Ili | 100 | 400 | 1281.6 | 10,265 | 1381.6 | 10,665 | 2362 | 7050 |
Karatal | - | - | 6995 | 43,369 | 6995 | 43,369 | 31,960 | 64,895 |
Panfilov | 1010 | 10,165 | 3507 | 25,993 | 4517 | 36,158 | 12,310 | 28,266 |
Uigur | - | - | 1871 | 9725 | 1871 | 9725 | 14,310 | 24,210 |
Shelek | 994.6 | 4095 | 1096.8 | 8061 | 2091.4 | 12,756 | 10,367.7 | 14,178 |
Enbekshi-Kazakh | 199 | 1393 | 1551.4 | 10,822 | 1750.4 | 12,215 | 12,787.3 | 208,098 |
Total | 3323.6 | 20,937 | 212,997.8 | 1,424,545 | 216,321.4 | 1,445,482 | 38,900.7 | 378,448 |
Appendix A.2. Kyzylorda Province
District Names | Areas (ha) | Biomass Stocks (t) | ||
---|---|---|---|---|
Reed Beds | Cattail Beds | Total | ||
Karmakshi and Dzhalagash | 5000 | - | 5000 | 60,000 |
Dzhalagash and Teren-Ozek | 19,900 | 2800 | 22,700 | 238,800 |
Syrdarya | 7100 | 500 | 7600 | 85,200 |
Total | 32,000 | 3300 | 35,300 | 384,000 |
Natural Landmark Names | Total Area of the Array (ha) | Area of Reed Beds for Industrial Use (ha) | Gross Stock of the Feedstock (t) | Production Stock (t) |
---|---|---|---|---|
Bakaly-Kopa | 61,140 | - | 267,793.0 | - |
Kara-Ozek | 40,330 | 27,608 | 458,020.0 | 321,780.0 |
Koksu-Kerkelmes | 36,130 | 20,012 | 33,5461.0 | 236,252.0 |
Shieli-Baygakum | 24,300 | 9002 | 149,042.0 | 108,468.5 |
Kara-Ketken | 19,100 | 11,554 | 163,570.0 | 115,018.0 |
Tartugai | 11,380 | 2344 | 41,428.0 | 30,236.5 |
Zhanakorgan | 9110 | 4032 | 59,082.0 | 44,687.0 |
Dalakol | 8810 | 7048 | 117,177.4 | 30,335.0 |
Dzhalagash | 5330 | 3738 | 63,306.0 | 44,173.0 |
Birkazan | 2640 | 2100 | 38,666.0 | 29,000.0 |
Total | 218,270 | 87,438 | 1,693,545.4 | 1,010,550.0 |
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Aral | 25,000 | 375,000 |
Dzhalagash | 15,000 | 225,000 |
Kazaly | 25,000 | 375,000 |
Karmakshy | 10,000 | 150,000 |
Teren-Ozek | 15,000 | 225,000 |
Syrdarya | 16,000 | 240,000 |
Shieli | 15,000 | 225,000 |
Zhanakorgan | 5000 | 75,000 |
Total | 126,000 | 1,890,000 |
Appendix A.3. Atyrau Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Baksai | 25,000 | 375,000 |
Guryev | 15,000 | 225,000 |
Dengiz | 40,000 | 600,000 |
Zhilakosyn | 20,000 | 300,000 |
Kyzyl-Koga | 20,000 | 300,000 |
Novobogatin | 30,000 | 450,000 |
Makat | 15,000 | 225,000 |
Shevchenko | 15,000 | 75,000 |
Total | 180,000 | 2,550,000 |
Appendix A.4. Dzhambul Province
District Names | Area (ha) | Biomass Stocks (t) |
Dzhambul | 3100 | 37,400 |
Kokterek | 61,700 | 740,000 |
Kordai | 3400 | 41,400 |
Lugovoi | 2100 | 26,200 |
Merke | 2000 | 25,000 |
Sarysu | 2000 | 24,600 |
Sverdlov | 2700 | 33,400 |
Talas | 7000 | 84,500 |
Shu | 3800 | 46,500 |
Total | 88,800 | 1,059,000 |
Appendix A.5. Turkistan Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Arys | 10,500 | 84,000 |
Keles | 2600 | 21,000 |
Frunze | 8100 | 65,000 |
Turkestan | 13,100 | 105,000 |
Shauldir | 23,800 | 190,000 |
Sozak | 29,300 | 235,000 |
Total | 87,500 | 700,000 |
Appendix A.6. Qostanai Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Amangeldi | 6500 | 39,000 |
Dzhangeldi | 14,200 | 86,000 |
Dzhetygara | 90 | - |
Zatobol | 2700 | 16,400 |
Kamyshin | 2100 | 12,500 |
Karabalyk | 6300 | 38,500 |
Karasu | 13,100 | 79,800 |
Kostanai | 600 | 3600 |
Mendykara | 8100 | 49,000 |
Oktyabr | 500 | 3000 |
Ordzhonikidze | 40 | - |
Presnogorkov | 2500 | 10,000 |
Semiozerni | 1200 | 7400 |
Taranov | 400 | 1200 |
Ubagan | 5500 | 33,000 |
Urit | 2800 | 17,000 |
Uzynkol | 5500 | 33,000 |
Fedorov | 8400 | 50,400 |
Total | 80,800 | 480,000 |
Appendix A.7. Aktyubinsk Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Dzhurun | 50 | 300 |
Karabutak | 1300 | 7800 |
Irgiz | 47,000 | 282,000 |
Novorossiysk | 100 | 900 |
Uil | 200 | 1000 |
Total | 48,650 | 292,000 |
Akmola Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Tselinograd | 3800 | 30,700 |
Atbasar | 500 | 4400 |
Barankol | 5000 | 40,000 |
Vishnev | 1900 | 15,200 |
Kalinin | 200 | 1000 |
Korgalzhyn | 17,800 | 145,400 |
Novocherkas | 6400 | 51,200 |
Shortandy | 800 | 6400 |
Erkinshilik | 1200 | 13,000 |
Total | 37,600 | 307,300 |
Appendix A.8. East Kazakhstan Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Ayaguz | 12,000 | 96,000 |
Borodulikhin | 150 | 1000 |
Zharmin | 150 | 1200 |
Kokpekty | 800 | 6400 |
Novopokrov | 700 | 5600 |
Urdzhar | 30,500 | 224,000 |
Makanchi | 2000 | 16,000 |
Char | 100 | 800 |
Total | 46,400 | 351,000 |
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Bolshenarym | 2300 | 22,800 |
Zaysan | 9300 | 93,100 |
Zyryanov | 1700 | 17,100 |
Kurchum | 11,100 | 111,300 |
Markakol | 2600 | 26,500 |
Samar | 4200 | 41,200 |
Total | 31,200 | 312,000 |
Appendix A.9. North Kazakhstan Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Konyukhov | 2100 | 10,800 |
Lenin | 1100 | 6000 |
Mamlut | 9900 | 49,500 |
Oktyabr | 2000 | 9800 |
Poludin | 600 | 3000 |
Presnov | 6300 | 31,400 |
Sovet | 7500 | 37,900 |
Total | 29,500 | 148,400 |
Appendix A.10. West Kazakhstan Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Dzhambeity | 1400 | 11,200 |
Dzhangalin | 2000 | 16,000 |
Kamen | 2000 | 16,000 |
Furmanov | 5000 | 40,000 |
Chapaev | 3000 | 24,000 |
Total | 13,400 | 107,200 |
Appendix A.11. Pavlodar Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Bayanaul | 200 | 800 |
Beskaragai | 50 | 300 |
Ermakov | 350 | 1700 |
Irtysh | 1400 | 7000 |
Kuibyshev | 3200 | 16,200 |
Lebyazhen | 200 | 1200 |
Lozov | 30 | - |
Maxim Gorki | 4600 | 23,000 |
Pavlodar | 10 | - |
Urlutin | 1400 | 7400 |
Tsuryupin | 400 | 2400 |
Total | 11,840 | 60,000 |
Appendix A.12. Qaraghandy Province
District Names | Area (ha) | Biomass Stocks (t) |
---|---|---|
Voroshilov | 500 | 2500 |
Zhana-Arka | 640 | 3200 |
Karkaralyn | 200 | 1000 |
Kounrad | 3200 | 16,000 |
Kuv | 540 | 2700 |
Nurin | 4160 | 20,500 |
Osokarov | 370 | 1900 |
Telman | 900 | 4500 |
Ulutau | 3900 | 14,700 |
Total | 14,410 | 67,000 |
References
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Mbow, H.-O.P.; Reisinger, A.; Canadell, J.; O’Brien, P. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2); IPCC: Ginevra, Switzerland, 2017; pp. 5–20. [Google Scholar]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef] [Green Version]
- Birner, R. Bioeconomy concepts. In Bioeconomy; Springer: Cham, Switzerland, 2018; pp. 17–38. ISBN 978-3-319-68152-8. [Google Scholar]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M. Prospects of bioenergy cropping systems for a more social-ecologically sound bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.B. The agricultural ethics of biofuels: The food vs. fuel debate. Agriculture 2012, 2, 339–358. [Google Scholar] [CrossRef] [Green Version]
- Tomei, J.; Helliwell, R. Food versus fuel? Going beyond biofuels. Land Use Policy 2016, 56, 320–326. [Google Scholar] [CrossRef]
- Muscat, A.; de Olde, E.M.; de Boer, I.J.; Ripoll-Bosch, R. The battle for biomass: A systematic review of food-feed-fuel competition. Glob. Food Secur. 2019. [Google Scholar] [CrossRef]
- Finlayson, C.M.; Davidson, N.; Pritchard, D.; Milton, G.R.; MacKay, H. The Ramsar Convention and ecosystem-based approaches to the wise use and sustainable development of wetlands. J. Int. Wildl. Law Policy 2011, 14, 176–198. [Google Scholar] [CrossRef]
- Pritchard, D. Wise use concept of the ramsar convention. In The Wetland Book: I: Structure and Function, Management, and Methods; Finlayson, C.M., Everard, M., Irvine, K., McInnes, R.J., Middleton, B.A., van Dam, A.A., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 477–480. ISBN 978-90-481-9659-3. [Google Scholar]
- An, S.; Verhoeven, J.T.A. Wetland functions and ecosystem services: Implications for wetland restoration and wise use. In Wetlands: Ecosystem Services, Restoration and Wise Use; An, S., Verhoeven, J.T.A., Eds.; Ecological Studies; Springer: Cham, Switzerland, 2019; pp. 1–10. ISBN 978-3-030-14861-4. [Google Scholar]
- Wichtmann, W.; Couwenberg, J. Reed as a renewable resource and other aspects of paludiculture. Mires Peat 2013, 13, 1–2. [Google Scholar]
- Croon, F.W. Saving reed lands by giving economic value to reed. Mires Peat 2013, 13, 10. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Assessment, M.E. Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005; ISBN 1-56973-597-2. [Google Scholar]
- Joosten, H.; Gaudig, G.; Tanneberger, F.; Wichmann, S.; Wichtmann, W. Paludiculture: Sustainable productive use of wet and rewetted peatlands. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Cambridge University Press: Cambridge, UK, 2016; Volume 10, pp. 339–358. [Google Scholar]
- Ye, S.; Laws, E.A.; Costanza, R.; Brix, H. Ecosystem service value for the common reed wetlands in the Liaohe Delta, Northeast China. Open J. Ecol. 2016, 6, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Allirand, J.-M.; Gosse, G. An above-ground biomass production model for a common reed (Phragmites communis Trin.) stand. Biomass Bioenergy 1995, 9, 441–448. [Google Scholar] [CrossRef]
- Köbbing, J.F.; Thevs, N.; Zerbe, S. The utilisation of reed (Phragmites australis): A review. Mires Peat 2013, 13. [Google Scholar] [CrossRef]
- Haslam, S.M. A Book of Reed:(Phragmites australis (Cav.) Trin. ex Steudel, Formerly Phragmites communis Trin.); Forrest Text: Ceredigion, UK, 2010; ISBN 0-9564692-0-5. [Google Scholar]
- Krivitskiy, A.I. Integrated use of reeds. In Proceedings of the First Uzbek Research Conference on Plant Resources, Tashkent, Uzbekistan, 13 September 1937; pp. 83–87. (In Russian). [Google Scholar]
- Pankova, I.A. Common reed (Phragmites australis Trin.) and its economic importance. Mosc. Plant Resour. 1965, 1, 84–90. (In Russian) [Google Scholar]
- Nikolajevskij, V.G. Research into the biology of the common reed (Phragmites communis Trin.) in the USSR. Folia Geobot. Phytotaxon. 1971, 6, 221–230. [Google Scholar] [CrossRef]
- Ageeva, N.T. Reeds at the Ili River. In Proceedings of the Institute of Botany of the Academy of Sciences of the Kazakh SSR; Academy of Sciences of the Kazakh SSR: Alma Ata, Kazakhstan, 1964; Volume 19, pp. 63–75. (In Russian) [Google Scholar]
- Papchenkov, V.G. About distribution of Phragmites altissimus (Benth.) Nabille (Poaceae). Russ. J. Biol. Invasions 2008, 1, 36–41. (In Russian) [Google Scholar]
- Krivitskiy, A.I. Reed as a raw material for the production of building materials. In The Collection “The Use of Reeds in Construction”; Gosstroyizdat: Moscow, Russia, 1959. (In Russian) [Google Scholar]
- Rodewald-Rudescu, L. The Reed Stalk (Phragmites communis Trinius); E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1974. (In German) [Google Scholar]
- Thevs, N.; Beckmann, V.; Akimalieva, A.; Köbbing, J.F.; Nurtazin, S.; Hirschelmann, S.; Piechottka, T.; Salmurzauli, R.; Baibagysov, A. Assessment of ecosystem services of the wetlands in the Ili River Delta, Kazakhstan. Environ. Earth Sci. 2017, 76, 30. [Google Scholar] [CrossRef]
- Ailstock, M.S. Adaptive strategies of common reed phragmites australis. In Phragmitesin Virginia: A Management Symposium; Library of Virginia: Richmond, VA, USA, 2000; pp. 1–2. [Google Scholar]
- Van der Sluis, T.; Poppens, R.P.; Kraisvitnii, P.; Rii, O.; Lesschen, J.P.; Galytska, M.; Elbersen, H.W. Reed Harvesting from Wetlands for Bioenergy: Technical Aspects, Sustainability and Economic Viability of Reed Harvesting in Ukraine; Wageningen-UR: Wageningen, The Netherlands, 2013; pp. 1–90. [Google Scholar]
- Thevs, N.; Zerbe, S.; Gahlert, F.; Mijit, M.; Succow, M. Productivity of reed (Phragmites australis Trin. ex Steud.) in continental-arid NW China in relation to soil, groundwater, and land-use. J. Appl. Bot. Food Qual. 2007, 81, 62–68. [Google Scholar]
- Ostendorp, W. Reed Bed Characteristics and Significance of Reeds in Landscape Ecology. In Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa; Clivia Mueller: Stuttgart, Germany, 1993; pp. 149–160. [Google Scholar]
- Haslam, S.M. The development of the annual population in phragmites communis trin. Ann. Bot. 1970, 34, 571–591. [Google Scholar] [CrossRef]
- Fedorov, A.A.; Kirpichnikov, M.E.; Artyushenko, Z.T. Atlas on the Descriptive Morphology of Higher Plants; Stem and Root; Leningrad Branch, USSR Academy of Sciences: Leningrad, Russia, 1962; p. 353. [Google Scholar]
- Engloner, A.I. Structure, growth dynamics and biomass of reed (Phragmites australis)—A review. Flora-Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 331–346. [Google Scholar] [CrossRef]
- Köbbing, J.F.; Beckmann, V.; Thevs, N.; Peng, H.; Zerbe, S. Investigation of a traditional reed economy (Phragmites australis) under threat: Pulp and paper market, values and Netchain at Wuliangsuhai Lake, Inner Mongolia, China. Wetl. Ecol. Manag. 2016, 24, 357–371. [Google Scholar] [CrossRef]
- Huhta, A. To cut or not to cut? The relationship between Common Reed, mowing and water quality. Read Reed 2007, 1, 30–38. [Google Scholar]
- Chambers, R.M.; Meyerson, L.A.; Saltonstall, K. Expansion of phragmites australis into tidal wetlands of north America. Aquat. Bot. 1999, 64, 261–273. [Google Scholar] [CrossRef]
- Hazelton, E.L.; Mozdzer, T.J.; Burdick, D.M.; Kettenring, K.M.; Whigham, D.F. Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Krzton-Presson, A.; Davis, B.; Raper, K.; Hitz, K.; Mecklin, C.; Whiteman, H. Effects of phragmites management on the ecology of a wetland. Northeast. Nat. 2018, 25, 418–436. [Google Scholar] [CrossRef]
- Serag, M.S. Ecology and biomass of Phragmites australis (Cav.) Trin. Ex. Steud. in the north-eastern region of the Nile Delta, Egypt. Ecoscience 1996, 3, 473–482. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- FAO Data|Country Profile|Kazakhstan. Available online: http://www.fao.org/3/ca0366en/CA0366EN.pdf (accessed on 25 February 2020).
- Koshim, A.; Karatayev, M.; Clarke, M.L.; Nock, W. Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan. Adv. Geosci. 2018, 45, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Mirzabaev, A. Land degradation and sustainable land management innovations in central Asia. In Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development; Springer: Cham, Switzerland, 2016; pp. 213–224. ISBN 978-3-319-25718-1. [Google Scholar]
- Abuduwaili, J.; Issanova, G.; Saparov, G. Water resources in Kazakhstan. In Hydrology and Limnology of Central Asia; Springer: Singapore, 2019; pp. 11–46. ISBN 978-981-13-0929-8. [Google Scholar]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Zhiltsov, S.S.; Zonn, I.S.; Kostianoy, A.G.; Semenov, A.V. Transboundary rivers in central Asia: Cooperation and conflicts among countries. In Water Resources in Central Asia: International Context; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; Volume 85, pp. 61–80. ISBN 978-3-030-11204-2. [Google Scholar]
- Zhupankhan, A.; Tussupova, K.; Berndtsson, R. Water in Kazakhstan, a key in central Asian water management. Hydrol. Sci. J. 2018, 63, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Krutov, A.; Spoor, M. XI The ‘power of water’ in a divided Central Asia. Perspect. Glob. Dev. Technol. 2003, 2, 593–614. [Google Scholar] [CrossRef] [Green Version]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Salmyrzauli, R.; Khalil, A. Water consumption of agriculture and natural ecosystems along the Ili River in China and Kazakhstan. Water 2017, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Chugay, A.; Savranchuk, I.; Babenko, N. Reed harvesting economics. In Economics of Reed Plate Production; Publishing House of the Academy of Sciences of the Kazakh SSR: Alma-Ata, Kazakhstan, 1958; pp. 3–21. (In Russian) [Google Scholar]
- Demidovskaya, L.F.; Isambaev, A.I.; Eliseeva, L.K. Reed distribution and stocks in Kazakhstan. In Proceedings of the Institute of Botany of the Academy of Sciences of the Kazakh SSR; Academy of Sciences of the Kazakh SSR: Alma Ata, Kazakhstan, 1964. (In Russian) [Google Scholar]
- Isambaev, A.I. Resource Characteristics of Some Raw Plants of Kazakhstan (Cheegrass, Reed, Licorice) and Their Rational Use. Ph.D. Thesis, Kazakh State University, Alma Ata, Kazakhstan, 1994. [Google Scholar]
- Imentai, A.; Thevs, N.; Schmidt, S.; Nurtazin, S.; Salmurzauli, R. Vegetation, fauna, and biodiversity of the Ile delta and southern Lake Balkhash—A review. J. Great Lakes Res. 2015, 41, 688–696. [Google Scholar] [CrossRef]
- Reyer, C.P.; Otto, I.M.; Adams, S.; Albrecht, T.; Baarsch, F.; Cartsburg, M.; Coumou, D.; Eden, A.; Ludi, E.; Marcus, R. Climate change impacts in Central Asia and their implications for development. Reg. Environ. Chang. 2017, 17, 1639–1650. [Google Scholar] [CrossRef]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Ott, K.; Imentai, A.; Baibagysov, A. Desertification risks and land use changes in the transboundary Ili river basin, Kazakhstan and China. In Proceedings of the International Disaster and Risk Conference IDRC, Davos, Switzerland, 24–28 August 2014. [Google Scholar]
- Tesch, N.; Thevs, N. Wetland distribution trends in Central Asia. Cent. Asian J. Water Res. (CAJWR) 2020, 6, 39–65. [Google Scholar]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring variations of inland lakes in the arid region of Central Asia. Front. Earth Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.M.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- Saiko, T.A.; Zonn, I.S. Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl. Geogr. 2000, 20, 349–367. [Google Scholar] [CrossRef]
- Jungius, H. Feasibility Study on the Possible Restoration of the Caspian Tiger in Central Asia; Survey Report; WWF Russia: Moscow, Russia, 2010; p. 34. [Google Scholar]
- Hirschelmann, S. The use of reed in the Ili-Delta, Kazakhstan—A social-ecological investigation in the village region of Kuigan. Master’s Thesis, The University of Greifswald, Greifswald, Germany, 2014. [Google Scholar]
- Schielzeth, H.; Eichhorn, G.; Heinicke, T.; Kamp, J.; Koshkin, M.A.; Koshkin, A.V.; Lachmann, L. Waterbird population estimates for a key staging site in Kazakhstan: A contribution to wetland conservation on the Central Asian flyway. Bird Conserv. Int. 2008, 18, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Ramsar Sites Information Service. Available online: https://rsis.ramsar.org/ris-search/?f[0]=regionCountry_en_ss%3AKazakhstan&pagetab=1 (accessed on 26 February 2020).
- Peterson, M.K. The Land beyond the Rivers. Available online: /core/books/pipe-dreams/land-beyond-the-rivers/DAB54BAF9CA6009ADB8EFF21AD945104/core-reader (accessed on 5 March 2020).
- Dilke, A.W. On the valley of the Ili and the water-system of Russian Turkistan. JSTOR 1873, 18, 246–253. [Google Scholar] [CrossRef]
- Geptner, V.G.; Nasimovich, A.A.; Bannikov, A.G.; Hoffmann, R.S. Mammals of the Soviet Union; Smithsonian Institution Libraries and National Science Foundation: Washington, DC, USA, 1988. [Google Scholar]
- Alenitsyn, V.D. Report on the results of studies on the Aral Sea. Proc. St. Petersburg Soc. Natl. Sci. 1875, 5, 72–77. (In Russian) [Google Scholar]
- Dubina, D.V.; Nebesnyy, V.B.; Prokopenko, V.F. Estimation of Phragmites Australis (Cav.) Trin. ex Steud. Cenosis Productivity in “Danube Plavny” State Reserve; Academy of Sciences of the Ukrainian SSR Based on Remote Sensing of Vegetation: Alma-Ata, Kazakhstan, 1989. (In Russian) [Google Scholar]
- Skvortsov, A.K. Willows of Russia and Adjacent Countries; University of Joensuu: Joensuu, Finland, 1999. [Google Scholar]
- Ilminsky, N.G. Publications on the flora and vegetation of agricultural land within the cities of the Russian Empire and the USSR. Agrar. Bull. Urals 2012, 5, 1–16. (In Russian) [Google Scholar]
- Plotnikov, I.S.; Aladin, N.V.; Ermakhanov, Z.K.; Zhakova, L.V. Biological dynamics of the aral sea before its modern decline (1900–1960). In The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake; Micklin, P., Aladin, N.V., Plotnikov, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 41–76. ISBN 978-3-642-02356-9. [Google Scholar]
- Gleason, G. The struggle for control over water in Central Asia: Republican sovereignty and collective action. Rep. USSR 1991, 3, 11–19. [Google Scholar]
- O’Hara, S.L. Lessons from the past: Water management in Central Asia. Water Policy 2000, 2, 365–384. [Google Scholar] [CrossRef]
- Tepla, N.I. Reed Chemistry as a pulp and paper raw material. Plant Resour. 1970, 6, 428. (In Russian) [Google Scholar]
- Koenig, G.F. Change in yield and floristic composition of reed meadows in the floodplain of the Syr Darya river under the influence of care. In Proceedings of the Academy of Sciences of the Kazakh SSR, Science; Academy of Sciences of the Kazakh SSR: Alma-Ata, Kazakhstan, 1964; pp. 202–216. (In Russian) [Google Scholar]
- Toleubayev, K.; Jansen, K.; van Huis, A. Knowledge and agrarian de-collectivisation in Kazakhstan. J. Peasant Stud. 2010, 37, 353–377. [Google Scholar] [CrossRef]
- Alimaev, I.I.; Kerven, C.; Torekhanov, A.; Behnke, R.; Smailov, K.; Yurchenko, V.; Sisatov, Z.; Shanbaev, K. The impact of livestock grazing on soils and vegetation around settlements in Southeast Kazakhstan. In The Socio-Economic Causes and Consequences of Desertification in Central Asia; Springer: Dordrecht, The Netherlands, 2008; pp. 81–112. ISBN 978-1-4020-8544-4. [Google Scholar]
- Baranowski, E.A.A. Livestock Herding in the Ili Delta, Kazakhstan. Master’s Thesis, University of Greifswald, Greifswald, Germany, 2016. [Google Scholar]
- Issayeva, A.U.; Rysbayeva, G.A.; Uspabayeva, A.A.; Eshibaev, A.A. Biorecultivation of oil-contaminated soils of south Kazakhstan. Int. J. Exp. Educ. 2012, pp. 52–53. Available online: http://www.expeducation.ru/pdf/2012/12/2012_12_20.pdf (accessed on 16 June 2020).
- Asaeda, T.; Rajapakse, L.; Manatunge, J.; Sahara, N. The effect of summer harvesting of Phragmites australis on growth characteristics and rhizome resource storage. Hydrobiologia 2006, 553, 327–335. [Google Scholar] [CrossRef]
- Weisner, S.E.; Granéli, W. Influence of substrate conditions on the growth of Phragmites australis after a reduction in oxygen transport to below-ground parts. Aquat. Bot. 1989, 35, 71–80. [Google Scholar] [CrossRef]
- Rohal, C.B.; Kettenring, K.M.; Sims, K.; Hazelton, E.L.G.; Ma, Z. Surveying managers to inform a regionally relevant invasive Phragmites australis control research program. J. Environ. Manag. 2018, 206, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Köbbing, J.F.; Thevs, N.; Zerbe, S. Cutting of Phragmites australis as a lake restoration technique: Productivity calculation and nutrient removal in Wuliangsuhai Lake, northern China. Sci. Cold Arid Reg. 2018, 8, 400–410. [Google Scholar] [CrossRef]
- Asdrubali, F.; Bianchi, F.; Cotana, F.; D’Alessandro, F.; Pertosa, M.; Pisello, A.L.; Schiavoni, S. Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Build. Environ. 2016, 102, 217–229. [Google Scholar] [CrossRef]
- Shon, C.-S.; Mukashev, T.; Lee, D.; Zhang, D.; Kim, J.R. Can common reed fiber become an effective construction material? Physical, mechanical, and thermal properties of mortar mixture containing common reed fiber. Sustainability 2019, 11, 903. [Google Scholar] [CrossRef] [Green Version]
- Cotana, F.; Cavalaglio, G.; Pisello, A.L.; Gelosia, M.; Ingles, D.; Pompili, E. Sustainable ethanol production from common reed (Phragmites australis) through simultaneuos saccharification and fermentation. Sustainability 2015, 7, 12149–12163. [Google Scholar] [CrossRef] [Green Version]
- Lizasoain, J.; Rincón, M.; Theuretzbacher, F.; Enguídanos, R.; Nielsen, P.J.; Potthast, A.; Zweckmair, T.; Gronauer, A.; Bauer, A. Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass Bioenergy 2016, 95, 84–91. [Google Scholar] [CrossRef]
- Schroedter, L.; Schneider, R.; Remus, L.; Venus, J. High optical pure L-(+)-lactic acid from reed employing Bacillus coagulans: Comparison of various nitrogen sources for the nutrient provision. In Abstract for Bacell; Univerza v Ljubljani: Ljubljana, Slovenia, 2019. [Google Scholar]
- Wichmann, S. Commercial viability of paludiculture: A comparison of harvesting reeds for biogas production, direct combustion, and thatching. Ecol. Eng. 2017, 103, 497–505. [Google Scholar] [CrossRef]
- Muizniece, I.; Kazulis, V.; Zihare, L.; Lupkina, L.; Ivanovs, K.; Blumberga, D. Evaluation of reed biomass use for manufacturing products, taking into account environmental protection requirements. Agron. Res. 2018, 16, 1124–1132. [Google Scholar] [CrossRef]
- Wichmann, S.; Köbbing, J.F. Common reed for thatching—A first review of the European market. Ind. Crops Prod. 2015, 77, 1063–1073. [Google Scholar] [CrossRef]
- Novikova, N.M. Ecological and geographical aspect of the Aral crisis. Part 1. Development of the Aral Sea problem, its study, assessment and development of measures. Ecosyst. Ecol. Dyn. 2019, 3, 5. (In Russian) [Google Scholar]
- Mirfaizov, H.M.; Goryaev, M.I. The study of the carbohydrate composition of reed Phragmites communis Trin, growing in Kazakhstan. Hydrolys. Wood Chem. Ind. 1960, 3, 9–10. (In Russian) [Google Scholar]
- Goryaev, M.I. Reed and its use. In The State and Prospect of Studying the Plant Resources of the USSR; USSR Academy of Sciences: Moscow, Russian, 1958; pp. 71–73. (In Russian) [Google Scholar]
- Klyshev, L.K. Some results of a study of plant resources in Kazakhstan during the Soviet period. Plant Resour. 1967, 3, 388. (In Russian) [Google Scholar]
- Tadzhitdinov, M.; Meniakhmetov, G. Common reed (Phragmites communis Trin.) and its use in the national economy. In Plant Resources of the Lower Amu Darya; FAN: Tashkent, Uzbekistan, 1967; pp. 139–193. (In Russian) [Google Scholar]
- Haeberlein, L.; Kaiser, V. Vegetation Types of the Ili-Delta, Kazakhstan. Bachelor’s Thesis, University of Greifswald, Greifswald, Germany, 2014. [Google Scholar]
- Isambaev, A.I. Reed beds in the middle reaches of the Syr Darya River. In Materials for Flora and Vegetation of Kazakhstan; Academy of Sciences of the Kazakh SSR: Alma-Ata, Kazakhstan, 1962; pp. 28–72. (In Russian) [Google Scholar]
- The Council of Ministers of the USSR. Materials of the Temporary Scientific and Technical Commission; USSR Academy of Sciences: Kiev, Ukraine, 1961. (In Russian)
- The Council of Ministers of the USSR. Report of the Temporary Commission of State Scientific and Technical Commission on the Use of Reed and Other Annual Plants in the National Economy; Gosstroyizdat: Moscow, Russian, 1959. (In Russian)
Site/Region/Country | Reed Beds Area (ha) | Average Productivity (t ha−1 year−1) | Total Biomass (t year−1) |
---|---|---|---|
Former USSR 1 (Union of Soviet Socialist Republics) | |||
Estonia | 27,899 (12,970 harvestable) | 6.8 | 88,368 |
Only lakes, Latvia | 13,400 (10,826 harvestable) | 7.2 | 97,000 |
Curonian Lagoon, Lithuania | 4995 | - | - |
Kaliningrad Oblast, Russia | 200–300 | - | - |
Danube Delta, Ukraine | 105,055 | 5 | 50,000 |
Regions and provinces of Russia | >1,715,000 | - | - |
Kazakhstan | 1,600,000–3,000,000 | 8.2 | 17,000,000 |
Uzbekistan | 1,560,000 (372,630 harvestable) | 16 | 5,961,960 |
Turkmenistan | 1,000,000 | - | - |
European Countries | |||
Poland | 60,000 | - | - |
South Finland | 30,000 (15,000 harvestable) | 10 | 150,000 |
South Sweden | 230,000 | 5 | 1,150,000 |
Mecklenburg-Vorpommern, Germany | 1500 | ||
The Netherlands | 9000 (2850 harvested) | - | - |
Lake Neusiedl, Austria | 60,000 (36,000 harvestable) | 7 | 28,500 |
United Kingdom | 7700 managed for conservation | - | - |
Danube Delta, Romania | 200,000 (125,000 harvested) | 26 | 3,250,000 |
Hungary | 26,200 | - | - |
America | |||
Brackish, salt and tidal marshes, USA | 1,800,000 | - | - |
Asia | |||
NW, N, NE, and coastal east China 2 | 1,005,000 (484,000 harvested) | 5.5 | 5,527,500 |
North and South Korea | 30,000 and 20,000 | - | - |
Iraq | 17,300 | - | - |
Globally | >10,000,000 | - | >30,000,000 |
Province Names * | Reed Beds Area (ha) | Average Productivity (t ha−1 year−1) | Total Biomass (t year−1) | Largest Reed Bed Sites |
---|---|---|---|---|
Alma-Ata | 250,000 | 15 | 3,750,000 | Ili River and tributaries of Lake Balkhash |
Guryev | 170,000 | 15 | 2,550,000 | The northern coast of the Caspian Sea, Rivers Emba and the Ural |
Kzyl-Orda | 126,000 | 15 | 1,890,000 | Syr Darya River, Lake Aschikul |
Dzhambul | 97,000 | 15 | 1,455,000 | Rivers Chu, Talas and Kuragaty, Lake Balkhash |
Chimkent | 73,000 | 15 | 1,095,000 | Rivers Syr Darya and Chu |
Taldy-Kurgan | 65,000 | 15 | 975,000 | Ili River, Lakes Alakul and Sasykkul |
Kustanai | 58,000 | 12 | 696,000 | Turgai River and Lakes Sarymoni, Zharkul, Sarykopa, and Kamyshlykul |
Aktyubinsk | 55,000 | 15 | 2,550,000 | Rivers Temir, Emba and Big Hobda |
Uralsk | 40,000 | 10 | 400,000 | - |
Semipalatinsk | 40,000 | 12 | 480,000 | Irtysh River, Lakes Alakul and Sasykkul |
East Kazakhstan | 22,000 | 10 | 220,000 | Irtysh River and Lake Zaysan |
Tselinograd | 15,000 | 10 | 150,000 | Lake Tengiz, Ishim River and its tributaries |
Kokchetav | 10,000 | 8 | 50,000 | - |
Pavlodar | 10,000 | 8 | 80,000 | Irtysh River |
Karaganda | 6000 | 8 | 48,000 | Taldy River |
North Kazakhstan | 5000 | 8 | 40,000 | Ishim River |
Total | 1,042,000 | 14 | 14,679,000 |
Province Names | Reed Beds Area (ha) | Average Productivity (t ha−1 year−1) | Biomass Stocks (t) | ||
---|---|---|---|---|---|
Total | Including Accounted | Total | Including Accounted | ||
Alma-Ata * | 500,000 | 457,658 | 11 | 5,500,000 | 5,033,000 |
Kzyl-Orda | 400,000 | 84,990 | 11 | 4,400,000 | 935,000 |
Guryev | 275,000 | - | 8 | 2,200,000 | - |
Dzambul | 100,000 | 88,355 | 12 | 1,200,000 | 1,059,000 |
Chimkent | 100,000 | 87,540 | 8 | 800,000 | 700,000 |
Kustanai | 85,000 | 80,802 | 6 | 510,000 | 480,000 |
Aktyubinsk | 60,000 | 48,733 | 6 | 360,000 | 292,000 |
Kokchetav | 60,000 | 56,079 | 6 | 360,000 | 336,000 |
Semipalatinsk | 50,000 | 46,400 | 8 | 400,000 | 371,000 |
Tselinograd | 50,000 | 38,400 | 8 | 400,000 | 307,000 |
East Kazakhstan | 40,000 | 31,218 | 10 | 400,000 | 312,000 |
North Kazakhstan | 35,000 | 29,698 | 5 | 175,000 | 134,000 |
Uralsk | 15,000 | 13,400 | 8 | 120,000 | 108,000 |
Pavlodar | 15,000 | 11,971 | 5 | 75,000 | 60,000 |
Karaganda | 15,000 | 13,430 | 6 | 75,000 | 67,000 |
Total | 1,800,000 | 1,088,674 | - | 16,975,000 | 10,194,000 |
Province Names | Until 1960 | 1990–1993 | ||||
---|---|---|---|---|---|---|
Reed Beds Area (ha) | Average Productivity (t ha−1 year−1) | Production Stock (t) | Reed Beds Area (ha) | Average Productivity (t ha−1 year−1) | Production Stock (t) | |
Alma-Ata | 250,000 | 15 | 3,750,000 | 26,400 | 8.0 | 180,000 |
Guryev | 170,000 | 15 | 2,550,000 | 51,000 | 8.5 | 433,500 |
Kzyl-Orda | 126,000 | 15 | 1,890,000 | 11,800 | 8.6 | 86,600 |
Dzambul | 97,000 | 15 | 1,455,000 | 8700 | 6.5 | 64,500 |
Chimkent | 73,000 | 15 | 1,095,000 | 7200 | 8.6 | 63,000 |
Taldy-Kurgan | 65,000 | 15 | 975,000 | 18,100 | 8.5 | 154,000 |
Kustanai | 58,000 | 12 | 696,000 | 31,600 | 10.0 | 316,000 |
Aktyubinsk | 55,000 | 14 | 770,000 | 33,500 | 10.0 | 335,000 |
Uralsk | 40,000 | 10 | 400,000 | 32,000 | 10.0 | 320,000 |
Semipalatinsk | 40,000 | 12 | 480,000 | 15,000 | 8.5 | 127,500 |
East Kazakhstan | 22,000 | 10 | 220,000 | 13,200 | 8.5 | 82,200 |
Tselinograd | 15,000 | 10 | 150,000 | 7500 | 8.0 | 61,000 |
Kokchetav | 10,000 | 8 | 80,000 | 6000 | 7.0 | 42,000 |
Pavlodar | 10,000 | 8 | 80,000 | 6000 | 7.0 | 42,000 |
Karaganda | 6000 | 8 | 48,000 | 3500 | 7.0 | 24,500 |
North Kazakhstan | 5000 | 8 | 40,000 | 3000 | 7.0 | 21,000 |
Total | 1,042,000 | - | 14,679,000 | 274,300 | - | 2,352,700 |
Years | Total Reed Beds Area (ha) | Area of Production Reed Beds (ha) | Average Productivity (t ha−1 year−1) | Total Biomass (t year−1) | Reference |
---|---|---|---|---|---|
Until 1960 | 363,200 | 142,700 | 15 | 5,448,000 | Demidovskaya [54] |
1990–1993 | 38,354 | 15,069 | 8 | 306,832 | Isambaev [55] |
2014–2015 | 211,778 | 85,400 | 10.2 | 2,155,218 | Thevs et al. [28] |
№ | Name | Date of Record | Province | Area of the Ramsar Site (ha) | Protected Areas |
---|---|---|---|---|---|
1 | Tengiz-Korgalzhyn Lake System | 11 October 1976 | Akmola Province | 353,341 | Korgalzhyn State Nature Reserve |
2 | Lakes of the lower Turgay and Irgiz | 11 October 1976 | Aktobe Province | 348,000 | Irgiz-Turgai Reserve, Turgai Nature Sanctuary of Republican Importance |
3 | Ural River Delta and the adjacent Caspian Sea coast | 10 March 2009 | Atyrau Province | 111,500 | “Akzhayik” Nature Reserve |
4 | Koibagar-Tyuntyugur Lake System | 7 May 2009 | Qostanai Province | 58,000 | - |
5 | Kulykol-Taldykol Lake System | 7 May 2009 | Qostanai Province | 8300 | - |
6 | Zharsor-Urkash Lake System | 12 July 2009 | Qostanai Province | 41,250 | Zharsor-Urkash Nature Sanctuary of Republican Importance |
7 | Naurzum Lake System | 12 July 2009 | Qostanai Province | 139,714 | Naurzum State Nature Reserve |
8 | Alakol-Sasykkol Lakes System | 25 November 2009 | Shared between Almaty and East Kazakhstan Provinces | 914,663 | Alakol State Nature Reserve |
9 | Ili River Delta and South Lake Balkhash | 1 January 2012 | Almaty Province | 976,630 | Balkhash, Karroy, and Kukan State Nature Sanctuaries of Republican Importance |
10 | Lesser Aral Sea and Delta of the Syrdarya River | 2 February 2012 | Kyzylorda Province | 330,000 | Barsakelmes State Nature Reserve |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baibagyssov, A.; Thevs, N.; Nurtazin, S.; Waldhardt, R.; Beckmann, V.; Salmurzauly, R. Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects. Resources 2020, 9, 74. https://doi.org/10.3390/resources9060074
Baibagyssov A, Thevs N, Nurtazin S, Waldhardt R, Beckmann V, Salmurzauly R. Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects. Resources. 2020; 9(6):74. https://doi.org/10.3390/resources9060074
Chicago/Turabian StyleBaibagyssov, Azim, Niels Thevs, Sabir Nurtazin, Rainer Waldhardt, Volker Beckmann, and Ruslan Salmurzauly. 2020. "Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects" Resources 9, no. 6: 74. https://doi.org/10.3390/resources9060074
APA StyleBaibagyssov, A., Thevs, N., Nurtazin, S., Waldhardt, R., Beckmann, V., & Salmurzauly, R. (2020). Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects. Resources, 9(6), 74. https://doi.org/10.3390/resources9060074