Microencapsulation, Cream Development, and Controlled Clinical Study of an Upcycled Polyphenolic Extract Combined with sh-Oligopeptide-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microencapsulation
2.1.1. Preparation of Microparticles
2.1.2. Microparticle Characterisation
2.2. Biological Efficacy of Polyphenolic Extract OG2
2.3. Formulation Design
2.4. Stability Studies
- Physical and chemical characteristics:
- ◦
- Texture: pleasant, smooth, creamy, easy to apply;
- ◦
- Colour: light beige;
- ◦
- Odour: mild, characteristic;
- ◦
- Infrared spectrum: similar to the reference sample (the correlation coefficient, which measures the degree of similarity between two spectra, should be greater than 0.95);
- ◦
- pH: 5.5–6.5;
- ◦
- Relative density: 0.95–1.05;
- ◦
- Absorption: easy to absorb;
- ◦
- Emulsion distribution: microscopic test to observe homogeneous droplet distribution;
- ◦
- Emulsion stability: no phase separation in centrifugation test.
- Microbiological characteristic according to ISO 17516:2014 [27]:
- ◦
- Total aerobic microbial count (TAMC): <1000 cfu/g or mL;
- ◦
- Total yeast and mold count (TYMC): <100 cfu/g or mLh;
- ◦
- Absence of pathogens: absence/g or mL:
- –
- Candida albicans;
- –
- Pseudomonas aeruginosa;
- –
- Staphylococcus aureus;
- –
- Escherichia coli.
2.4.1. Prestability Studies
2.4.2. Accelerated and Long-Term Stability Studies
2.5. Study Design
2.5.1. Study Description and Location
2.5.2. Eligibility Criteria for Subjects
2.5.3. Intervention
2.5.4. Primary Outcome
- The akin moisture index was measured in arbitrary units (AUs) using a CM 825 corneometre(Courage-khazaka, Germany). It is expressed as the mean ± SD of 10 measurements. As the skin ages, the stratum corneum, the outermost layer of the epidermis, becomes thinner, and the secretion of natural moisturising factors decreases, leading to a reduction in the skin’s hydration capacity and the formation of fine wrinkles. The degree of skin ageing is indirectly related to the skin moisture content [31].
- TEWL was measured in g·m−2·h−1 using a TM 300 Tewameter (Courage-khazaka, Germany)., as showed in Figure 1. TEWL values are presented as the mean ± SD of 20 measurements. It is used to assess the function of the skin barrier function. When the moisture protective layer of the skin is intact, the moisture content is higher, and the TEWL index is lower [31]. The baseline TEWL of the skin of older and younger adults is similar, but when the barrier is damaged, recovery to normal is much slower in older people. The TEWL is higher in nonlesional skin of people with atopic dermatitis than in those without, in surfactant-damaged skin, and after long- and short-term use of topical corticosteroids [32].
- Erythema and melanin indices were measured in arbitrary units (AUs) using an MX 18 mexametre (Courage-khazaka, Germany). Both erythema and melanin scores are reported as the mean ± SD of 10 measurements. The main chromophores in human scar tissue, haemoglobin and melanin, are primary determinants of skin colour. The values of the erythema and melanin indices are based on the differences in the absorption of red and green light by haemoglobin and melanocytes, respectively [33]. The erythema index is a useful parameter for studying UV-induced erythema, eczema, and patch test reactions [34].
- Skin pH was measured in pH units using a PH 905 skin pH meter (Courage-khazaka, Germany). The pH values ae reported as the mean ± SD of 10 measurements. An elevated pH favours a different microbiome, making the skin susceptible to infection and eczema.
- Skin elasticity was measured in % from the R2 value using a Cutometer dual MPA 580(Courage-khazaka, Germany). Collagen and elastin are the main proteins responsible for skin elasticity, and, when they are altered, skin elasticity is reduced [36].
2.5.5. Secondary Outcome
2.5.6. Statistical Analysis
2.5.7. Ethics
3. Results
3.1. Microencapsulation
3.2. Biological Efficacy of the OG2Polyphenol Extract
3.3. Stability Studies
3.4. Study Results
3.4.1. Primary Outcomes
3.4.2. Secondary Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carmona, I.; Aguirre, I.; Griffith, D.M.; García-Borrego, A. Towards a circular economy in virgin olive oil production: Valorization of the olive mill waste (OMW) “alpeorujo” through polyphenol recovery with natural deep eutectic solvents (NADESs) and vermicomposting. Sci. Total Environ. 2023, 872, 162198. [Google Scholar] [CrossRef] [PubMed]
- Pinho, I.A.; Lopes, D.V.; Martins, R.C.; Quina, M.J. Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere 2017, 185, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Saparrat, M.C.; Jurado, M.; Díaz, R.; Romera, I.G.; Martínez, M.J. Transformation of the water soluble fraction from “alpeorujo” by Coriolopsis rigida: The role of laccase in the process and its impact on Azospirillum brasiliense survival. Chemosphere 2010, 78, 72–76. [Google Scholar] [CrossRef]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 2017, 133, 379–402. [Google Scholar] [CrossRef]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Shin, S.H.; Koh, Y.G.; Lee, W.G.; Seok, J.; Park, K.Y. The use of epidermal growth factor in dermatological practice. Int Wound J 2023, 20, 2414–2423. [Google Scholar] [CrossRef]
- Shakhakarmi, K.; Seo, J.E.; Lamichhane, S.; Thapa, C.; Lee, S. EGF, a veteran of wound healing: Highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies. Arch. Pharm. Res. 2023, 46, 299–322. [Google Scholar] [CrossRef]
- Draelos, Z.; Bogdanowicz, P.; Saurat, J.H. Top weapons in skin aging and actives to target the consequences of skin cell senescence. J. Eur. Acad. Dermatol. Venereol. 2024, 38 (Suppl. 4), 15–22. [Google Scholar] [CrossRef]
- Liu, M.; Jin, J.; Zhong, X.; Liu, L.; Tang, C.; Cai, L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024, 10, e35014. [Google Scholar] [CrossRef]
- Albahri, G.; Badran, A.; Hijazi, A.; Daou, A.; Baydoun, E.; Nasser, M.; Merah, O. The Therapeutic Wound Healing Bioactivities of Various Medicinal Plants. Life 2023, 13, 317. [Google Scholar] [CrossRef]
- Catalano, A.; Ceramella, J.; Iacopetta, D.; Marra, M.; Conforti, F.; Lupi, F.R.; Gabriele, D.; Borges, F.; Sinicropi, M.S. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024, 13, 2155. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6s–22s. [Google Scholar] [CrossRef] [PubMed]
- Simões, F.V.; Santos, V.O.; Silva, R.N.D.; Silva, R.C.D. Effectiveness of skin protectors and calendula officinalis for prevention and treatment of radiodermatitis: An integrative review. Rev. Bras. Enferm. 2020, 73, e20190815. [Google Scholar] [CrossRef]
- Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; et al. An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L. Pharmaceuticals 2023, 16, 611. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Santana, H.; García, G.; Vega, M.; Beldarraín, A.; Páez, R. Stability Studies of a Freeze-Dried Recombinant Human Epidermal Growth Factor Formulation for Wound Healing. PDA J. Pharm. Sci. Technol. 2015, 69, 399–416. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Inclusion of hydroxytyrosol in ethyl cellulose microparticles: In vitro release studies under digestion conditions. Food Hydrocoll. 2018, 84, 104–116. [Google Scholar] [CrossRef]
- da Rosa, C.G.; Borges, C.D.; Zambiazi, R.C.; Nunes, M.R.; Benvenutti, E.V.; Luz, S.R.d.; D’Avila, R.F.; Rutz, J.K. Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Ind. Crops Prod. 2013, 46, 138–146. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Chang, Y.H. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. Int. J. Biol. Macromol. 2020, 150, 546–558. [Google Scholar] [CrossRef]
- Consoli, L.; Grimaldi, R.; Sartori, T.; Menegalli, F.C.; Hubinger, M.D. Gallic acid microparticles produced by spray chilling technique: Production and characterization. LWT 2016, 65, 79–87. [Google Scholar] [CrossRef]
- Sánchez, F.M.; García, F.; Calvo, P.; Bernalte, M.J.; González-Gómez, D. Optimization of broccoli microencapsulation process by complex coacervation using response surface methodology. Innov. Food Sci. Emerg. Technol. 2016, 34, 243–249. [Google Scholar] [CrossRef]
- Valo, H.; Kovalainen, M.; Laaksonen, P.; Häkkinen, M.; Auriola, S.; Peltonen, L.; Linder, M.; Järvinen, K.; Hirvonen, J.; Laaksonen, T. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. J. Control. Release 2011, 156, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater. Today 2018, 21, 720–748. [Google Scholar] [CrossRef]
- Rajkumar, J.; Chandan, N.; Lio, P.; Shi, V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Ski. Pharmacol. Physiol. 2023, 36, 174–185. [Google Scholar] [CrossRef]
- Harmonisation of ICF. Stability Testing of New Drug Substances and Drug Products—Scientific Guideline (ICH Q1A) (R2); Harmonisation of ICF: Geneva, Switzerland, 2003. [Google Scholar]
- ISO/TR 18811:2018; Cosmetics—Guidelines on the Stability Testing of Cosmetic Products. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 17516:2014; Cosmetics—Microbiology—Microbiological Limits. International Organization for Standardization: Geneva, Switzerland, 2014.
- Man, M.Q.; Ye, L.; Hu, L.; Jeong, S.; Elias, P.M.; Lv, C. Improvements in epidermal function prevent relapse of psoriasis: A self-controlled study. Clin. Exp. Dermatol. 2019, 44, 654–657. [Google Scholar] [CrossRef]
- Danby, S.G.; Al-Enezi, T.; Sultan, A.; Chittock, J.; Kennedy, K.; Cork, M.J. The effect of aqueous cream BP on the skin barrier in volunteers with a previous history of atopic dermatitis. Br. J. Dermatol. 2011, 165, 329–334. [Google Scholar] [CrossRef]
- Berger, A. Delta-5(®) oil, containing the anti-inflammatory fatty acid sciadonic acid, improves skin barrier function in a skin irritation model in healthy female subjects. Lipids Health Dis. 2022, 21, 40. [Google Scholar] [CrossRef]
- Meng, H.; Lin, W.; Dong, Y.; Li, L.; Yi, F.; Meng, Q.; Li, Y.; He, Y. Statistical analysis of age-related skin parameters. Technol. Health Care 2021, 29, 65–76. [Google Scholar] [CrossRef]
- Cork, M.J.; Robinson, D.A.; Vasilopoulos, Y.; Ferguson, A.; Moustafa, M.; MacGowan, A.; Duff, G.W.; Ward, S.J.; Tazi-Ahnini, R. New perspectives on epidermal barrier dysfunction in atopic dermatitis: Gene-environment interactions. J. Allergy Clin. Immunol. 2006, 118, 3–21, quiz 22–23. [Google Scholar] [CrossRef]
- Jaspers, M.E.H.; Moortgat, P. Objective Assessment Tools: Physical Parameters in Scar Assessment. In Textbook on Scar Management: State of the Art Management and Emerging Technologies; Téot, L., Mustoe, T.A., Middelkoop, E., Gauglitz, G.G., Eds.; Springer: Cham, Switzerland, 2020; pp. 149–158. [Google Scholar] [CrossRef]
- Jemec, G.B.; Johansen, J.D. Erythema-index of clinical patch test reactions. Ski. Res. Technol. 1995, 1, 26–29. [Google Scholar] [CrossRef]
- Iwashita, K.; Etani, R.; Kai, M.; Ojima, M. Effect of standard skin care treatments on skin barrier function in X-irradiated hairless mice. Asia Pac. J. Oncol. Nurs. 2023, 10, 100149. [Google Scholar] [CrossRef]
- Montero-Vilchez, T.; Segura-Fernández-Nogueras, M.V.; Pérez-Rodríguez, I.; Soler-Gongora, M.; Martinez-Lopez, A.; Fernández-González, A.; Molina-Leyva, A.; Arias-Santiago, S. Skin Barrier Function in Psoriasis and Atopic Dermatitis: Transepidermal Water Loss and Temperature as Useful Tools to Assess Disease Severity. J. Clin. Med. 2021, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Asserin, J.; Lati, E.; Shioya, T.; Prawitt, J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J. Cosmet. Dermatol. 2015, 14, 291–301. [Google Scholar] [CrossRef] [PubMed]
- van Smeden, J.; Bouwstra, J.A. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Curr. Probl. Dermatol. 2016, 49, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Algiert-Zielińska, B.; Batory, M.; Skubalski, J.; Rotsztejn, H. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH. Int. J. Dermatol. 2017, 56, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Khosrowpour, Z.; Ahmad Nasrollahi, S.; Ayatollahi, A.; Samadi, A.; Firooz, A. Effects of four soaps on skin trans-epidermal water loss and erythema index. J. Cosmet. Dermatol. 2019, 18, 857–861. [Google Scholar] [CrossRef]
- Kim, J.E.; Sykes, J.M. Hyaluronic acid fillers: History and overview. Facial Plast. Surg. 2011, 27, 523–528. [Google Scholar] [CrossRef]
- Montero-Vilchez, T.; Soler-Góngora, M.; Martínez-López, A.; Ana, F.G.; Buendía-Eisman, A.; Molina-Leyva, A.; Arias-Santiago, S. Epidermal barrier changes in patients with psoriasis: The role of phototherapy. Photodermatol. Photoimmunol. Photomed. 2021, 37, 285–292. [Google Scholar] [CrossRef]
- Dal’Belo, S.E.; Gaspar, L.R.; Maia Campos, P.M. Moisturizing effect of cosmetic formulations containing Aloe vera extract in different concentrations assessed by skin bioengineering techniques. Ski. Res. Technol. 2006, 12, 241–246. [Google Scholar] [CrossRef]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef]
- López Luengo, M.T. Áloe vera. Offarm 2004, 23, 96–100. [Google Scholar]
- De Francesco, F.; Saparov, A.; Riccio, M. Hyaluronic acid accelerates re-epithelialization and healing of acute cutaneous wounds. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Hwang, S.R.; Yoon, I.S. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules 2017, 22, 1259. [Google Scholar] [CrossRef] [PubMed]
- Miller-Kobisher, B.; Suárez-Vega, D.V.; Velazco de Maldonado, G.J. Epidermal Growth Factor in Aesthetics and Regenerative Medicine: Systematic Review. J. Cutan. Aesthet. Surg. 2021, 14, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Gloor, M.; Bettinger, J.; Gehring, W. [Modification of stratum corneum quality by glycerin-containing external ointments]. Hautarzt 1998, 49, 6–9. [Google Scholar] [CrossRef]
Function | Components |
---|---|
Solvent | Aqua |
Active ingredients | Glycerin, sodium hyaluronate, Aloe barbadensis leaf juice, Calendula officinalis flower extract, sh-oligopeptide-1, OG2−EGF microparticle bisabolol, Cocus nucifera oil, grape seed oil |
Viscosity controller | Carbomer |
Surfactant | PEG-18 Castor Oil Dioleate, PEG/PPG-4/12 dimethicone, laureth-7, PEG-6 stearate, ceteth-20, glyceryl stearate, steareth-20 |
Chelating | Disodium EDTA |
Antioxidant | Tocopheryl acetate, tocopherol, pentaerythrityl tetra-di-T-butyl Hydroxyhydrocinnamate |
Preservative | Potassium sorbate, sodium benzoate, BHT |
pH adjustment | Sodium hydroxide |
Component | Concentration | Function |
---|---|---|
Polyphenol extract OG2 | 32.6% | Active ingredient |
sh-oligopeptide-1 solution | 7.3% | Active ingredient |
Hicap™ 100 starch | 57.3% | First coating |
Cellulose fibres | 2.7% | Second coating |
Parameter | Time (Months) | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Appearance | ✓ | ✓ | ✓ | ✓ |
pH | 5.7 | 5.8 | 5.7 | 5.5 |
Correlation coefficient | 1 | 0.995 | 0.995 | 0.988 |
TAMC (cfu/mL) | <100 | - | - | <100 |
TYMC (cfu/mL) | <100 | - | - | <100 |
Parameter | Time (Month) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 60 | |
Appearance | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
pH | 5.7 | 5.6 | 5.6 | 5.7 | 5.6 | 5.5 | 5.5 | 5.5 | 5.2 | 5.3 |
Correlation coefficient | 1 | 0.996 | 0.990 | 0.991 | 0.990 | 0.997 | 0.998 | 0.992 | 0.987 | 0.966 |
TAMC (cfu/mL) | <100 | - | - | - | - | - | <100 | - | - | <100 |
TYMC (cfu/mL) | <100 | - | - | - | - | - | <100 | - | - | <100 |
Characteristic | Value |
---|---|
Age | 39.80 ± 12.86 years |
Sex | |
Male | 12 (40.00%) |
Female | 18 (60.00%) |
Homeostasis Parameter | Forearm Without Cream | Forearm With Cream | p # | ||
---|---|---|---|---|---|
Before–After Difference | p ** | Before-After Difference | p *** | ||
Moisture (AUs) | 0.72 ± 2.19 | 0.746 | 12.28 ± 2.41 | <0.000 | <0.000 |
TEWL (g·m−2·h−1) | −0.04 ± 0.63 | 0.954 | −0.69 ± 0.74 | 0.355 | 0.215 |
Erythema (AUs) | −6.36 ± 7.85 | 0.424 | −8.15 ± 6.44 | 0.215 | 0.791 |
Melanin (AUs) | 1.16 ± 4.12 | 0.781 | −4.81 ± 3.09 | 0.131 | 0.290 |
pH | 0.29 ± 0.09 | 0.005 | 0.24 ± 0.10 | 0.022 | 0.510 |
Temperature (°C) | 0.20 ± 0.16 | 0.219 | −0.25 ± 0.18 | 0.177 | 0.011 |
Elasticity (%) | 0.009 ± 0.019 | 0.652 | 0.038 ± 0.018 | 0.041 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayayo, T.; Russo, G.; Jiménez-Escobar, A.L.; Pérez-González, N.; Clares, B.; Ruiz, A.; Tomás-Cobos, L.; Valera, A.; Gómez-Farto, A.; Arias-Santiago, S.; et al. Microencapsulation, Cream Development, and Controlled Clinical Study of an Upcycled Polyphenolic Extract Combined with sh-Oligopeptide-1. Cosmetics 2024, 11, 198. https://doi.org/10.3390/cosmetics11060198
Mayayo T, Russo G, Jiménez-Escobar AL, Pérez-González N, Clares B, Ruiz A, Tomás-Cobos L, Valera A, Gómez-Farto A, Arias-Santiago S, et al. Microencapsulation, Cream Development, and Controlled Clinical Study of an Upcycled Polyphenolic Extract Combined with sh-Oligopeptide-1. Cosmetics. 2024; 11(6):198. https://doi.org/10.3390/cosmetics11060198
Chicago/Turabian StyleMayayo, Teo, Gabriella Russo, Ana Leticia Jiménez-Escobar, Noelia Pérez-González, Beatriz Clares, Adolfina Ruiz, Lidia Tomás-Cobos, Ana Valera, Almudena Gómez-Farto, Salvador Arias-Santiago, and et al. 2024. "Microencapsulation, Cream Development, and Controlled Clinical Study of an Upcycled Polyphenolic Extract Combined with sh-Oligopeptide-1" Cosmetics 11, no. 6: 198. https://doi.org/10.3390/cosmetics11060198
APA StyleMayayo, T., Russo, G., Jiménez-Escobar, A. L., Pérez-González, N., Clares, B., Ruiz, A., Tomás-Cobos, L., Valera, A., Gómez-Farto, A., Arias-Santiago, S., & Montero-Vilchez, T. (2024). Microencapsulation, Cream Development, and Controlled Clinical Study of an Upcycled Polyphenolic Extract Combined with sh-Oligopeptide-1. Cosmetics, 11(6), 198. https://doi.org/10.3390/cosmetics11060198