End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Method for the Calculation of the Global Potential of Different End-of-Life Options of Bio-Based Plastics
3. Results and Discussion
3.1. Literature Review
3.1.1. Year of Publication
3.1.2. Types of Plastics
3.1.3. Types of End-of-Life Options
3.1.4. LCIA Impact Categories
3.1.5. Regional Scope/Geographical Representativeness of the Studies
3.1.6. Technological (Laboratory/Industrial) Representativeness of the Studies/Scenarios
3.1.7. Type of Waste (Pre-Consumer or Post-Consumer)
3.1.8. Functional Unit
3.1.9. System Boundaries
3.1.10. Accounting for Credits for Secondary Material
3.1.11. Data Quality
3.1.12. End-of-Life Scenarios
3.1.13. Quantitative LCIA Results
3.2. Global Potential of Different of End-of-Life Options of Bio-Based Plastics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Global Plastics Market Analysis. Available online: https://www.grandviewresearch.com/press-release/global-plastics-market-analysis (accessed on 26 June 2020).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e170782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plastics the Facts 2018. Available online: https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf (accessed on 26 June 2020).
- Endres, H.-J.; Siebert-Raths, A. Engineering Biopolymers; Hanser: Munich, Germany, 2011. [Google Scholar] [CrossRef]
- Biopolymers Facts and Statistics. 2019. Available online: https://www.ifbb-hannover.de/files/IfBB/downloads/faltblaetter_broschueren/f+s/Biopolymers-Facts-Statistics-2019.pdf (accessed on 26 June 2020).
- Blanco, I.; Ingrao, C.; Siracusa, V. Life-cycle assessment in the polymeric sector: A comprehensive review of application experiences on the Italian scale. Polymers 2020, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Bioplastic Market Data-Global Production Capacity 2018–2024. Available online: https://www.european-bioplastics.org/wp-content/uploads/2019/11/Global_Production_Capacity_2018-2024_en.jpg (accessed on 26 June 2020).
- Bioplastic Market Data-Global Production Capacity 2019 by Market Segment. Available online: https://www.european-bioplastics.org/wp-content/uploads/2019/11/Global_Production_Capacity_2019_by_market_segment_en.jpg (accessed on 26 June 2020).
- EU Directive on Waste and Repealing Certain Directives 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098 (accessed on 26 June 2020).
- Spierling, S.; Röttger, C.; Venkatachalam, V.; Mudersbach, M.; Herrmann, C.; Endres, H.-J. Bio-based plastics-A building block for the circular economy? Procedia CIRP 2018, 69, 573–578. [Google Scholar] [CrossRef]
- Hildebrandt, J.; Bezama, A.; Thrän, D. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers? Waste Manag. Res. 2017, 35, 367–378. [Google Scholar] [CrossRef]
- A Circular Economy for Plastics. Available online: https://op.europa.eu/en/publication-detail/-/publication/33251cf9-3b0b-11e9-8d04-01aa75ed71a1/language-en/format-PDF/source-87705298 (accessed on 26 June 2020).
- El Dorado of Chemical Recycling. Available online: https://circulareconomy.europa.eu/platform/sites/default/files/2019_08_29_zwe_study_chemical_recycling.pdf (accessed on 26 June 2020).
- La Rosa, A.D.; Blanco, I.; Banatao, D.R.; Pastine, S.J.; Björklund, A.; Cicala, G. Innovative chemical process for recycling thermosets cured with Recyclamines® by converting bio-epoxy composites in reusable thermoplastic-An LCA study. Materials 2018, 11, 353. [Google Scholar] [CrossRef] [Green Version]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar] [CrossRef] [Green Version]
- OWS Expert Statement (Bio)Degradable Mulching Films. Available online: https://docs.european-bioplastics.org/publications/OWS_Expert_statement_mulching_films.pdf (accessed on 26 June 2020).
- Luangthongkam, P.; Strong, P.J.; Mahamud, S.N.S.; Evans, P.; Jensen, P.; Tyson, G.; Laycock, B.; Lant, P.A.; Pratt, S. The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresour. Bioprocess. 2019, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol1.html (accessed on 26 June 2020).
- Plastics the Facts 2019. Available online: https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed on 26 June 2020).
- Bioplastic Market Data. Available online: https://www.european-bioplastics.org/market/ (accessed on 26 June 2020).
- Bioplastic Market Data-Global Production Capacity 2019 by Material Type Percentage. Available online: https://www.european-bioplastics.org/wp-content/uploads/2019/11/Global_Production_Capacity_2019_by_material_type_percentage_en.jpg (accessed on 26 June 2020).
- Piemonte, V.; Sabatini, S.; Gironi, F. Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? J. Polym. Environ. 2013, 21, 640–647. [Google Scholar] [CrossRef]
- Gere, D.; Czigany, T. Rheological and mechanical properties of recycled polyethylene films contaminated by biopolymer. Waste Manag. 2018, 76, 190–198. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Kulikowska, D.; Bernat, K. Effect of bio-based products on waste management. Sustainability 2020, 12, 2088. [Google Scholar] [CrossRef] [Green Version]
- Soroudi, A.; Jakubowicz, I. Recycling of bioplastics, their blends and biocomposites: A review. Eur. Polym. J. 2013, 49, 2839–2858. [Google Scholar] [CrossRef]
- Curran, M.A. Life-Cycle assessment. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Amsterdam, the Netherlands, 2008; pp. 2168–2174. ISBN 9780080454054. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14040:2006. Environmental Management–Life Cycle Assessment–Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006. Environmental Management-Life Cycle Assessment-Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Hottle, T.; Bilec, M.; Landis, A. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013, 98, 1898–1907. [Google Scholar] [CrossRef]
- Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.-J. Bio-based plastics-A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers-a critical review. Resour. Conserv. Recycl. 2013, 78, 54–66. [Google Scholar] [CrossRef]
- Zumsteg, J.M.; Cooper, J.S.; Noon, M.S. Systematic review checklist-a standardized technique for assessing and reporting reviews of life cycle assessment data. J. Ind. Ecol. 2012, 16, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Fink, A. Conducting Research Literature Reviews: From the Internet to Paper; Sage Publications: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Borrego, M.; Foster, M.J.; Froyd, J.E. Systematic literature reviews in engineering education and other developing interdisciplinary fields. J. Eng. Educ. 2014, 103, 45–76. [Google Scholar] [CrossRef]
- Hottle, T.; Bilec, M.; Landis, A. Biopolymer production and end of life comparisons using life cycle assessment. Resour. Conserv. Recycl. 2017, 122, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Suwanmanee, U.; Leejarkpai, T.; Mungcharoen, T. Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J. Clean. Prod. 2016, 125, 95–107. [Google Scholar] [CrossRef]
- Rossi, V.; Cleeve-Edwards, N.; Lundquist, L.; Schenker, U.; Dubois, C.; Humbert, S.; Jolliet, O. Life cycle assessment of end-of-life options for two biodegradable packaging materials: Sound application of the European waste hierarchy. J. Clean. Prod. 2015, 86, 132–145. [Google Scholar] [CrossRef]
- Gironi, F.; Piemonte, V. Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environ. Prog. Sustain. Energy 2011, 30, 459–468. [Google Scholar] [CrossRef]
- Khoo, H.H.; Tan, R.B.H. Environmental impacts of conventional plastic and bio-based carrier bags. Int. J. Life Cycle Assess. 2010, 15, 338–345. [Google Scholar] [CrossRef]
- Changwichan, K.; Silalertruksa, T.; Gheewala, S.H. Eco-Efficiency Assessment of bioplastics production systems and end-of-life options. Sustainability 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Yoo, S.; Park, S.-I. Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea. Sustainability 2018, 10, 2369. [Google Scholar] [CrossRef] [Green Version]
- Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-in, T.; Nithitanakul, M.; Sarobol, E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014, 65, 539–550. [Google Scholar] [CrossRef]
- De Andrade, M.F.C.; Souza, P.M.S.; Cavalett, O. Life cycle assessment of Poly(Lactic Acid) (PLA): Comparison between chemical recycling, mechanical recycling and composting. J. Polym. Environ. 2016, 24, 372–384. [Google Scholar] [CrossRef]
- Maga, D.; Hiebel, M.; Thonemann, N. Life cycle assessment of recycling options for polylactic acid. Resour. Conserv. Recycl. 2019, 149, 86–96. [Google Scholar] [CrossRef]
- Ingrao, C.; Tricase, C.; Cholewa-Wójcik, A.; Kawecka, A.; Rana, R.; Siracusa, V. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Sci. Total Environ. 2015, 537, 385–398. [Google Scholar] [CrossRef]
- Hermann, B.G.; Blok, K.; Patel, M.K. Twisting biomaterials around your little finger: Environmental impacts of bio-based wrappings. Int. J. Life Cycle Assess. 2010, 15, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Product Overview and Market Projection of Emerging Bio-Based Plastics, PRO-BIP 2009. Available online: http://news.bio-based.eu/media/news-images/20091108-02/Product_overview_and_market_projection_of_emerging_bio-based_plastics,_PRO-BIP_2009.pdf (accessed on 26 June 2020).
- Vink, E.; Davies, S. Life Cycle Inventory and impact assessment data for 2014 IngeoTM polylactide production. Ind. Biotechnol. 2015, 11, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
Bio-Based Plastic | End-of-Life Options | Source | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MR | CR | SbR | IC | DfS 1 | IwER | InoER | AD | LFnoER | LFwER | ||
Bio-PET, Bio-HPDE, PLA, TPS | X | X | X | Hottle et al. 2017 [35] | |||||||
PLA | X | X | Suwanmanee et al. 2016 [36] | ||||||||
PLA, TPS | X | X | X | X | X | X | X | X | Rossi et al. 2015 [37] | ||
PLA | X | X | X | X | Gironi and Piemonte 2010 [38] | ||||||
PHA | X | X | X | Khoo et al. 2010 [39] | |||||||
PLA, PHA, PBS 2 | X | X | X | Changwichan et al. 2018 [40] | |||||||
PLA | X | X | Choi et al.2018 [41] | ||||||||
PLA | X | X | X | X | Papong et al. 2014 [42] | ||||||
PLA | X | X | X | Cosate de Andrade et al. 2016 [43] | |||||||
PLA | X | X | X | X | Maga et al. 2019 [44] | ||||||
PLA | X | Ingrao et al. 2015 [45] | |||||||||
Bio-PE, PLA | X | X | X | X | Hermann et al. 2010 [46] |
LCA Phase | Information Extracted from the Studies |
---|---|
General information | Objectives of the study; mention of the focused standard; assessment tool or software used for modelling |
Goal and scope definition | Assessed product, type of bio-based polymer/plastic and end-of-life options; functional unit; system boundaries; handling of multi-functional processes |
Life-cycle inventory | Data origin of end-of-life inventories; data representativeness of end-of-life inventories; handling of treatment credits; types of waste being treated |
Life-cycle impact assessment | LCIA methods used; impact categories reported; LCIA results |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spierling, S.; Venkatachalam, V.; Mudersbach, M.; Becker, N.; Herrmann, C.; Endres, H.-J. End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective. Resources 2020, 9, 90. https://doi.org/10.3390/resources9070090
Spierling S, Venkatachalam V, Mudersbach M, Becker N, Herrmann C, Endres H-J. End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective. Resources. 2020; 9(7):90. https://doi.org/10.3390/resources9070090
Chicago/Turabian StyleSpierling, Sebastian, Venkateshwaran Venkatachalam, Marina Mudersbach, Nico Becker, Christoph Herrmann, and Hans-Josef Endres. 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective" Resources 9, no. 7: 90. https://doi.org/10.3390/resources9070090
APA StyleSpierling, S., Venkatachalam, V., Mudersbach, M., Becker, N., Herrmann, C., & Endres, H. -J. (2020). End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective. Resources, 9(7), 90. https://doi.org/10.3390/resources9070090