Ecodesigned Formulations with Tomato Pomace Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Tomato Pomace
2.3. Extraction with Glycerol/Glucose Mixture
2.4. Extraction with DL-Menthol/Lactic Acid Mixture
2.5. Extraction with Lactic Acid/Glucose Mixture
2.6. Extraction with L-Proline/Glycerol Mixture
2.7. Thermal Analyses
2.8. Fourier-Transform Infrared (FTIR) Analyses
2.9. High-Performance Liquid Chromatography Analysis (HPLC–DAD)
2.10. Determination of Compositions of Extracts
2.10.1. Total Flavonoid Content (TFC)
2.10.2. Total Carotenoid Content (TCC)
2.10.3. Total Phenolic Content (TPC)
2.11. Preparation of Cosmetic Emulsions
2.11.1. Formulation of Peel-Off Mask
2.11.2. Formulation of Lip Balm
2.11.3. Formulation of Hydrosoluble Mask
2.11.4. Formulation of Moisturizing Cream
3. Results and Discussion
3.1. Synthesis of Deep Eutectic Solvents
3.2. Extraction of Tomato Pomace by DESs
3.3. Characterization of Synthesized NaDESs
3.3.1. Infrared Analyses
3.3.2. Thermal Analyses
3.4. Analysis of Extracts
3.5. Methodology of Formulations
3.6. Application of Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soto, M.L.; Parada, M.; Flaqué, E.; Dominguez, H. Personal-Care Products Formulated with Natural Antioxidant Extracts. Cosmetics 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Barbulova, A.; Colucci, G.; Apone, F. New trends in cosmetics: By-products of plant origin and their potential use as cosmetic active ingredients. Cosmetics 2015, 2, 82–92. [Google Scholar] [CrossRef]
- Plainfossé, H.; Trinel, M.; Verger-Dubois, G.; Azoulay, S.; Burger, P.; Fernandez, X. Valorisation of Ribes nigrum L. pomace, an agri-food by-product to design a new cosmetic active. Cosmetics 2020, 7, 56. [Google Scholar] [CrossRef]
- Carriço, C.; Ribeiro, H.M.; Marto, J. Converting cork by-products to ecofriendly cork bioactive ingredients: Novel pharmaceutical and cosmetics applications. Ind. Crops Prod. 2018, 125, 72–84. [Google Scholar] [CrossRef]
- Jamaleddine, A.; Caro, D.P.; Bouajila, J.; Evon, P.; Haddad, J.G.; El-Kalamouni, C.; Hijazi, A.; Merah, O. In Vitro bioactivities of extracts from tomato pomace. Front. Biosci. (Landmark Ed.) 2022, 27, 259. [Google Scholar] [CrossRef] [PubMed]
- Sopyan, I.; Gozali, D.; Tiassetiana, S. Formulation of tomato extracts (Solanum lycopersicum L.) as a sunscreen lotion. Natl. J. Physiol. Pharm. Pharmacol. 2017, 8, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, N.; Durrani, A.I.; Rubab, S.; Bahadur, S. Formulation and characterization of Aloe vera gel and tomato powder containing cream. Acta Ecol. Sin. 2022, 42, 34–42. [Google Scholar] [CrossRef]
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and antioxidant activity of hydro-glyceric extracts obtained from different grape seed varieties incorporated in cosmetic creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Ling, J.; Hadinoto, K. Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. Int. J. Mol. Sci. 2022, 23, 3381. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Panic, M.; Gunjevic, V.; Cravotto, G.; Redovnikovic, I.R. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Spronsen, J.V.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq. 2016, 215, 345–386. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents—Ultrafast microwave-assisted NADES preparation and extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.; Ferreira, T.; Jiao, G.; Brooks, M.S. Sustainable approach for lycopene extraction from tomato processing by-product using hydrophobic eutectic solvents. J. Food Sci. Technol. (India) 2019, 56, 1649–1654. [Google Scholar] [CrossRef]
- Lazzarini, C.; Casadei, E.; Valli, E.; Tura, M.; Ragni, L.; Bendini, A.; Toschi, T.G. Sustainable drying and green deep eutectic extraction of carotenoids from tomato pomace. Foods 2022, 11, 405. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M.; Vasyliev, G. Extraction of phenolic compounds from tomato pomace using choline chloride-based deep eutectic solvents. J. Food Meas. Charact. 2022, 16, 1087–1104. [Google Scholar] [CrossRef]
- Vasyliev, G.; Lyudmyla, K.; Hladun, K.; Skiba, M.; Vorobyova, V. Valorization of tomato pomace: Extraction of value-added components by deep eutectic solvents and their application in the formulation of cosmetic emulsions. Biomass Convers. Biorefinery 2022, 12, 95–111. [Google Scholar] [CrossRef]
- Wils, L.; Leman-Loubière, C.; Bellin, N.; Clément-Larosière, B.; Pinault, M.; Chevalier, S.; Enguehard-Gueiffier, C.; Bodet, C.; Boudesocque-Delaye, L. Natural deep eutectic solvent formulations for spirulina: Preparation, intensification, and skin impact. Algal Res. 2021, 26, 102317. [Google Scholar] [CrossRef]
- Fernandez, M.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Santana, A.P.R.; Mora-Vargas, J.A.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J. Mol. Liq. 2019, 293, 111452. [Google Scholar] [CrossRef]
- Ali, H.M.; Ghareeb, M.M.; Al-Remawi, M.; Al-Akayleh, F. New insight into single phase formation of capric acid/menthol eutectic mixtures by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Trop. J. Pharm. Res. 2020, 19, 361–369. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.; Marrucho Ferreira, I.M. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísi, M.; Barreiros, S.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq. 2016, 215, 534–540. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Zduńska, K.; Agnieszka, D.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Costa, A.M.; Marques, M.; Congiu, F.; Paiva, A.; Simões, P.; Ferreira, A.; Bronze, M.R.; Marto, J.; Ribeiro, H.M.; Simões, S. Evaluating the presence of lycopene-enriched extracts from tomato on topical emulsions: Physico-chemical characterization and sensory analysis. Appl. Sci. 2021, 11, 5120. [Google Scholar] [CrossRef]
- Gupta, S.K.; Scottsdale, A.Z. Skin Firming Anti-Aging Cosmetic Mask Compositions. U.S. Patent US2004/0161435, 19 August 2004. [Google Scholar]
- Azmin, S.; Abidin, Z.; Sulaiman, N.S.; Nor, M.; Abdullah, P. Evaluation of moisturizing lip balm comprise of natural pigment from tomato. AIP Conf. Proc. 2022, 2454, 020028. [Google Scholar]
No. | Composition | Molar Ratio | % of Water | Target Molecules/Plant Matter | Ref. |
---|---|---|---|---|---|
DES 1 | Glycerol + glucose | 3:1 | 30 | Fatty acids and pigments/microalga spirulina | [20] |
DES 2 | DL-menthol + lactic acid | 8:1 | 0 | Lycopene/tomato pomace | [16] |
DES 3 | Glucose + lactic acid | 5:1 | 15 | Phenolic compound/tomato pomace, olive cake | [21] |
DES 4 | Glycerol + L-proline | 1:2.5 | 30 | Phenolic compound/moringa leaves | [22] |
No. | Method of Extraction | Amount of DES | Mass of TP (g) |
---|---|---|---|
DES 1 | Maceration (2 h, 40 °C) | 32 g | 2 |
DES 2 | Maceration (30 min, 50 °C) | 20 g | 3.4 |
DES 3 | Ultrasound (1 h, 40 °C) | 40 mL | 2 |
DES 4 | Ultrasound (1 h, 40 °C) | 20 mL | 2 |
Formula | Molecule |
---|---|
DL-menthol | |
L-proline | |
Lactic acid | |
D-Glucose | |
Glycerol |
NaDES | Composition | % of Water | Td (°C) | Tg (°C) | Tc (°C) | Tm (°C) |
---|---|---|---|---|---|---|
DES 1 | Glycerol/glucose (3:1) | 30 | 180 | |||
DES 2 | DL-menthol/lactic acid (8:1) | 0 | 120 | −54 | −15 | ≈10 |
DES 3 | Glucose/lactic acid (5:1) | 15 | 130 | −75.1 | ||
DES 4 | Glycerol/L-proline (1:2.5) | 30 | 180 | −66.4 |
Solvent of Extraction | Rate of Extracted Polyphenols (µg Gallic Acid Equivalent/g of Dried TP) |
---|---|
DES 3 (lactic acid/glucose) | 1915.5 ± 15.1 |
Ethanol * | 3489.5 ± 23.3 |
Ethanol + water * | 3251.8 ± 19.4 |
Supercritical CO2 * | 3062.9 ± 21.6 |
Ethyl acetate * | 786.7 ± 8.3 |
Extraction Solvent | Rate of Extracted Flavonoids (µg Rutin Equivalent/g of TP) |
---|---|
DES 1 | 439.5 ± 8.3 |
DES 2 | 50.5 ± 5.3 |
DES 3 | 1410.9 ± 15.3 |
DES 4 | 893.5 ± 10.8 |
Ethanol | 3479 ± 25.5 |
Ethanol + ethyl acetate | 1853.2 ± 13.4 |
Supercritical CO2 | 1174.8 ± 12.3 |
Extraction Solvent | Rate of Extracted Carotenoids (µg β-Carotene Equivalent/g of TP) |
---|---|
DES 2 | 96.4 ± 4.1 |
Supercritical CO2 | 2895.1 ± 26.2 |
Ethanol + ethyl acetate | 1521.0 ± 17.4 |
Ethyl acetate | 1293.7 ± 15.5 |
Ethanol | 849.6 ± 12.3 |
No. | RT (min) | Compound | DES 1 (a.u.) | DES 2 (a.u.) | DES 3 (a.u.) | DES 4 (a.u.) |
---|---|---|---|---|---|---|
1 | 2.04 | Gallic acid | - | 30.4 | 193.3 | - |
2 | 2.21 | (−)-Epicatechin (flavanol) | - | - | - | 456.0 |
3 | 2.51 | Methyl 3,5-dihydroxybenzoate | - | 17.9 | - | - |
4 | 2.70 | Ferulic acid | 465.7 | 16.9 | 66.4 | 124.8 |
5 | 3.15 | Caffeic acid | 158.7 | - | - | 285.8 |
6 | 3.65 | Trans-3-hydroxycinnamic acid (chlorogenic acid) | - | 27.5 | 72.0 | - |
7 | 3.85 | p-Coumaric acid | 212.8 | - | - | - |
8 | 5.43 | Myricetin (flavonol) | 237.0 | 13.0 | 44.6 | 199.7 |
9 | 6.21 | 6-Hydroxycoumarin (tannin) | 105.8 | 6.1 | 45.1 | - |
10 | 9.18 | 2-Hydroxycinnamic acid (tannin) | 28.8 | - | - | 32.7 |
11 | 9.63 | Quercetin (flavonol) | 40.0 | 0.9 | 9.3 | 21.3 |
12 | 10.61 | 3,4-Dihydroxycinnamate | - | 0.1 | - | 14.6 |
13 | 10.94 | trans-Cinnamic acid | - | 0.4 | - | - |
14 | 11.17 | Naringenin (flavanone) | - | - | - | 81.6 |
15 | 11.77 | α-Cyano-4-hydroxycinnamic acid | 144.2 | 4.7 | 37.0 | - |
16 | 12.66 | Vitamin E (tocopherol) | 9.7 | 0.1 | 4.1 | 5.4 |
17 | 13.8 | Kaempferol (flavonol) | 0.4 | 0.1 | 3.3 | 3.3 |
18 | 14.68 | 3-Cyano-7-hydroxy-4-methyl coumarin | - | 0.3 | 3.8 | - |
19 | 14.99 | 2,4-Dihydroxy-3,6-dimethyl benzoic acid | 10.1 | - | - | 2.8 |
20 | 15.58 | 6-Hydroxy flavone | - | - | 1.4 | 1.2 |
21 | 16.22 | 5,6,7-Hydroxy flavone (baicalein) | 0.9 | 0.1 | 0.1 | - |
22 | 18.1 | 7-Hydroxy-4-phenylcoumarin | - | 0.3 | - | - |
23 | 18.53 | Ethyl trans-2-hydroxy cinnamate | 31.7 | 1.3 | - | - |
24 | 18.70 | 5-Hydroxy-4′-methoxy flavone | 14.9 | - | 15.7 | 42.8 |
25 | 19.61 | 7-Hydroxy flavone | - | 0.2 | - | - |
26 | 19.79 | β-Carotene | 9.2 | 24.5 | 7.3 | - |
27 | 19.81 | Lutein | 0.1 | 11.1 | 7.3 | - |
28 | 20.28 | 5,7-Dihydroxy-3’,4’,5’-trimethoxy flavone | 2.9 | 0.2 | - | 15.0 |
29 | 20.62 | 5,7-Dihydroxy-4-propyl coumarin | - | 0.3 | 0.8 | - |
30 | 20.75 | 3′-Hydroxy-6-methyl flavone | 3.2 | - | - | - |
31 | 20.99 | 5-Hydroxy flavone | - | - | - | 0.1 |
32 | 21.12 | 3,3′-Dimethoxy flavone | 0.2 | - | 0.2 | - |
33 | 21.49 | 3,6,3′-Trimethoxy flavone | 0.6 | - | 0.6 | - |
34 | 21.50 | 7-Hydroxy-3′,4′,5′-trimethoxy-α-naphthoflavone | - | - | - | 0.6 |
35 | 21.83 | 3,7-Dimethoxyflavone | 1.0 | 1.4 | - | - |
36 | 22 | 5-Hydroxy-3′-methoxy flavone | - | - | 1.2 | - |
37 | 22.03 | 5-Hydroxy-4′-methoxy flavone | - | - | - | 0.9 |
38 | 22.54 | 4′,5′-Dimethoxy-2′-hydroxy-4-methyl chalcone | - | - | - | 0.2 |
39 | 23.39 | Hamamelitannin | 10.2 | 5.1 | 5.02 | - |
Ingredient | Composition (% w) | Function |
---|---|---|
Polyvinyl alcohol | 15.0 | Film-forming agent (viscosity control) |
Water | 69.1 | Solvent |
DES 1 with extract | 11.4 | Antioxidant and purifying agent |
Polyethylene glycol 40 | 2.1 | Film-forming and thickening agent |
Glycerol monolaurate | 1.0 | Emollient and emulsifier agent |
Ethanol | 1 | Solubilizer and inhibitor of microbial activity |
Cosgard | 0.4 | Preservative |
Ingredient | Composition (% w) | Function |
---|---|---|
Candelilla wax | 10.4 | Film-forming agent |
Beeswax | 10.0 | Emulsifying, film-forming and perfuming agent |
Fractionated coconut oil (caprylis) | 46.3 | Softener |
DES 2 with extract | 2.3 | Coloring (lycopene) and regenerating agent |
Castor oil | 30.2 | Nourishing and repairing agent |
Raspberry extract | 7 drops | Natural origin, accepted by ECOCERT |
Ingredient | Composition (% w) | Function |
---|---|---|
Xanthan gum | 7.5 | Gelling agent and emulsifier |
DES 3 with extract | 5.3 | Film-forming agent and antioxidant |
Glycerol | 20.5 | Moisturizing agent |
Water Niacinamide | 55.7 10 | Solvent Vitamin B3 and smoothing agent |
Cosgard | 1.0 | Preservative |
Ingredient | Composition (% by Mass) | Function |
---|---|---|
Water | 40.7 | Solvent |
DES 4 with extract | 18.5 | Antioxidant, regenerating properties |
Xanthan gum | 0.3 | Gelling agent, emulsifier |
Jojoba oil | 11.1 | Emollient, skin protection |
Carnauba wax | 0.9 | Emollient |
Glycerin laurate | 4.1 | Softener and emulsifier |
Shea butter | 3.4 | Texturizing agent, skin care |
Starch | 3.6 | Viscosity control |
Ethanol | 17.2 | Solvent |
Property | Peel-Off Mask | Water-Soluble Mask | Hydrating Cream | Lip Balm |
---|---|---|---|---|
Aspects of dry film of NaDESs on contrast cards | Glossy film | Soft film | Mat film | Mat and smooth film |
Spread diameters of formulations (cm) * | 1.5 | 2 | 3 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaleddine, A.; Urrutigoïty, M.; Bouajila, J.; Merah, O.; Evon, P.; de Caro, P. Ecodesigned Formulations with Tomato Pomace Extracts. Cosmetics 2023, 10, 7. https://doi.org/10.3390/cosmetics10010007
Jamaleddine A, Urrutigoïty M, Bouajila J, Merah O, Evon P, de Caro P. Ecodesigned Formulations with Tomato Pomace Extracts. Cosmetics. 2023; 10(1):7. https://doi.org/10.3390/cosmetics10010007
Chicago/Turabian StyleJamaleddine, Aya, Martine Urrutigoïty, Jalloul Bouajila, Othmane Merah, Philippe Evon, and Pascale de Caro. 2023. "Ecodesigned Formulations with Tomato Pomace Extracts" Cosmetics 10, no. 1: 7. https://doi.org/10.3390/cosmetics10010007
APA StyleJamaleddine, A., Urrutigoïty, M., Bouajila, J., Merah, O., Evon, P., & de Caro, P. (2023). Ecodesigned Formulations with Tomato Pomace Extracts. Cosmetics, 10(1), 7. https://doi.org/10.3390/cosmetics10010007