Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Methods Based on Antioxidant Capacity
3.2. Methods Based on Enzyme Inhibition
3.3. Methods Based on Cell Culture
3.3.1. Fibroblast Cell Culture
3.3.2. Keratinocyte Cell Culture
3.3.3. Full Skin Models
3.3.4. Skin in a Chip
3.3.5. Skin Explants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | three-dimensional. |
7-AAD | 7-aminoactinomicina D. |
AAAPVN | N-succinyl-Ala–Ala–Ala–p-nitroanilide. |
ABTS | 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) |
AP | Antioxidant power. |
BHT | Butylated hydroxy toluene. |
CH | Clostridium histolyticum. |
COL1A1 | Collagen type I. |
COL7A1 | Collagen type VII. |
CUPRAC | Cupric reducing antioxidant capacity. |
DPPH | 2,2-diphenyl-1-picrylhydrazyl. |
ECM | Extracellular matrix. |
EGCG | Epigallocatechin gallate. |
ELISA | Enzyme-Linked ImmunoSorbent Assay. |
F | Fluorimetry. |
FRAP | Ferric reducing antioxidant power. |
HA | Hyaluronic acid. |
HBT | hyaluronidase from bovine testes. |
HDFs | Human dermal fibroblasts. |
IL8 | interleukin 8. |
MMPs | matrix metalloproteinases. |
MTT | (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide). |
NE | neutrophil elastase. |
NI | not indicated. |
ORAC | oxygen radical absorbance capacity assay. |
PCR | Polymerase chain reaction. |
PPE | porcine pancreatic elastase. |
PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
Q-RTPCR | Quantitative Reverse Transcription Polymerase chain reaction. |
ROS | Reactive oxygen species. |
RT | room temperature. |
S | spectrophotometry. |
SDS-PAGE | sodium dodecyl sulfate polyacrylamide gel electrophoresis. |
T | Turbidimetry. |
TBHP | tert-Butyl hydroperoxide. |
TOAC | total antioxidant capacity. |
UV | Ultraviolet. |
References
- He, X.; Gao, X.; Xie, W. Research Progress in Skin Aging and Immunity. Int. J. Mol. Sci. 2024, 25, 4101. [Google Scholar] [CrossRef] [PubMed]
- Natarelli, N.; Gahoonia, N.; Aflatooni, S.; Bhatia, S.; Sivamani, R.K. Dermatologic Manifestations of Mitochondrial Dysfunction: A Review of the Literature. Int. J. Mol. Sci. 2024, 25, 3303. [Google Scholar] [CrossRef]
- Wang, Z.; Man, M.Q.; Li, T.; Elias, P.M.; Mauro, T.M. Aging-associated alterations in epidermal function and their clinical significance. Aging 2020, 12, 5551–5565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H.; Man, M.Q.; Hu, L. Aging in the dermis: Fibroblast senescence and its significance. Aging Cell 2024, 23, e14054. [Google Scholar] [CrossRef] [PubMed]
- Araviiskaia, E.; Berardesca, E.; Bieber, T.; Gontijo, G.; Sanchez Viera, M.; Marrot, L.; Chuberre, B.; Dreno, B. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.M.; Hanna, S.; Guenther, L.C.; Boucher, N. Comparison of topical antiaging creams in the management of lateral canthal lines. J. Cosmet. Dermatol. 2020, 19, 694–704. [Google Scholar] [CrossRef]
- Sadowski, G.; Sadowski, J. Safety and Efficacy of a Novel Antiaging Skin Care Regimen Containing Neutraceuticals and Growth Factors on the Facial Skin of Women: A 12-Week Open-label Study. J. Clin. Aesthet. Dermatol. 2020, 13, 24–34. [Google Scholar]
- Banov, D.; Carvalho, M.; Schwartz, S.; Frumento, R. A randomized, double-blind, controlled study evaluating the effects of two facial serums on skin aging. Skin Res. Technol. 2023, 29, e13522. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, E.J.; Whang, W.K.; Park, C.H. In vitro and in vivo anti-aging effects of compounds isolated from Artemisia iwayomogi. J. Anal. Sci. Technol. 2019, 10, 35. [Google Scholar] [CrossRef]
- Cruz, A.M.; Gonçalves, M.C.; Marques, M.S.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. In Vitro Models for Anti-Aging Efficacy Assessment: A Critical Update in Dermocosmetic Research. Cosmetics 2023, 10, 66. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Kim, H.I.; Kim, S.Y.; Seo, H.H.; Song, J.; Kim, J.; Shin, D.S.; Jo, Y.; Choi, H.; Lee, J.H.; et al. Anti-Aging Effects of Leontopodium alpinum (Edelweiss) Callus Culture Extract Through Transcriptome Profiling. Genes 2020, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Boonpisuttinant, K.; Srisuttee, R.; Yen Khong, H.; Chutoprapat, R.; Ruksiriwanich, W.; Udompong, S.; Chompoo, W.; Boonbai, R.; Rakkaew, R.; Sangsee, J.; et al. In vitro anti-ageing activities of ethanolic extracts from Pink rambutan (Nephelium lappaceum Linn.) for skin applications. Saudi Pharm. J. 2023, 31, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Boonpisuttinant, K.; Taka, T.; Ruksiriwanich, W.; Chutoprapat, R.; Udompong, S.; Kansawang, R.; Sangsee, J.; Chompoo, W.; Samothai, K.; Srisuttee, R. Assessment of in vitro anti-skin aging activities of Phyllanthus indofischeri Bennet extracts for dermatological and aesthtic applications. Sci. Rep. 2023, 13, 18661. [Google Scholar] [CrossRef] [PubMed]
- Lasota, M.; Lechwar, P.; Kukula-Koch, W.; Czop, M.; Czech, K.; Gaweł-Bęben, K. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts. Molecules 2024, 29, 1133. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Pietrzak, W.; Klimek, K.; Miazga-Karska, M.; Firlej, A.; Flisiński, M.; Grzywa-Celińska, A. Flavonoid and Phenolic Acids Content and In Vitro Study of the Potential Anti-Aging Properties of Eutrema japonicum (Miq.) Koidz Cultivated in Wasabi Farm Poland. Int. J. Mol. Sci. 2021, 22, 6219. [Google Scholar] [CrossRef]
- Wei, K.; Guo, C.; Zhu, J.; Wei, Y.; Wu, M.; Huang, X.; Zhang, M.; Li, J.; Wang, X.; Wang, Y.; et al. The Whitening, Moisturizing, Anti-aging Activities, and Skincare Evaluation of Selenium-Enriched Mung Bean Fermentation Broth. Front. Nutr. 2022, 9, 837168. [Google Scholar] [CrossRef]
- Nowak, A.; Zagórska-Dziok, M.; Perużyńska, M.; Cybulska, K.; Kucharska, E.; Ossowicz-Rupniewska, P.; Piotrowska, K.; Duchnik, W.; Kucharski, Ł.; Sulikowski, T.; et al. Assessment of the Anti-Inflammatory, Antibacterial and Anti-Aging Properties and Possible Use on the Skin of Hydrogels Containing Epilobium angustifolium L. Extracts. Front. Pharmacol. 2022, 13, 896706. [Google Scholar] [CrossRef]
- Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Ursolic Acid Extraction in Oil from Annurca Apple to Obtain Oleolytes with Potential Cosmeceutical Application. Antioxidants 2023, 12, 224. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M.; Chaikul, P. Sacha Inchi: The Promising Source of Functional Oil for Anti-Aging Product. J. Oleo Sci. 2024, 73, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kanlayavattanakul, M.; Khongkow, M.; Klinngam, W.; Chaikul, P.; Lourith, N.; Chueamchaitrakun, P. Recent insights into catechins-rich Assam tea extract for photoaging and senescent ageing. Sci. Rep. 2024, 14, 2253. [Google Scholar] [CrossRef] [PubMed]
- Nam, A.; Ring, A.P.; Immeyer, J.; Hoff, A.; Eisenberg, T.; Gerwat, W.; Meyer, F.; Breitkreutz, S.; Klinger, L.M.; Brandner, J.M.; et al. Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing—Experimental evidence for a holistic treatment approach. Int. J. Cosmet. Sci. 2022, 44, 377–393. [Google Scholar] [CrossRef]
- Barak, T.H.; Kurt Celep, İ.; Şentürk, T.B.; Bardakcı, H.; Celep, E. In Vitro Anti-Aging Potential Evaluation of Maclura pomifera (Rafin.) Schneider 80% Methanol Extract with Quantitative HPTLC Analysis. Turk. J. Pharm. Sci. 2022, 19, 400–407. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Hano, C. Validation of a High-Performance Liquid Chromatography with Photodiode Array Detection Method for the Separation and Quantification of Antioxidant and Skin Anti-Aging Flavonoids from Nelumbo nucifera Gaertn. Stamen Extract. Molecules 2022, 27, 1102. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef]
- Tung, X.Y.; Yip, J.Q.; Gew, L.T. Searching for Natural Plants with Antimelanogenesis and Antityrosinase Properties for Cosmeceutical or Nutricosmetics Applications: A Systematic Review. ACS Omega 2023, 8, 33115–33201. [Google Scholar] [CrossRef]
- Acero, N.; Muñoz-Mingarro, D.; Gradillas, A. Effects of Crocus sativus L. Floral Bio-Residues Related to Skin Protection. Antioxidants 2024, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.T.B.; Tawata, S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef]
- Altyar, A.E.; Ashour, M.L.; Youssef, F.S. Premna odorata: Seasonal Metabolic Variation in the Essential Oil Composition of Its Leaf and Verification of Its Anti-Ageing Potential via In Vitro Assays and Molecular Modelling. Biomolecules 2020, 10, 879. [Google Scholar] [CrossRef]
- Kim, Y.J.; Uyama, H.; Kobayashi, S. Inhibition effects of (+)-catechin-aldehyde polycondensates on proteinases causing proteolytic degradation of extracellular matrix. Biochem. Biophys. Res. Commun. 2004, 320, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; Domínguez-Martín, E.M.; Nicolai, M.; Faustino, C.; Rodrigues, L.M.; Rijo, P. Screening the dermatological potential of plectranthus species components: Antioxidant and inhibitory capacities over elastase, collagenase and tyrosinase. J. Enzym. Inhib. Med. Chem. 2021, 36, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Bieth, J.; Spiess, B.; Wermuth, C.G. The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem. Med. 1974, 11, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Bakrim, W.B.; Nurcahyanti, A.D.R.; Dmirieh, M.; Mahdi, I.; Elgamal, A.M.; El Raey, M.A.; Wink, M.; Sobeh, M. Phytochemical Profiling of the Leaf Extract of Ximenia Americana var. caffra and Its Antioxidant, Antibacterial, and Antiaging Activities In Vitro and in Caenorhabditis elegans: A Cosmeceutical and Dermatological Approach. Oxididative Med. Cell. Longev. 2022, 2022, 3486257. [Google Scholar] [CrossRef]
- Elgamal, A.M.; El Raey, M.A.; Gaara, A.; Abdelfattah, M.A.; Sobeh, M. Phytochemical Profiling and Anti-Aging Activities of Euphorbia Retusa Extract: In Silico and in Vitro Studies. Arab. J. Chem. 2021, 14, 103159. [Google Scholar] [CrossRef]
- Lee, K.K.; Kim, J.H.; Cho, J.J.; Choi, J.D. Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. Int. J. Cosmet. Sci. 1999, 21, 71–82. [Google Scholar] [CrossRef]
- Itoh, S.; Yamaguchi, M.; Shigeyama, K.; Sakaguchi, I. The anti-aging potential of extracts from Chaenomeles sinensis. Cosmetics 2019, 6, 21. [Google Scholar] [CrossRef]
- Buarque, F.S.; Monteiro, E.; Silva, S.A.; Ribeiro, B.D. Choline chloride-based deep eutectic solvent as an inhibitor of metalloproteases (collagenase and elastase) in cosmetic formulation. 3 Biotech 2023, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Castejón, N.; Thorarinsdottir, K.A.; Einarsdóttir, R.; Kristbergsson, K.; Marteinsdóttir, G. Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar. Drugs 2021, 19, 662. [Google Scholar] [CrossRef]
- Lee, K.E.; Bharadwaj, S.; Yadava, U.; Gu Kang, S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J. Enzym. Inhib. Med. Chem. 2019, 34, 927–936. [Google Scholar] [CrossRef]
- Chaiyana, W.; Charoensup, W.; Sriyab, S.; Punyoyai, C.; Neimkhum, W. Herbal Extracts as Potential Antioxidant, Anti-Aging, Anti-Inflammatory, and Whitening Cosmeceutical Ingredients. Chem. Biodivers. 2021, 18, e2100245. [Google Scholar] [CrossRef] [PubMed]
- Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.H.; Lin, W.C.; Lue, S.C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-aging compounds. Ind. Crops Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Dymek, M.; Olechowska, K.; Hąc-Wydro, K.; Sikora, E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023, 15, 2485. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; El-Labbad, E.M.; Al-Azzawi, M.A.; Ashmawy, N.S. A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities. Molecules 2022, 27, 2609. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Aligiannis, N.; Mitakou, S.; Skaltsounis, L. Recovery of sesamin, sesamolin, and minor lignans from sesame oil using solid support-free liquid-liquid extraction and chromatography techniques and evaluation of their enzymatic inhibition properties. Front. Pharmacol. 2019, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.; Jang, Y.; Myung, S.; Lee, J.M.; Kim, H.; Ko, S.; Lee, S. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish. Aquat. Sci. 2020, 23, 6. [Google Scholar] [CrossRef]
- Jugreet, B.S.; Lall, N.; Anina Lambrechts, I.; Reid, A.M.; Maphutha, J.; Nel, M.; Hassan, A.H.; Khalid, A.; Abdalla, A.N.; Van, B.L.; et al. In Vitro and In Silico Pharmacological and Cosmeceutical Potential of Ten Essential Oils from Aromatic Medicinal Plants from the Mascarene Islands. Molecules 2022, 27, 8705. [Google Scholar] [CrossRef]
- Lall, N.; Kishore, N.; Fibrich, B.; Lambrechts, I.A. In vitro and in vivo activity of Myrsine africana on elastase inhibition and anti-wrinkle activity. Pharmacogn. Mag. 2017, 13, 583–589. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, S.H.; Hong, Y.; Ahn, D.U.; Paik, H.D. Anti-elastase and anti-hyaluronidase activity of phosvitin isolated from hen egg yolk. Br. Poult. Sci. 2020, 61, 17–21. [Google Scholar] [CrossRef]
- Wittenauer, J.; Mackle, S.; Submann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef]
- Lim, H.W.; Huang, Y.H.; Kyeong, G.; Park, M.; Lim, C.J. Comparative Insights into the Skin Beneficial Properties of Probiotic Lactobacillus Isolates of Skin Origin. Biomed. Res. Int. 2022, 2022, 7728789. [Google Scholar] [CrossRef] [PubMed]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Madan, K.; Nanda, S. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorganic Chem. 2018, 77, 159–167. [Google Scholar] [CrossRef]
- Mathen, C.; Thergaonkar, R.; Teredesai, M.; Soman, G.; Shiney, P. Evaluation of anti-elastase and antioxidant activity in antiaging formulations containing terminalia extracts. Int. J. Herb. Med. 2014, 2, 95–99. [Google Scholar]
- Michalak, M.; Zagórska-Dziok, M.; Klimek-Szczykutowicz, M.; Szopa, A. Phenolic Profile and Comparison of the Antioxidant, Anti-Ageing, Anti-Inflammatory, and Protective Activities of Borago officinalis Extracts on Skin Cells. Molecules 2023, 28, 868. [Google Scholar] [CrossRef] [PubMed]
- Zagórska-Dziok, M.; Ziemlewska, A.; Bujak, T.; Nizioł-Łukaszewska, Z.; Hordyjewicz-Baran, Z. Cosmetic and Dermatological Properties of Selected Ayurvedic Plant Extracts. Molecules 2021, 26, 614. [Google Scholar] [CrossRef]
- Nutho, B.; Tungmunnithum, D. Anti-Aging Potential of the Two Major Flavonoids Occurring in Asian Water Lily Using In Vitro and In Silico Molecular Modeling Assessments. Antioxidants 2024, 13, 601. [Google Scholar] [CrossRef] [PubMed]
- Pagels, F.; Almeida, C.; Vasconcelos, V.; Guedes, A.C. Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp. Mar. Drugs 2022, 20, 481. [Google Scholar] [CrossRef]
- Mota, F.A.R.; Pereira, S.A.P.; Araujo, A.R.T.S.; Saraiva, M.L.M.F.S. Evaluation of Ionic Liquids and Ionic Liquids Active Pharmaceutical Ingredients Inhibition in Elastase Enzyme Activity. Molecules 2021, 26, 200. [Google Scholar] [CrossRef]
- Tawfeek, N.; Fikry, E.; Mahdi, I.; Ochieng, M.A.; Bakrim, W.B.; Taarji, N.; Mahmoud, M.F.; Sobeh, M. Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts. Molecules 2023, 28, 1036. [Google Scholar] [CrossRef]
- Vaithanomsat, P.; Boonlum, N.; Chaiyana, W.; Tima, S.; Anuchapreeda, S.; Trakunjae, C.; Apiwatanapiwat, W.; Janchai, P.; Boondaeng, A.; Nimitkeatkai, H.; et al. Mushroom β-Glucan Recovered from Antler-Type Fruiting Body of Ganoderma lucidum by Enzymatic Process and Its Potential Biological Activities for Cosmeceutical Applications. Polymers 2022, 14, 4202. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liao, E.; Ren, Z.; Wang, Q.; Xu, Z.; Wu, S.; Yu, C.; Yin, Y. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules 2024, 29, 2109. [Google Scholar] [CrossRef]
- Kraunsoe, J.A.E.; Claridge, T.D.W.; Lowe, G. Inhibition of Human Leukocyte and Porcine Pancreatic Elastase by Homologues of Bovine Pancreatic Trypsin Inhibitor. Biochemistry 1996, 35, 9090–9096. [Google Scholar] [CrossRef]
- Wichayapreechar, P.; Charoenjittichai, R.; Prasansuklab, A.; Vinardell, M.P.; Rungseevijitprapa, W. Exploring the In Vitro Antioxidant, Anti-Aging, and Cytotoxic Properties of Kaempferia galanga Linn. Rhizome Extracts for Cosmeceutical Formulations. Cosmetics 2024, 11, 97. [Google Scholar] [CrossRef]
- Widowati, W.; Fauziah, N.; Herdiman, H.; Afni, M.; Afifah, E.; Kusuma, H.S.W.; Nufus, H.; Arumwardana, S.; Rihibiha, D.D. Antioxidant and Anti-Aging Assays of Oryza sativa Extracts, Vanillin and Coumaric Acid. J. Nat. Remed. 2016, 16, 88–99. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, G.; Guo, M. Potential Anti-aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Front. Nutr. 2022, 9, 854882. [Google Scholar] [CrossRef] [PubMed]
- Angelis, A.; Mavros, P.; Nikolaou, P.E.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L. Phytochemical analysis of olive flowers’ hydroalcoholic extract and in vitro evaluation of tyrosinase, elastase and collagenase inhibition activity. Fitoterapia 2020, 143, 104602. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.M.; Ayoub, I.M.; Mostafa, N.M.; El Hassab, M.A.; Eldehna, W.M.; Al-Rashood, S.T.; Eldahshan, O.A. GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. Plants 2022, 11, 918. [Google Scholar] [CrossRef]
- Qin, Z.; Balimunkwe, R.M.; Quan, T. Age-related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo. Br. J. Dermatol. 2017, 177, 1337–1348. [Google Scholar] [CrossRef]
- Van Wart, H.E.; Steinbrink, R.D. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Chem. 1981, 113, 356–365. [Google Scholar] [CrossRef]
- Ashmawy, N.S.; Gad, H.A.; El-Nashar, H.A.S. Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules 2023, 28, 7861. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, E.; Ozkan, E.E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind. Crops Prod. 2019, 141, 111735. [Google Scholar] [CrossRef]
- Wang, L.; Lee, W.; Oh, J.Y.; Cui, Y.R.; Ryu, B.; Jeon, Y.J. Protective effect of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced skin damage by regulating NF-κB, AP-1, and MAPKs signaling pathways in vitro in human dermal fibroblasts. Mar. Drugs 2018, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Aumeeruddy-Elalfi, Z.; Lall, N.; Fibrich, B.; Van Staden, A.B.; Hosenally, M.; Mahomoodally, M.F. Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro. J. Food Drug Anal. 2018, 26, 232–243. [Google Scholar] [CrossRef]
- Zofia, N.-Ł.; Aleksandra, Z.; Tomasz, B.; Martyna, Z.-D.; Magdalena, Z.; Zofia, H.-B.; Tomasz, W. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffee Kombucha Ferments. Molecules 2020, 25, 5394. [Google Scholar] [CrossRef]
- Stavropoulou, M.I.; Stathopoulou, K.; Cheilari, A.; Benaki, D.; Gardikis, K.; Chinou, I.; Ali, N. NMR metabolic profiling of Greek propolis samples: Comparative evaluation of their phytochemical compositions and investigation of their anti-ageing and antioxidant properties. J. Pharm. Biomed. Anal. 2021, 194, 113814. [Google Scholar] [CrossRef]
- Reissig, J.L.; Strominger, J.L.; Leloir, L.F. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 1955, 217, 959–966. [Google Scholar] [CrossRef]
- Kim, J.H.; Byun, J.C.; Bandi, A.K.R.; Hyun, C.-G.; Lee, N.H. Compounds with elastase inhibition and free radical scavenging activities from Callistemon lanceolatus. J. Med. Plant Res. 2009, 3, 914–920. [Google Scholar]
- Ratnasooriya, W.D.; Abeysekera, W.P.K.M.; Ratnasooriya, C.T.D. In vitro anti-hyaluronidase activity of Sri Lankan low grown orthodox orange pekoe grade black tea (Camellia sinensis L.). Asian Pac. J. Trop. Biomed. 2014, 4, 959–963. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noh, Y.K.; Lee, G.I.; Kim, Y.K.; Lee, K.S.; Min, K.R. Inhibitory effects of herbal medicines on hyaluronidase activity. Korean J. Pharmacogn. 1995, 26, 265–272. [Google Scholar]
- Kolayli, S.; Can, Z.; Yildiz, O.; Sahin, H.; Karaoglu, S.A. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. S3), 96–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hong, Y.; Tran, Q.; Cho, H.; Kim, M.; Kim, C.; Kwon, S.H.; Park, S.; Park, J.; Park, J. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J. Ginseng Res. 2019, 43, 431–441. [Google Scholar] [CrossRef]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crops Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Prommaban, A.; Sriyab, S.; Marsup, P.; Neimkhum, W.; Sirithunyalug, J.; Anuchapreeda, S.; To-Anun, C.; Chaiyana, W. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharm. Biol. 2022, 60, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabudhe, A.; Deodhar, M. Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int. J. Bot. 2010, 6, 299–303. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, K.T.; Lee, N.K.; Han, Y.S.; Nah, S.Y.; Cho, S.G.; Park, Y.S.; Paik, H.D. Inhibitory Effects of Naringenin and Its Novel Derivatives on Hyaluronidase. Food Sci. Biotechnol. 2009, 18, 267–270. [Google Scholar]
- Dorfman, A.; Ott, M.L. A turbidimetric method for the assay of hyaluronidase. J. Biol. Chem. 1948, 172, 367–375. [Google Scholar] [CrossRef]
- Kass, E.H.; Seastone, C.V. The role of the mucoid polysaccharide (Hyaluronic acid) in the virulence of group A hemolytic streptococci. J. Exp. Med. 1944, 79, 319–330. [Google Scholar] [CrossRef]
- McCook, J.P.; Dorogi, P.L.; Vasily, D.B.; Cefalo, D.R. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs. Clin. Cosmet. Investig. Dermatol. 2015, 8, 443–448. [Google Scholar] [CrossRef]
- Dorfman, A.; Ott, M.L.; Whitney, R. The hyaluronidase inhibitor of human blood. J. Biol. Chem. 1948, 174, 621–629. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Silva, S.T.; Valentão, P.; Andrade, P.B. Bauhinia Forficata Link Authenticity Using Flavonoids Profile: Relation with Their Biological Properties. Food Chem. 2012, 134, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Tomou, E.M.; Papaemmanouil, C.D.; Diamantis, D.A.; Kostagianni, A.D.; Chatzopoulou, P.; Mavromoustakos, T.; Tzakos, A.G.; Skaltsa, H. Anti-Ageing Potential of S. euboea Heldr. Phenolics. Molecules 2021, 26, 3151. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, N.; Sakaki, S.; Yamaguchi, Y.; Takenaka, H. Inhibitory effects of microalgae on the activation of hyaluronidase. J. Appl. Phycol. 2001, 13, 489–492. [Google Scholar] [CrossRef]
- Moussa, A.Y.; Mostafa, N.M.; Singab, A.N.B. Pulchranin A: First report of isolation from an endophytic fungus and its inhibitory activity on cyclin dependent kinases. Nat. Prod. Res. 2020, 34, 2715–2722. [Google Scholar] [CrossRef]
- Burgos, C.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C.; Acero, N. Neuroprotective potential of verbascoside isolated from Acanthus mollis L. leaves through its enzymatic inhibition and free radical scavenging ability. Antioxidants 2020, 9, 1207. [Google Scholar] [CrossRef]
- Moon, J.Y.; Yim, E.Y.; Song, G.; Lee, N.H.; Hyun, C.G. Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. Eurasian J. Biosci. 2010, 4, 41–53. [Google Scholar] [CrossRef]
- Laosirisathian, N.; Saenjum, C.; Sirithunyalug, J.; Eits-sayeam, S.; Sirithunyalug, B.; Chaiyana, W. The Chemical Composition, Antioxidant and Anti-Tyrosinase Activities, and Irritation Properties of Sripanya Punica granatum Peel Extract. Cosmetics 2020, 7, 7. [Google Scholar] [CrossRef]
- Neeley, E.; Fritch, G.; Fuller, A.; Wolfe, J.; Wright, J.; Flurkey, W. Variations in IC50 Values with Purity of Mushroom Tyrosinase. Int. J. Mol. Sci. 2009, 10, 3811–3823. [Google Scholar] [CrossRef]
- Herawati, E.; Akhsanitaqwim, Y.; Agnesia, P.; Listyawati, S.; Pangastuti, A.; Ratriyanto, A. In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus). Mar. Drugs 2022, 20, 516. [Google Scholar] [CrossRef]
- Aziz, N.A.A.; Salim, N.; Zarei, M.; Saari, N.; Yusoff, F.M. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum. Prep. Biochem. Biotechnol. 2021, 51, 44–53. [Google Scholar] [CrossRef]
- No, J.K.; Soung, D.Y.; Kim, Y.J.; Shim, K.H.; Jun, Y.S.; Rhee, S.H.; Yokozawa, T.; Chung, H.Y. Inhibition of tyrosinase by green tea components. Life Sci. 1999, 65, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Angelis, A.; Antosiewicz, B.; Sakipova, Z.; Kozhanova, K.; Głowniak, K.; Kukula-Koch, W. Identification of Mushroom and Murine Tyrosinase Inhibitors from Achillea biebersteinii Afan. Extract. Molecules 2021, 26, 964. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of sea-shore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef]
- Mohamadi, N.; Soltanian, S.; Raeiszadeh, M.; Moeinzadeh, M.; Ohadi, M.; Sharifi, F.; Pardakhty, A.; Sharififar, F. Characteristics and in vitro anti skin aging activity and UV radiation protection of morin loaded in niosomes. J. Cosmet. Dermatol. 2022, 21, 6326–6335. [Google Scholar] [CrossRef] [PubMed]
- Jamshidzadeh, A.; Shokri, Y.; Ahmadi, N.; Mohamadi, N.; Sharififar, F. Quercus infectoria and Terminalia chebula decrease melanin content and tyrosinase activity in B16/F10 cell lines. J. Pharm. Pharmacogn. Res. 2017, 5, 270–277. [Google Scholar] [CrossRef]
- Chai, W.M.; Huang, Q.; Lin, M.Z.; Ou-Yang, C.; Huang, W.Y.; Wang, Y.X.; Xu, K.L.; Feng, H.L. Condensed tannins from longan bark as inhibitor of tyrosinase: Structure, activity, and mechanism. J. Agric. Food Chem. 2018, 66, 908–917. [Google Scholar] [CrossRef]
- Adhikari, A.; Devkota, H.P.; Takano, A.; Masuda, K.; Nakane, T.; Basnet, P.; Skalko-Basnet, N. Screening of Nepalese Crude Drugs Traditionally Used to Treat Hyperpigmentation: In Vitro Tyrosinase Inhibition. Int. J. Cosmetic Sci. 2008, 30, 353–360. [Google Scholar] [CrossRef]
- Patathananone, S.; Pothiwan, M.; Uapipatanakul, B.; Kunu, W. Inhibitory Effects of Vernonia amygdalina Leaf Extracts on Free Radical Scavenging, Tyrosinase, and Amylase Activities. Prev. Nutr. Food Sci. 2023, 28, 302–311. [Google Scholar] [CrossRef]
- Patathananone, S.; Daduang, J.; Koraneekij, A.; Li, C.Y. Tyrosinase inhibitory effect, antioxidant and anticancer activities of bioactive compounds in ripe hog plum (Spondias pinnata) fruit extracts. Orient. J. Chem. 2019, 35, 916–926. [Google Scholar] [CrossRef]
- Kubo, I.; Kinst-Hori, I.; Chaudhuri, S.K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorg. Med. Chem. 2000, 8, 1749–1755. [Google Scholar] [CrossRef]
- Saewan, N.; Koysomboon, S.; Chantrapromma, K. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC. J. Med. Plants Res. 2011, 5, 1018–1025. [Google Scholar]
- Batubara, I.; Darusman, L.K.; Mitsunaga, T.; Rahminiwati, M.; Djauhari, E. Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J. Biol. Sci. 2010, 10, 138–144. [Google Scholar] [CrossRef]
- Galvez-Martin, P.; Soto-Fernandez, C.; Romero-Rueda, J.; Cabañas, J.; Torrent, A.; Castells, G.; Martinez-Puig, D. A Novel Hyaluronic Acid Matrix Ingredient with Regenerative, Anti-Aging and Antioxidant Capacity. Int. J. Mol. Sci. 2023, 24, 4774. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Y.; Zhu, L.; Li, L.; Zhao, Y. Study on the Skincare Effects of Red Rice Fermented by Aspergillus oryzae In Vitro. Molecules 2024, 29, 2066. [Google Scholar] [CrossRef] [PubMed]
- Varani, J.; Dame, M.K.; Rittie, L.; Fligiel, S.E.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006, 168, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Sardy, M. Role of matrix metalloproteinases in skin ageing. Connect. Tissue Res. 2009, 50, 132–138. [Google Scholar] [CrossRef]
- Nam, G.; Lee, H.W.; Jang, J.; Kim, C.H.; Kim, K.H. Novel conformation of hyaluronic acid with improved cosmetic efficacy. J. Cosmet. Dermatol. 2023, 22, 1312–1320. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Im, W.T.; Siddiqi, M.Z.; Yang, D.C. Ketonization of Ginsenoside C-K by Novel Recombinant 3-β-Hydroxysteroid Dehydrogenases and Effect on Human Fibroblast Cells. Molecules 2023, 28, 3792. [Google Scholar] [CrossRef]
- Erginer, M.; Gökalsin, B.; Tornaci, S.; Sesal, C.; Öner, E.T. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int. J. Biol. Macromol. 2023, 240, 124418. [Google Scholar] [CrossRef]
- Zerbinati, N.; Sommatis, S.; Maccario, C.; Di Francesco, S.; Capillo, M.C.; Grimaldi, G.; Rauso, R.; Herrera, M.; Bencini, P.L.; Mocchi, R. A Practical Approach for the In Vitro Safety and Efficacy Assessment of an Anti-Ageing Cosmetic Cream Enriched with Functional Compounds. Molecules 2021, 26, 7592. [Google Scholar] [CrossRef]
- Bodin, J.; Adrien, A.; Bodet, P.E.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Ulva intestinalis Protein Extracts Promote In Vitro Collagen and Hyaluronic Acid Production by Human Dermal Fibroblasts. Molecules 2020, 25, 2091. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, A.V.; Wandeler, E.; Bendik, I.; Fuchs, P.; Monneuse, J.M.; Imfeld, D.; Schütz, R. Effect of regioisomers of hydroxystearic acids as peroxisomal proliferator-activated receptor agonists to boost the anti-ageing potential of retinoids. Int. J. Cosmet. Sci. 2021, 43, 619–626. [Google Scholar] [CrossRef]
- Zych, M.; Urbisz, K.; Kimsa-Dudek, M.; Kamionka, M.; Dudek, S.; Raczak, B.K.; Wacławek, S.; Chmura, D.; Kaczmarczyk-Zebrowska, I.; Stebel, A. Effects of Water–Ethanol Extracts from Four Sphagnum Species on Gene Expression of Selected Enzymes in Normal Human Dermal Fibroblasts and Their Antioxidant Properties. Pharmaceuticals 2023, 16, 1076. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.S.; Dreesen, O. Biomarkers of Cellular Senescence and Skin Aging. Front. Genet. 2018, 9, 247. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, Z.; Guo, M.; Zhou, Z. The study of skin hydration, anti-wrinkles function improvement of anti-aging cream with alpha-ketoglutarate. J. Cosmet. Dermatol. 2022, 21, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.; Jakus, J.; Portillo, M.; Gvirtz, R.; Ogen-Shtern, N.; Silberstein, E.; Ayzenberg, T.; Rozenblat, S. In vitro, ex vivo, and clinical evaluation of anti-aging gel containing EPA and CBD. J. Cosmet. Dermatol. 2023, 22, 3047–3057. [Google Scholar] [CrossRef]
- Brown, A.; Furmanczyk, M.; Ramos, D.; Ribes, A.; Pons, L.; Bustos, J.; de Henestrosa, A.R.F.; Granger, C.; Jourdan, E. Natural Retinol Analogs Potentiate the Effects of Retinal on Aged and Photodamaged Skin: Results from In Vitro to Clinical Studies. Dermatol. Ther. 2023, 13, 2299–2317. [Google Scholar] [CrossRef]
- Lee, M.S.; Bui, H.D.; Kim, S.J.; Lee, J.B.; Yoo, H.S. Liposome-assisted penetration and antiaging effects of collagen in a 3D skin model. J. Cosmet. Dermatol. 2024, 23, 236–243. [Google Scholar] [CrossRef]
- Markiewicz, E.; Jerome, J.; Mammone, T.; Idowu, O.C. Anti-Glycation and Anti-Aging Properties of Resveratrol Derivatives in the in-vitro 3D Models of Human Skin. Clin Cosmet Investig Dermatol. 2022, 15, 911–927. [Google Scholar] [CrossRef]
- Wang, X.; Heraud, S.; Thepot, A.; Dos Santos, M.; Luo, Z. The Whitening Properties of the Mixture Composed of Pomegranate, Osmanthus and Olive and the Protective Effects Against Ultraviolet Deleterious Effects. Clin. Cosmet. Investig. Dermatol. 2021, 14, 561–573. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Kim, H.; Sung, G.Y. Effect of α-Lipoic Acid on the Development of Human Skin Equivalents Using a Pumpless Skin-on-a-Chip Model. Int. J. Mol. Sci. 2021, 22, 2160. [Google Scholar] [CrossRef] [PubMed]
Study | Enzyme * | Controls | Technique | Incubation | Reference Method |
---|---|---|---|---|---|
Acero et al., 2024 [28] | NI, 0.03 U/mL | Yes | S, 410 nm | RT, 10 min | [29] |
Altyar et al., 2020 [30] | NI, 3.33 mg/mL | Yes | S, 381–402 nm | NI, 15 min | [31] |
Andrade et al., 2021 [32] | NI, 1 U/mL | Yes | S, 405 nm | 25 °C, 10 min | [33] |
Bakrim et al., 2022 [34] | PPE, 3.33 mg/mL | Yes | S, 400 nm | NI, 15 min | [35] |
Barak et al., 2022 [24] | PPE, 3.33 mg/mL | Yes | F, Ex 365 nm–Em 410 nm | 37 °C, 15 min | [36,37] |
Buarque et al., 2023 [38] | PPE, ≥4.0 U/mg protein | No | S, 410 nm | NI | [33] |
Castejón et al., 2021 [39] | PPE, 1 U/mL | Yes | S, 420 nm | 30 °C, 15 min | [40] |
Chaiyana et al., 2021 [41] | NI | Yes | NI | NI | [42] |
Dymek et al., 2023 [43] | PPE, 10 μg/mL | No | S, 405 nm | 25 °C, 15 min | NI |
El-Nashar et al., 2022 [44] | Assay Kit | Yes | F, Ex 400 nm–Em 505 nm | 37 °C, 5 min | [45] |
Jiratchayamaethasakul et al., 2020 [46] | PPE, 7.5 U/mL | No | S, 410 nm | 25 °C, 10 min | [29] |
Jugreet et al., 2022 [47] | PPE, 4.9 U | Yes | S, 405 nm | 37 °C, 5 min | [48] |
Lee, et al., 2020 [49] | PPE, WS: 1 U/mL | No | S, 410 nm | 25 °C, 20 min | [50] |
Lim et al., 2022 [51] | NI, 0.1 U/m | No | S, 410 nm | 37 °C, NI | [52] |
Madan et al., 2018 [53] | Assay kit | No | S, 410 nm | 25 °C, 15 min | [54] |
Michalak et al., 2023 [55] | Assay Kit (NE) | Yes | F, Ex 400 nm–Em 505 nm | 37 °C, 5 min | [56] |
Nutho, et al., 2024 [57] | PPE, NI | Yes | S, 410 nm | NI | [50] |
Pagels et al., 2022 [58] | NI, 1 U/mL | No | S, 405 nm | 37 °C, 10 min | [59] |
Tawfeek et al., 2023 [60] | PPE, 3.33 mg/mL | Yes | S, 400 nm | NI, 15 min | [35] |
Vaithanomsat et al., 2022 [61] | NI, 7.5 U/mL | Yes | S, 410 nm | 25 °C, 20 min | [42] |
Wang, et al., 2024 [62] | NI, 600 mU/mL | Yes | S, 410 nm | 25 °C, 15 min | [63] |
Wichayapreechar et al., 2024 [64] | PPE, 1 mM | Yes | S, 410 nm | RT, 5 min | [52] |
Widowati et al., 2016 [65] | PPE, 0.5 mU/mL | No | S, 410 nm | 25 °C, 15 min | [52] |
Xu et al., 2022 [66] | NI, 0.5 U/μL | No | S, 405 nm | 37 °C, 15 min | [67] |
Younis, et al., 2022 [68] | PPE, 3.33 mg/mL | Yes | S, 400 nm | RT, 15 min | [31] |
Study | Enzyme * | Controls | Technique | Incubation | Reference Method |
---|---|---|---|---|---|
Acero et al., 2024 [28] | CH, 0.8 U/mL | Yes | S, 340 nm | 25 °C, 15 min | [52] |
Altyar et al., 2020 [30] | CH, 0.8 U/mL | Yes | S, 335 nm | NI, 15 min | [52] |
Andrade et al., 2021 [32] | CH, 1 U/mL | Yes | S, 450 nm | 37 °C, 10 min | [52,70] |
Ashmawy, 2023 [71] | Assay Kit | Yes | F, Ex 490 nm–Em 520 nm | 25 °C, 15 min | [70] |
Bakrim et al., 2022 [34] | CH, 0.8 U/mL | Yes | S, 490 nm | NI, 15 min | [35] |
Barak et al., 2022 [24] | CH, 0.8 U/mL | Yes | NI | NI, 15 min | [72] |
Buarque et al., 2023 [38] | CH, 0.8 g/L | No | S, 345 nm | NI | [70] |
Castejón et al., 2021 [39] | Assay Kit | No | NI | NI | NI |
Chaiyana et al., 2021 [41] | CH, 0.16 U/mL | Yes | S, 340 nm | 37 °C, 15 min | [42] |
El-Nashar et al., 2022 [44] | Assay Kit | Yes | F, Ex 490 nm–Em 520 nm | RT, 15 min | [67] |
Jiratchayamaethasakul et al., 2020 [46] | CH, 200 U/mL | No | S, 550 nm | 43 °C, 60 min | [73] |
Jugreet et al., 2022 [47] | Assay Kit CH, 0.2 U/mL | Yes | F, Ex 4850 nm–Em 515 nm | 37 °C, 15 min | [74] |
Madan et al., 2018 [53] | Assay Kit | No | S, 345 nm | 37 °C, 20 min | [65] |
Michalak et al., 2023 [55] | Assay Kit | Yes | F, Ex 490 nm–Em 520 nm | RT, 15 min | [75] |
Nutho et al., 2024 [57] | CH, NI | Yes | S, 335 nm | NI | [50] |
Pagels et al., 2022 [58] | NI, 1 U/mL | No | S, 345 nm | 37 °C, 15 min | [32,70] |
Tawfeek et al., 2023 [60] | CH, 0.8 U/mL | Yes | S, 490 nm | NI, 15 min | [35] |
Vaithanomsat et al., 2022 [61] | NI, 0.5 U/mL | Yes | S, 340 nm | 37 °C, 15 min | [52] |
Wichayapreechar et al., 2024 [64] | CH, 0.8 U/mL | Yes | S, 335 nm | RT, 10 min | [52] |
Widowati et al., 2016 [65] | CH, 0.01 U/mL | No | S, 335 nm | 37 °C, 20 min | [52] |
Xu et al., 2022 [66] | NI, 2 U/mL | Yes | F, Ex 320 nm–Em 405 nm | 37 °C, 15 min | [76] |
Younis, et al., 2022 [68] | CH, 0.8 U/mL | Yes | S, 490 nm | RT, 15 min | [52] |
Study | Enzyme * | Controls | Technique | Incubation | Reference Method |
---|---|---|---|---|---|
Acero et al., 2024 [28] | HBT, 1.5 U/µL | Yes | S, 600 nm | 37 °C, 10 min | [78] |
Altyar et al., 2020 [30] | HBT Type I-S, NI | Yes | S, 585 nm | NI | [79] |
Ashmawy, 2023 [71] | HBT, 7900 U/mL | Yes | S, 585 nm | 37 °C, 20 min | [80] |
Bakrim et al., 2022 [34] | NI, ST: 1.5 mg/mL | Yes | S, 600 nm | 100 °C, 3 min | [35] |
Barak et al., 2022 [24] | NI | No | S, 600 nm | 37 °C, 20 min | [81,82] |
Castejón et al., 2021 [39] | HBT Type I-S, 2100 U/mL | Yes | S, 585 nm | 37 °C, 20 min | [83] |
Chaiyana et al., 2019 [42] | HBT, 0.1 g/mL | No | SDS-PAGE | 37 °C, 48 h | NI |
El-Nashar et al., 2022 [44] | HBT, 7900 U/mL | Yes | S, 585 nm | 37 °C, 20 min | [84] |
Jiratchayamaethasakul et al., 2020 [46] | NI, 8 mg/ml | No | S, 585 nm | 37 °C, 20 min | [85] |
Lee, et al., 2020 [49] | HBT, 3000 U/mL | No | S, 570 nm | 37 °C, 40 min | [86] |
Lim et al., 2022 [51] | NI, 585 U/mL | No | T, 600 nm | 37 °C, 10 min | [87] |
Madan et al., 2018 [53] | NI | No | T, 540 nm | 37 °C, 10 min | [88] |
McCook et al., 2015 [89] | HBT type IV-S, NI | Yes | T, 595 nm | NI | [90] |
Pagels et al., 2022 [58] | NI, 900 U/mL | No | S, 560 nm | 37 °C, 30 min | [91] |
Tawfeek et al., 2023 [60] | NI, 1.5 mg/mL | Yes | S, 600 nm | NI | [35] |
Tomou et al., 2021 [92] | HBT Type I-S, 400 U/mL | No | S, 590 nm | 37 °C, 20 min | [77] |
Vaithanomsat et al., 2022 [61] | NI, 1.5 U/mL | Yes | S, 600 nm | 37 °C, 10 min | [52] |
Wang, et al., 2024 [62] | NI, 500 mU/mL | Yes | S, 530 nm | 37 °C, 20 min | [93] |
Widowati et al., 2016 [65] | HBT Type I-S, NI | No | T, 600 nm | 37 °C, 10 min | [29] |
Younis, et al., 2022 [68] | NI, 1.5 mg/mL | No | F, Ex 545 nm–Em 612 nm | NI | [77,94] |
Study | Enzyme * | Controls | Technique | Incubation | Reference Method |
---|---|---|---|---|---|
Acero et al., 2024 [28] | NI, 200 U/mL | Yes | S, 475 nm | 37 °C, 15 min | [95] |
Andrade et al., 2021 [32] | Mushroom, 5000 U | Yes | S, 450 nm | 37 °C, 5 min | [96] |
Bakrim et al., 2022 [34] | Mushroom, 2500 U/mL | Yes | S, 475 nm | NI | [35] |
Castejón et al., 2021 [39] | Mushroom, 50 U/mL | Yes | S, 475 nm | 37 °C, 5 min | [83] |
Chaiyana et al., 2021 [41] | Mushroom, NI | Yes | NI | NI | [97] |
Dymek et al., 2023 [43] | Mushroom, 0.2 mg/mL | No | S, 475 nm | NI | [98] |
El-Nashar et al., 2022 [44] | Assay Kit | Yes | S, 510 nm | 25 °C, 10 min | NI |
Herawati et al., 2022 [99] | Mushroom, ≥1000 U/mg of activity | Yes | S, 492 nm | RT, 5 min | [100] |
Jiratchayamaethasakul et al., 2020 [46] | Mushroom, 1500 U/mL | No | S, 490 nm | 37 °C, 12 min | [101] |
Lasota et al., 2024 [16] | Mushroom, 500 U/mL Murine, 20 µg protein lysate | Yes | S, 450 nm | RT, 10 min RT, 4 h | [102] |
Lim et al., 2022 [51] | Mushroom, 6 U/mL | No | S, 450 nm | 37 °C, 10 min | [103] |
Mohamadi et al., 2022 [104] | Mushroom, 50 mM | No | S, 490 nm | 20 min | [105] |
Nutho et al., 2024 [57] | Mushroom, 0.2 mg/mL | Yes | S, 475 nm | NI | [106] |
Pagels et al., 2022 [58] | NI, 50 U/mL | Yes | S, 475 nm | 25 °C, 5 min | [107] |
Patathananone et al., 2023 [108] | NI, 250 U/mL | No | S, 495 nm | 37 °C, 10 min | [109] |
Tawfeek et al., 2023 [60] | Mushroom, 2500 U/mL | Yes | S, 475 nm | NI | [35] |
Vaithanomsat et al., 2022 [61] | NI, 1380 U/mL | Yes | S, 475 nm | NI, 10 min | [110,111] |
Younis, et al., 2022 [68] | Mushroom, 2500 U/mL | Yes | S, 475 nm | NI | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinardell, M.P.; Maddaleno, A.S.; Mitjans, M. Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review. Cosmetics 2024, 11, 170. https://doi.org/10.3390/cosmetics11050170
Vinardell MP, Maddaleno AS, Mitjans M. Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review. Cosmetics. 2024; 11(5):170. https://doi.org/10.3390/cosmetics11050170
Chicago/Turabian StyleVinardell, Maria Pilar, Adriana Solange Maddaleno, and Montserrat Mitjans. 2024. "Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review" Cosmetics 11, no. 5: 170. https://doi.org/10.3390/cosmetics11050170
APA StyleVinardell, M. P., Maddaleno, A. S., & Mitjans, M. (2024). Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review. Cosmetics, 11(5), 170. https://doi.org/10.3390/cosmetics11050170