Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focal Question
2.2. Literature Search
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection
2.5. Data Analysis
3. Results
3.1. Physicochemical Characteristics of Curcumin
3.2. Antioxidant Activity of Curcumin
3.3. Anti-Inflammatory Properties of Curcumin
3.4. Potential of Curcumin (Curcuma Spesies) as SPF Agent
3.5. Mechanism of Curcumin as a Sun Protector Agent
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural antioxidants: Multiple mechanism to protect skin from solar radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Medic. 2017, 107, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; He, X.; Liu, N.; Deng, H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div. 2024, 19, 1. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.M.; Cheng, M.Y.; Xun, M.H.; Zhao, Z.W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef]
- Martins, S.G.; Zilhão, R.; Thorsteinsdóttir, S.; Carlos, A.R. Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components. Front. Genet. 2021, 12, 673002. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Chen, M.; Qian, C.; Jin, B.; Hu, C.; Zhang, L.; Wang, M.; Zhou, B.; Zuo, W.; Huang, L.; Wang, Y. Curcumin analog WZ26 Induces ROS and Cell Death via Inhibition of STAT3 in cholangiocarcinoma. Cancer Biol. Ther. 2023, 24, 2162807. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, B.H.; Qiu, X.; Wang, H.S.; Zhang, F.; Fang, R.; Wang, X.F.; Cai, S.H.; Du, J.; Bu, X.Z. A New 4-Arylidene Curcumin Analogue, Induces Cell Cycle Arrest and Apoptosis Through Activation of the Reactive Oxygen Species-FOXO3 A Pathway in Lung Cancer Cells. Free Radic. Biol. Med. 2012, 53, 2204–2217. [Google Scholar] [CrossRef] [PubMed]
- Gersey, Z.C.; Rodriguez, G.A.; Barbarite, E.; Sanchez, A.; Walters, W.M.; Ohaeto, K.C.; Komotar, R.J.; Graham, R.M. Curcumin Decreases Malignant Characteristics of Glioblastoma Stem Cells via Induction of Reactive Exygen Species. BMC Cancer 2017, 17, 99. [Google Scholar] [CrossRef]
- Choi, J.K.; Kwon, O.Y.; Lee, S.H. Kaempferide Prevents Photoaging of Ultraviolet-B Irradiated NIH-3T3 Cell and Mouse Skin via Regulating the Reactive Oxygen SPecies-Mediated Signalings. Antioxidants 2022, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.; Gok, O.; Beyaz, S.; Uslu, H.; Erman, F.; Erman, O.; Baspinar, S. Ellagic acid inhibits proinflammatory intermediary manufacture by suppressing nf-kb/akt, vegf and activating nrf-2/caspase-3 signaling pathways in rat testicular damage: A new way for testicular damage cure and in silico approach. Toxicol. Mech. Methods. 2022, 32, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.R.; Bort, A.; Morrel, C.; Henche, N.R.; Laviada, I.D. The Pepper’s Natural Ingredient Capsaicin Induced Autophagy Blockage in Prostate Cancer Cells. Oncotarget 2015, 7, 1569–1583. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.H.; Yeh, C.T.; Yen, G.C. Anthocyanins Induce the Activation of Phase II Enzymes Through the Antioxidant Response Element Pathway Against Oxidative Stresss-Induced Apoptosis. J. Argic. Food Chem. 2007, 55, 9427–9435. [Google Scholar] [CrossRef]
- Rahmat, E.; Lee, J.; Kang, Y. Javanese turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, phytochemistry, biotechnology, and pharmacological activities. Evid. Based Complement. Alternat. Med. 2021, 2021, 9960813. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Raina, N.; Wahi, A.; Goh, K.W.; Sharma, P.; Nagpal, R.; Jain, A.; Ming, L.C.; Gupta, M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022, 14, 2288. [Google Scholar] [CrossRef] [PubMed]
- Rahban, M.; Rezaei, M.H.; Mazaheri, M.; Saso, L.; Movahedi, A.A.M. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants 2020, 9, 1228. [Google Scholar] [CrossRef]
- Nunes, Y.C.; Mendes, N.M.; de Lima, E.P.; Chehadi, A.C.; Lamas, C.B.; Haber, J.F.S.; Bueno, M.S.; Araujo, A.C.; Catharin, V.C.S.; Detregiachi, C.R.P.; et al. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024, 16, 2721. [Google Scholar] [CrossRef]
- Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) (*). J. Biol. Chem. 1995, 270, 24995–25000. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Deng, L.; Yin, L.; Mao, Z.; Gao, X. Curcumin promotes skin wound healing by activating Nrf2 signaling pathways and inducing apoptosis in mice. Turk. J. Med. Sci. 2023, 53, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Vollono, L.; Falconi, M.; Gaziano, R.; Lacovelli, F.; Dika, E.; Terracciano, C.; Bianchi, L.; Campione, E. Potential of Curcumin in Skin Disorders. Nutrients 2019, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.R.; Prasad, S.; Kannappan, R.; Ravindran, J.; Chaturvedi, M.M.; Vaahtera, L.; Parkkinen, J.; Aggarwal, B.B. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem. Pharmacol. 2010, 80, 1021–1032. [Google Scholar] [CrossRef]
- Abe, Y.; Hashimoto, S.; Horie, T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res. 1999, 39, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Ortiz, A.A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Jagetia, G.C. Antioxidant activity of curcumin protects against the radiation-induced micronuclei formation in cultured human peripheral blood lymphocytes exposed to various doses of γ-Radiation. Int. J. Radiat. Biol. 2021, 97, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, A.R.; Branum, A.; Sivamani, R.K. Effects of Turmeric (Curcuma longa) on Skin Health: A Systematic Review of the Clinical Evidence. Phyther. Res. 2016, 30, 1243–1264. [Google Scholar] [CrossRef]
- Mohanty, C.; Sahoo, S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov. 2017, 22, 1582–1592. [Google Scholar] [CrossRef]
- Benameur, T.; Soleti, R.; Panaro, M.A.; Torre, M.E.L.; Monda, V.; Messina, G.; Porro, C. Curcumin as Prospective Anti-Aging Natural Compound: Focus on Brain. Molecules 2021, 26, 4794. [Google Scholar] [CrossRef] [PubMed]
- Drozd, K.K.; Nizinski, P.; Hawryt, A.; Gancarz, M.; Hawryt, D.; Oliwa, W.; Patkaa, M.; Markowska, J.; Oniszczuk, A. Potential of Curcumin in the Management of Skin Disease. Int. J. Mol. Sci. 2024, 25, 3617. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.C.; Hu, D.N.; Roberts, J.; Shen, X.; Lee, C.Y.; Nien, C.W.; Lin, H.Y. Inhibition Effect of Curcumin on UVB-Induced Secretion of Pro-Inflammatory Cytokines from Corneal Limbus Epithelial Cells. Int. J. Ophthalmol. 2017, 10, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.M.; Noh, E.M.; Kim, J.S.; Kim, J.M.; You, Y.O.; Hwang, J.K.; Kwon, K.B.; Lee, Y.R. Curcumin Inhibits UVB-Induced Matrix Metalloproteinase-⅓ Expression by Suppressing the MAPK-p38/JNK Pathways in Human Dermal Fibroblasts. Exp. Dermatol. 2013, 22, 358–379. [Google Scholar] [CrossRef]
- Deng, H.; Wan, M.; Li, H.; Liang, B.; Zhu, H. Curcumin protection against ultraviolet-induced photo-damage in Hacat cells by regulating nuclear factor erythroid 2-related factor 2. Bioengineered 2021, 12, 9993–10006. [Google Scholar] [CrossRef]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2015, 57, 2889–2895. [Google Scholar] [CrossRef] [PubMed]
- Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007, 28, 1765–1773. [Google Scholar] [CrossRef]
- Kitture, R.; Ghosh, S.; More, P.A.; Date, K.; Gaware, S.; Datar, S.; Chopade, B.A.; Kale, S.N. Curcumin-Loaded, Self-Assembled Aloevera Template for Superior Antioxidant Activity and Trans-Membrane Drug Release. J. Nanosci. Nanotechnol. 2015, 15, 4039–4045. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Takshak, S.; Agrawal, S. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B 2019, 193, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Coradini, K.; Lima, F.O.; Oliveira, C.M.; Chaves, P.S.; Athayde, M.L.; Carvalho, L.M.; Beck, R.C.R. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur. J. Pharm. Biopharm. 2014, 88, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm. J. 2019, 27, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Bahashwan, E. Awareness and knowledge of sun exposure and use of sunscreen among adults in Aseer region, Saudi Arabia. Saudi Pharm. J. 2024, 32, 102019. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.J. An overview of ultraviolet radiation, sunscreens, and photo-induced dermatoses. Dermatol. Clin. 2006, 24, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Colantonio, S.; Dawson, A.; Lin, X.; Beecker, J. Sunscreen application, safety, and sun protection: The evidence. J. Cutan. Med. Surg. 2019, 23, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.; Lupuliasa, D.; Dima, I.A.; Nitulescu, G.M. Ultraviolet Filters for Cosmetic Applications. Cosmetics 2023, 10, 101. [Google Scholar] [CrossRef]
- Budiati, A.; Rahmat, D.; Alwiyah, Z. Antioxidant and Sunscreen Activity from Nanoparticles Extract of Temulawak Rhizome (Curcuma xanthorrhiza Roxb.) and Formulation in The Form of A Cream. J. Jamu Indones. 2021, 6, 72–83. [Google Scholar] [CrossRef]
- Sander, M.; Sander, M.; Burbidge, T.; Beecker, J. The efficacy and safety of sunscreen use for the prevention of skin cancer. CMAJ 2020, 192, 1802–1808. [Google Scholar] [CrossRef]
- Hughes, M.C.B.; Williams, G.M.; Baker, P.; Green, C.A. Sunscreen and prevention of skin aging: A randomized trial. Ann. Intern. Med. 2013, 158, 781–790. [Google Scholar] [CrossRef]
- Iannacone, M.R.; Hughes, M.C.B.; Green, A.C. Effects of sunscreen on skin cancer and photoaging. Photodermatol. Photoimmunol. Photomed. 2014, 30, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Kohli, I.; Nicholson, C.L.; Williams, J.D.; Lyons, A.B.; Seo, I.S.; Maitra, P.; Tian, X.; Atillasoy, E.; Lim, H.W.; Hamzavi, I.H. Greater efficacy of SPF 100+ sunscreen compared with SPF 50+ in sunburn prevention during 5 consecutive days of sunlight exposure: A randomized, double-blind clinical trial. J. Am. Acad. Dermatol. 2020, 82, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.D.; Maitra, P.; Atillasoy, E.; Wu, M.M.; Farberg, A.S.; Rigel, D.S. SPF 100+ sunscreen is more protective against sunburn than SPF 50+ in actual use: Results of a randomized, double-blind, split-face, natural sunlight exposure clinical trial. J. Am. Acad. Dermatol. 2018, 78, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The banned sunscreen ingredients and their impact on human health: A systematic review. Int. J. Dermatol. 2020, 59, 1033–1042. [Google Scholar] [CrossRef]
- Sumule, A.; Pamudji, G.; Ikasari, E.D. Optimasi Aristoflex® AVC dan Propilen Glikol Gel Tabir Surya Rimpang Kunyit dengan Metode Desain Faktorial. J. Farm. Dan Ilmu Kefarmasian Indones. 2021, 8, 168. [Google Scholar] [CrossRef]
- Setyani, D.A.; Rahayu, D.U.C.; Handayani, S.; Sugita, P. Phytochemical and Anti Acne investigation of Indonesian White Turmeric (Curcuma zedoaria) Rhizomes. IOP Conf. Ser. Mater. Sci Eng 2020, 902, 012066. [Google Scholar] [CrossRef]
- Li, H.; Gao, A.; Jiang, N.; Liu, Q.; Liang, B.; Li, R.; Zhang, E.; Li, Z.; Zhu, H. Protective Effect of Curcumin Against Acute Ultraviolet B Irradiation-Induced Photo-Damage. Photochem. Photobiol. 2016, 92, 808–815. [Google Scholar] [CrossRef]
- Djawad, K.; Yusuf, I.; Miskad, U.A.; Patellongi, I.J.; Massi, M.N. Topical Curcumin as Chemoprotector Against Photoproducts Production: The Role of Cyclobutyl Pyrimidine Dimers, 8-Hydroxy2′Deoxyguanosine Expression and Epidermal Hyperplasia in Acute and Chronic UVB-Induced Mice. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Pius, A.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2016, 7, 205–233. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Rakib, A.; Mitra, S.; Tareq, A.M.; Emran, T.B.; Shahid-Ud-Daula, A.F.M.; Amin, M.N.; Simal-Gandara, J. The Genus Curcuma and Inflammation: Overview of the Pharmacological Perspectives. Plants 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev. 2009, 14, 141–153. [Google Scholar] [PubMed]
- Shahcheraghi, S.H.; Salemi, F.; Peirovi, N.; Ayatollahi, J.; Alam, W.; Khan, H.; Saso, L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Molecules 2021, 27, 167. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr. Mol. Med. 2020, 20, 116–133. [Google Scholar] [PubMed]
- Zhang, Y.; Sun, B.; Wang, L.; Shen, W.; Shen, S.; Cheng, X.; Liu, X.; Xia, H. Curcumin-Loaded Liposomes in Gel Protect the Skin of Mice against Oxidative Stress from Photodamage Induced by UV Irradiation. Gels 2024, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.B.S.; Daré, R.G.; Alves, B.L.; Hoshino, L.V.C.; Baesso, M.L.; Laustenschlager, S.O.S.; Bruschi, M.L. Development, in vitro and ex vivo evaluation of bioadhesive colloidal systems for curcumin skin delivery aiming the antioxidant and photoprotective activities. J. Drug Deliv. Sci. Technol. 2024, 91, 105195. [Google Scholar] [CrossRef]
- Djawad, K.; Patellongi, I.J.; Miskad, U.A.; Massi, M.N.; Yusuf, I.; Faruk, M. Single or Daily Application of Topical Curcumin Prevents Ultraviolet B-Induced Apoptosis in Mice. Molecules 2023, 28, 371. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.; Sola, Y.; Gilaberte, Y.; Trullas, C. Outdoor Testing of the Photoprotection Provided by a New Water-Based Broad-Spectrum SPF50+ Sunscreen Product: Two Double-Blind, Split-Face, Randomized Controlled Studies in Healthy Adults. Clin. Cosmet. Investig. Dermatol. 2019, 12, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Lestari, U.; Muhaimin, M.; Chaerunisaa, A.Y.; Sujarwo, W. Anti-Aging Potential of Plants of the Anak Dalam Tribe, Jambi, Indonesia. Pharmaceuticals 2023, 16, 1300. [Google Scholar] [CrossRef] [PubMed]
- Handayani, D.; Halimatushadyah, E.; Krismayadi, K. Standarisasi Mutu Simplisia Rimpang Kunyit Dan Ekstrak Etanol Rimpang Kunyit (Curcuma longa Linn). Pharm. Genius 2023, 2, 43–59. [Google Scholar] [CrossRef]
- Malahayati, N.; Widowati, T.W.; Febrianti, A. Karakterisasi Ekstrak Kurkumin dari Kunyit Putih (Kaemferia rotunda L.) dan Kunyit Kuning (Curcuma domestica Val.). AgriTech 2020, 41, 134–144. [Google Scholar] [CrossRef]
- Rezki, R.S.; Anggori, D.; Siswarni, E. Multi Tahap Kurkumin DariI Kunyit (Curcuma domestica Valet) Menggunakan Pelarut Etanol. J. Tek. Kim. USU 2015, 4, 29–34. [Google Scholar] [CrossRef]
- Kementerian Kesehatan Republik Indonesia. Farmakope Herbal Indonesia, 2nd ed.; Kementerian Kesehatan Republik Indonesia: Jakarta, Indonesia, 2017; pp. 272–273. [Google Scholar]
- Aziz, Y.S.; Ardyanto, M.; Ikhza, M. Standarisasi Parameter Non Spesifik Simplisia Rimpang Kunyit (Curcumae Domestica Rizhoma) Dan Temulawak (Curcuma xanthorrhiza Roxb.) Di Kabupaten Ponorogo. J. Delima Harapan 2019, 6, 89–94. [Google Scholar] [CrossRef]
- Zheng, B.; McClements, D.J. Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability. Molecules 2020, 25, 2791. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Kather, F.S.; Morsy, M.A.; Boddu, S.H.S.; Attimarad, M.; Shah, J.; Shinu, P.; Nair, A.B. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. Nanomaterials 2024, 4, 672. [Google Scholar] [CrossRef] [PubMed]
- Akter, J.; Hossain, M.A.; Takara, K.; Islam, M.Z.; Hou, D.X. Antioxidant Activity of Different Species and Varieties of Turmeric (Curcuma spp.): Isolation of active compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 215, 9–17. [Google Scholar] [CrossRef]
- Triyono, T.; Chaerunisaa, A.Y.; Subarnas, A. Antioxidant Activity of Combination Ethanol Extract of Turmeric Rhizome (Curcuma Domestica Val.) and Ethanol Extract of Trengguli Bark (Cassia fistula L.) with DPPH Method. Indones. J. Pharm. Sci. Technol. 2018, 5, 43–48. [Google Scholar] [CrossRef]
- Tanvir, E.M.; Hossen, M.S.; Hossain, M.F.; Afroz, R.; Gan, S.H.; Khalil, I.; Karim, N. Antioxidant Properties of Popular Turmeric (Curcuma longa) Varieties from Bangladesh. J. Food Qual. 2017, 2017, 8471785. [Google Scholar] [CrossRef]
- Rahul, R.; Arrivukkarasan, S.; Anhuradha, S. In Vitro Antioxidant and Free Radical Scavenging Activity of Curcuma longa, Acorus calamus, and Camellia sinensis. Food Nutr. Sci. 2020, 13, 750–760. [Google Scholar]
- Kusumaningrum, M.; Ardhiansyah, H.; Putranto, A.W.; Trihardini, A.; Kinanti, P.A.; Maslahah, D.N.; Harianingsih, H. Turmeric Extraction (Curcuma longa L.) Using the Reflux Method and Characterization. J. Bahan Alam Terbarukan 2022, 11, 85–91. [Google Scholar] [CrossRef]
- Rakhmayanti, R.D.; Rusita, Y.D. Aktivitas Antioksidan Masker Peel-Off Kopi (Coffea arabica) dan Kunyit (Curcuma longa) Menggunakan Metode DPPH. J. Ilmu Kefarmasian Indones. 2022, 20, 87–92. [Google Scholar] [CrossRef]
- Pratiwi, D.; Sidoretno, W.M.; Aisha, N. The Combination of Turmeric (Curcuma domestica) Rhizome Extract and Collagen in a Serum Formulation as an Antioxidant. Borneo J. Pharm. 2021, 4, 36–42. [Google Scholar] [CrossRef]
- Partio, E.K.U.; Tedjakusuma, F.; Surya, R. Analysis of Antioxidant and Hedonic Acceptance of Turmeric Extract-Enriched Milk. IOP Conference Series. Earth Environ. Sci. 2023, 1169, 012091. [Google Scholar] [CrossRef]
- Asyhar, R.; Minarni, M.; Arista, R.A.; Nurcholis, W. Total Phenolic and Flavonoid Contents and Their Antioxidant Capacity of Curcuma xanthorrhiza Accessions from Jambi. Biodiversitas 2023, 24. [Google Scholar] [CrossRef]
- Yodi, G.; Artika, I.M.; Nurcholis, W. Effect of Varieties of Curcuma xanthorrhiza and Extraction Solvent on Total Phenolic, Total Flavonoid Content, and Antioxidant Capacity. Biodiversitas 2023, 24. [Google Scholar] [CrossRef]
- Malau, R.C.; Nasution, S.W.; Nasution, A.N.; Widowati, W.; Nindya, F.S.; Kusuma, H.S.W. Antioxidant Potential of Temulawak (Curcuma xanthorrhiza) Extract Gel as a Candidate for Wound Healing. J. Vocat. Health Stud. 2024, 7. [Google Scholar] [CrossRef]
- Suryani, S.; Al Anshory, A.C.; Marlin, M.; Artika, I.M.; Ambasari, L.; Nurcholis, W. Variability Total Phenolic Content and Antioxidant Activity of Curcuma zanthorrhiza and C. aeruginosa Cultivated in Three Different Locations in West Java, Indonesia. Biodiversitas J. Biol. Divers. 2022, 23, 434. [Google Scholar] [CrossRef]
- Marliani, L.; Budiana, W.; Anandari, Y. The Effect of Extraction Condition on The Polyphenol Content and Antioxifant Activity of Curcuma zedoria (Christm.) Roschoe Rhizome. Indones. J. Pharm. Sci. Technol. 2017, 4, 57. [Google Scholar] [CrossRef]
- Desmiaty, Y.; Winarti, W.; Lindawati, L.; Fahleni, F. Formulasi Curcuma zedoaria sebagai Emulgel Antioksidan. J. Ilmu Kefarmasian Indones. 2020, 18, 34–40. [Google Scholar]
- Budiansyah, A.; Haroen, U.; Syafwan, S.; Kurniawan, K. Antioxidant and Antibacterial Activities of the Rhizome Extract of Curcuma zedoaria Extracted Using Some Organic Solvents. J. Adv. Vet. Anim. Res. 2023, 10, 347. [Google Scholar] [CrossRef]
- Kusumawati, I.; Kurniawan, K.O.; Rullyansyah, S.; Prijo, T.A.; Widyowati, R.; Ekowati, J.; Hestianah, E.P.; Maat, S.; Matsunami, K. Anti-aging Properties of Curcuma heyneana Valeton & Zipj: A Scientific Approach to Its Use in Javanese Tradition. J. Ethopharmacol. 2018, 225, 64–70. [Google Scholar] [CrossRef]
- Manuhara, Y.S.W.; Sugiharto, S.; Kristanti, A.N.; Aminah, N.S.; Wibowo, A.T.; Wardana, A.P.; Putro, Y.K.; Sugiarso, D. Antioxidant Activities, Total Phenol, Flavonoid, and Mineral Content in the Rhizome of Various Indonesian Herbal Plants. Rasayan J. Chem. 2022, 15, 2724–2730. [Google Scholar] [CrossRef]
- Marianne, M.; Patilaya, P.; Barus, B.T. Uji Aktivitas Antioksidan Kombinasi Ekstrak Etanol Rimpang Temu Giring (Curcuma heyneana) dan Daun Pugun Tanoh (Curanga Fel-Terrae) Menggunakan Metode Diphenyl Picrylhydrazil (DPPH). Talent. Conf. Ser. 2018, 2, 398–404. [Google Scholar] [CrossRef]
- Sukandiarsyah, F.; Purwaningsih, I.; Ratnawaty, G.J. Aktivitas Antioksidan Ekstrak Metanol dan n-Heksana Rimpang Temu Ireng (Curcuma aeruginosa Roxb.) Metode DPPH. J. Mandala Pharmacon. Indones. 2023, 9, 62–70. [Google Scholar] [CrossRef]
- Dewi, I.P.; Verawaty, V.; Taslim, T.; Sinabutar, P.P. Aktivitas Antioksidan Masker Gel Peel-off Ekstrak Rimpang Temu Ireng (Curcuma aeruginosa Roxb.). J. Kesehat. Perintis 2024, 11, 19–27. [Google Scholar] [CrossRef]
- Sari, R.P. Identifikasi Senyawa Flavonoid dan Uji Antioksidan Ekstrak Etanol Rimpang Temu Hitam (Curcuma aeruginosa Roxb) dengan Metode DPPH. Biol. Educ. Sci. Technol. 2024, 7, 2032–2038. [Google Scholar]
- Susiloningrum, D.; Sari, D.E.M. Uji Aktivitas Antioksidan dan Penetapan Kadar Flavonoid Total Ekstrak Temu Mangga (Curcuma mangga Valeton & Zipj) dengan Variasi Konsentrasi Pelarut. Cendekia J. Pharm. 2021, 5, 117–127. [Google Scholar] [CrossRef]
- Hartono, Y.I.; Widyastuti, I.; Luthfiah, H.Z.; Islamadina, R.; Can, A.T.; Rohman, A. Total Flavonoid Content and Antioxidant Activity of Temu Mangga (Curcuma mangga Val. & Zijp) and its Classification with Chemometrics. J. Food Pharm. Sci. 2020, 8, 202–214. [Google Scholar] [CrossRef]
- Alabdali, A.; Kzar, M.; Chinnappan, S.; Mogana, R.; Khalivula, S.I.; Rahman, H.; Razik, B.M.A. Antioxidant Activity of Curcumin. Res. J. Pharm. Technol. 2021, 14, 12. [Google Scholar] [CrossRef]
- Dalla, E.; Koumentakou, I.; Bikiaris, N.; Balla, E.; Lykidou, S.; Nikolaidis, N. Formulation, Characterization and Evaluation of Innovative O/W Emulsions Containing Curcumin Derivatives with Enhanced Antioxidant Properties. Antioxidants 2022, 11, 2271. [Google Scholar] [CrossRef] [PubMed]
- Milasari, M.; Jamaluddin, A.W.; Adikurniawan, Y.M. Pengaruh Pemberian Salep Ekstrak Kunyit Kuning (Curcuma longa Linn) terhadap Penyembuhan Luka Sayat pada Tikus Putih (Rattus norvegicus). J. Ilm. Ibnu Sina 2019, 4, 186–202. [Google Scholar] [CrossRef]
- Kaban, V.E.; Nasri; Rani, Z.; Suci, N.; Sekali., E.S.K.; Segala, H.U.B. The Effect of Turmeric Parent Extract Gel (Curcuma longa Linn) on Incision Wound Healing in Male White Rats (Rattus norvegicus). J. Pharm. Sci. 2024, 7, 616–627. [Google Scholar] [CrossRef]
- Adeliana; Usman, A.N.; Ahmad, M.; Arifuddin, S.; Yulianty, R.; Prihantono. Effectiveness of Turmeric (Curcuma longa Linn) Gel Extract (GE) on wound healing: Pre-Clinical Test. Gac. Sanit. 2021, 35, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Susanto, Y.; Solehah, F.A.; Fadya, A.; Khaerati, K. Potensi Kombinasi Ekstrak Rimpang Kunyit (Curcuma longa L.) dan Kapur Sirih Sebagai Anti Inflamasi dan Penyembuh Luka Sayat. J. Pharm. Sci. 2023, 8, 32–45. [Google Scholar] [CrossRef]
- Qabaha, K.; Abu-Lafi, S.; Al-Rimawi, F. Anti-inflammatory Activities of Ethanolic Extracts of curcuma Longa (Turmeric) and cinnamon (Cinnamomum verum). JFNR 2017, 5, 668–673. [Google Scholar]
- Kim, K.W.; Lee, Y.S.; Yoon, D.; Kim, G.S.; Lee, D.Y. The ethanolic extract of Curcuma longa grown in Korea exhibits anti-neuroinflammatory effects by activating of nuclear transcription factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. BMC Complement. Med. Ther. 2022, 22, 343–346. [Google Scholar] [CrossRef]
- Shi, Y.; Liang, X.; Chi, L.; Chen, Y.; Liang, L.; Zhao, J.; Luo, Y.; Zhang, W.; Cai, Q.; Wu, X.; et al. Ethanol extracts from twelve Curcuma species rhizomes in China: Antimicrobial, antioxidative and anti-inflammatory activities. S. Afr. J. Bot. 2021, 140, 167–172. [Google Scholar] [CrossRef]
- Khatun, M.; Nur, M.A.; Biswas, S.; Khan, M.; Amin, M.Z. Assessment of the anti-oxidant, anti-inflammatory and anti-bacterial activities of different types of turmeric (Curcuma longa) powder in Bangladesh. J. Agric. Food Res. 2021, 6, 100201. [Google Scholar] [CrossRef]
- Muhammed, A.I.; Nasiry, B.S.A.N.A.; Rudha, A.M.H.A.A.; Dakheel, M.M.; Ali, S. Applications of Curcumin Extract Formulation for the Healing Efficacy on Mice Wounds. Int. J. Appl. Sci. Technol. 2022, 4, 17–184. [Google Scholar] [CrossRef]
- Amin, I.; Rashid, S.M.; Shubeena, S.; Hussain, I.; Ahmas, S.B.; Mir, M.U.R.; Alshehri, S.; Bukhari, S.I.; Mir, T.M.; Rehman, M.U. TLR4/NFκB-Mediated Anti-Inflammatory and Antioxidative Effect of Hexanic and Ethanolic Extracts of Curcuma longa L. in Buffalo Mammary Epithelial Cells. Separations 2022, 9, 414. [Google Scholar] [CrossRef]
- Pawar, R.; Toppo, F.; Mandloi, A.; Shaikh, S. Exploring the role of curcumin containing ethanolic extract obtained from Curcuma longa (rhizomes) against retardation of wound healing process by aspirin. Indian J. Pharmacol. 2015, 47, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Indriani, U.; Idiawati, N.; Wibowo, M.A. Uji Aktivitas Antiinflamasi dan Toksisitas Infus Kunyit (Curcuma domestica val.), Asam Jawa (Tamarindus indica L.) dan Sirih (Piper betle L.). J. Kim. Khatulistiwa 2018, 7, 107–112. [Google Scholar]
- Rahman, A.A.R.; Maryam, S.; Razak, R. Aktivitas Antiinflamasi Ekstrak Etanol Rimpang Kunyit (Curcuma domestica Val.) secara In Vitro. Makassar Pharm. Sci. J. 2024, 2, 336–343. [Google Scholar]
- Sukmawati, K.; Wati, A.; Muflihunna, A. Uji Aktivitas Ekstrak Kombinasi Rimpang Kunyit (Curcuma domestica Val.) dan Kurma (Phoenix dactylifera L.) sebagai Antiinflamasi Secara In Vitro. Window Health 2022, 5, 735–744. [Google Scholar] [CrossRef]
- Arisonya, S.; Wibisono, G.; Aditya, G. Efektivitas Ekstrak Kunyit (Curcuma domestica) terhadap Jumlah Sel Makrofag dan Diameter pada Lesi Ulkus Traumatikus (Suatu Penelitian In Vivo pada Tikus Putih Jantan (Rattus norvegiccus)). B-Dent J. Kedokt. Gigi Univ. Baiturrahmah 2018, 1, 118–125. [Google Scholar] [CrossRef]
- Setyono, J.; Harini, I.M.; Sarmoko, S.; Rujito, L. Supplementation of curcuma domestica extract reduces cox-2 and inos expression on raw 264.7 cells. J. Phys. Conf. Ser. 2019, 1246, 12059. [Google Scholar] [CrossRef]
- Maulidi, R.R.; Girsang, E.; Nasution, A.N.; Ginting, S.F. Effectiveness of Ethanol Extract of Turmeric (Curcuma Domestic Valet) Gel Against Grade Iia Burn in White Rats (Rattus norvegicus). Int. J. Health Pharm. 2022, 2, 566–574. [Google Scholar] [CrossRef]
- Farida, Y.; Rahmat, D.; Amanda, A.W. Anti-Inflammation Activity Test of Nanoparticles Ethanol Extract of Temulawak Rhizome (Curcuma xanthorrhiza Roxb.) with Protein Denaturation Inhibition Method. J. Ilmu Kefarmasian Indones. 2018, 16, 225–230. [Google Scholar] [CrossRef]
- Ariyani, F.; Handharyani, E.; Sutardi, L.N. Wound Healing Using White Turmeric (Curcuma zedoaria) Extract Nanoparticles: Macroscopic and Microscopic Observation. J. Vet. 2022, 23, 441–447. [Google Scholar] [CrossRef]
- Andrina, S.; Churiyah, C.; Nuralih, N. Anti-Inflammatory Effect of Ethanolic Extract of Curcuma aeruginosa Roxb Rhizome, Morinda Citrifolia Fruit and Apium graveolens Leaf on Lipopplysaccharide-induce RAW 264.7 Cell Lines. Indones J. Cancer Chemoprevent. 2017, 6, 84–88. [Google Scholar] [CrossRef]
- Srirod, S.; Tewtrakul, S. Anti-Inflammatory and Wound Healing Effects of Cream Containing Curcuma mangga Extract. J. Ethnopharmacol. 2019, 238, 111828. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Strong Anti-Inflammatory Effects of Curcumin. J. Nutr. Health Sci. 2016, 3, 205. [Google Scholar]
- Yuan, M.; Niu, J.; Li, F.; Ya, H.; Liu, X.; Li, K.; Fan, Y.; Zhang, Q. Dipeptide-1 modified nanostructured lipid carrier-based hydrogel with enhanced skin retention and topical efficacy of curcumin. RSC Adv. 2023, 13, 29152–29162. [Google Scholar] [CrossRef] [PubMed]
- Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 2014, 20, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 2012, 437, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hamam, F.; Nasr, A. Curcumin-loaded mesoporous silica particles as wound-healing agent: An in vivo study. Saudi J. Med. Med. Sci. 2020, 8, 17–24. [Google Scholar] [CrossRef] [PubMed]
- González-Ortega, L.A.; Acosta-Osorio, A.A.; Grube-Pagola, P.; Palmeros-Exsome, C.; Cano-Sarmiento, C.; García-Varela, R.; García, H.S. Anti-inflammatory Activity of Curcumin in Gel Carriers on Mice with Atrial Edema. J. Oleo Sci. 2020, 69, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Akter, J.; Hossain, M.A.; Islam, M.S.; Islam, P.; Goswami, C.; Nguyen, H.T.T.; Miyamoto, A. Anti-Inflammatory, Wound Healing, and Anti-Diabetic Effects of Pure Active Compounds Present in the Ryudai Gold Variety of Curcuma longa. Molecules 2024, 29, 2795. [Google Scholar] [CrossRef]
- Mohammad, C.A.; Ali, K.M.; Sha, A.M.; Gul, S.S. Effect of Curcumin gel on Inflammatory and Anti-Inflammatory Biomarkers in Experimental Induced Periodontitis in Rats: A Biochemical and Immunological Study. Front. Microbiol. 2023, 14, 1274189. [Google Scholar] [CrossRef]
- Yen, Y.H.; Pu, C.M.; Liu, C.W.; Chen, Y.C.; Chen, Y.C.; Liang, C.J.; Hsieh, J.H.; Huang, H.F.; Chen, Y.L. Curcumin Accelerates Cutaneous Wound Healing via Multiple Biological Actions: The Involvement of TNF-α, MMP-9, α-SMA, and Collagen. Intternational Wound J. 2018, 15, 605–617. [Google Scholar] [CrossRef]
- Frei, G.; Haimhoffer, A.; Csapo, E.; Bodnar, K.; Vasvari, G.; Nemes, D.; Lekli, I.; Gyongyosi, A.; Bacskay, I.; Feher, P.; et al. In Vitro and In Vivo Efficacy of Topical Dosage Forms Containing Sel-Nanoemulsifying Drug Delivery System Loaded with Curcumin. Pharmaceutics 2023, 15, 2054. [Google Scholar] [CrossRef]
- Herawati, H.; Oktanella, Y.; Anisa, A.K.; Wuragil, D.K.; Aulanni’am, A. In silico Analysis of Active Compounds from Ethanol Extract of Curcuma xanthorrhiza on COX-2 Receptors as Anti-Inflammation Candidate. In AIP Conference Proceedings; IOP Proceedings: Bristol, UK, 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Fretes, F.D.; Rayanti, R.E.; Gintu, A.R. The Antioxidant Activity, Antibacterial Assay, and the Application of Turmeric (Curcuma domestica) Crude Extract with Various Solvents. Nusant. Sci. Tech. Proc. 2023, 2023, 80–93. [Google Scholar] [CrossRef]
- Bambal, V.; Mishra, M. Evaluation of in Vitro Sunscreen Activity of Herbal Cream Containing Extract of Curcuma longa and Butea monosperma. World J. Pharm. Res. 2014, 3, 3026–3035. [Google Scholar]
- Alfian, M.; Hasanudin, M.N.; Maulana, M.L.; Mustainin, M. Uji Aktivitas Tabir Surya Ekstrak dan Lotion Kunyit (Curcuma domestica Val.) secara In Vitro Menggunakan Spektrofotometri UV-Vis. J. Ilm. Ibnu Sina 2024, 9, 78–88. [Google Scholar]
- Narwaria, A.; Chakrabarty, A.K.; Bishayee, S.; Mohanty, S.; Banerjee, D.; Sharma, S.; Katiyar, C.K.; Dubey, S.K. Preparation, evaluation, and in vitro studies of sustained-release topical hydrogel of Curcuma longa L. targeting skin disorders. Int. J. Ayurveda Res. 2024, 5, 94–107. [Google Scholar] [CrossRef]
- Tiwari, R.; Singh, I.; Gupta, M.; Singh, L.P.; Tiwari, G. Formulation and Evaluation of Herbal Sunscreens: An Assessment Towards Skin Protection from Ultraviolet Radiation. Pharmacophore 2022, 13, 41–49. [Google Scholar] [CrossRef]
- Indarto, I.; Ikhsan, H.; Kuswannto, E. Aktifitas Tabir Surya dari Kombinasi Ekstrak Kunyit (Curcuma longa) dan Ganggang Hijau (Haematococus pluviaris) Secara In Vitro. Organisms 2021, 1, 119–124. [Google Scholar] [CrossRef]
- Nurhasnawati, H.; Sundu, R.; Sukmawati, A. Study of Curcuma Diversity from Central Java, Indonesia for Sunscreen and Antioxidant Activity based on Quantitative Phytochemical Analysis. Biodeiversitas 2023, 24, 6880–6887. [Google Scholar] [CrossRef]
- Khelker, T.; Haque, N.; Agrawal, A. Ultraviolet Protection potential of Curcuma longa L. and Citrus sinensis (L.) Osbeck. Res. J. Pharm. Tech. 2017, 10, 4282–4284. [Google Scholar] [CrossRef]
- Son, D.; Jun, J.S.; Hong, K. Photoprotection effect of Pu’er tea and Curcuma longa L. extracts against UV and blue lights. J. Appl. Biol. Chem. 2023, 66, 106–113. [Google Scholar] [CrossRef]
- Wilapangga, A.; Rahmat, D.; Rachmaniar, R. Formulasi dan Evaluasi Sediaan Gel Nanopartikel Ekstrak Temulawak (Curcuma xanthorrhiza) sebagai Tabir Surya. Indones. J. Pharm. 2023, 3, 26–32. [Google Scholar] [CrossRef]
- Pratiwi, P.D.; Sani, F.K.; Lestari, U. Determination of radical scavenging and sun protection factor of cream preparation contain ethanolic extract of Curcuma longa and Curcuma zedoaria. J. Pharm. Sci. 2021, 1, 240–245. [Google Scholar]
- Syarifah, A.L.; Andini, A.; Alfad, H.; Alfurida, A. Pengaruh Variasi Konsentrasi Ekstrak Temugiring (Curcuma heyneana) dalam Sediaan Krim terhadap Nilai SPF. J. Islam. Pharm. 2021, 6, 63–67. [Google Scholar] [CrossRef]
- Andriani, I.; Mardianingrum, R.; Susanti, S. Sunserum Wajah Sari Rimpang Temu Giring (Curcuma heyneana) Terfermentasi Lactobacillus bulgaricus. J. Ilm. Farm. Imelda 2023, 7, 20–33. [Google Scholar] [CrossRef]
- Maulida, A.N.; Supartono, S. Uji Efektivitas Krim Ekstrak Temu Giring (Curcuma heyneana Val) sebagai Tabir Surya. Indones. J. Chem. Sci. 2016, 5, 98–102. [Google Scholar]
- Saputra, A.; Purpratama, A.C.; Febriani, H.; Aznam, N. Uji Aktivitas Sediaan Gel Rimpang Temu Giring (Curcuma heyneana) sebagai Tabir Surya secara In Vitro. J. Ilm. Penal. Dan Penelit. Mhs. 2019, 3, 83–90. [Google Scholar]
- Ermawati, D.E.; Budiasih, D.Y. The Effect of Zinc Oxide and Curcuma heyneana Val, Combination on Stability and Sun Protection Factor (SPF) of Lotion. Pharmaciana 2022, 12, 327–334. [Google Scholar] [CrossRef]
- Nurwaini, S.; Mawarni, V. Formulasi Krim Tabir Surya Kombinasi Ekstrak Etanol Temu Mangga (Curcuma mangga) dan Seng Oksida. Camellia 2023, 2, 132–141. [Google Scholar] [CrossRef]
- Arizona, M.; Zulkarnain, A.K. Optimasi Formula dan Uji Aktivitas Secara In Vitro Lotion O/W Ekstrak Etanolik Rimpang Temu Mangga (Curcuma mangga Val. dan van Zijp) sebagai Tabir Surya. Maj. Farm. 2018, 14, 29. [Google Scholar] [CrossRef]
- Sari, D.E.M.; Susiloningrum, D. Penentuan Nilai SPF Krim Tabir Surya yang Mengandung Ekstrak Temu Mangga (Curcuma mangga Valeton & Zijp) dan Titanium Dioksida. Cendekia J. Pharm. 2022, 6, 102–111. [Google Scholar]
- Singh, B.G.; Bagora, N.; Nayak, M.; Ajish, J.K.; Gupta, N.; Kunwar, A. The Preparation of Curcumin-Loaded Pickering Emulsion Using Gelatin-Chitosan Colloidal Particles as Emulsifier for Possible Application as a Bio-Inspired Cosmetic Formulation. Pharmaceutics 2024, 16, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Sawant, M.; Chandrakant, P.; Hingane, L.D. Formulation and Evaluation of Herbal Sunscreen. IJCRT 2022, 10, 2320–2882. [Google Scholar] [CrossRef]
- Donglikar, M.M.; Deore, S.L. Development and Evaluation of Herbal Sunscreen. Pharmacog. J. 2017, 9, 83–97. [Google Scholar] [CrossRef]
- Shan, C.Y.; Iskandar, Y. Studi Kandungan Kimia dan Aktivitas Farmakologi Tanaman Kunyit (Curcuma longa L.). Farmaka 2018, 16, 547–555. [Google Scholar]
- Rana, M.; Maury, P.; Reddy, S.S.; Singh, V.; Ahmad, H.; Dwivedi, A.K.; Dikshit, M.; Barthwal, M. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity. Front. Pharmacol. 2016, 7, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Suprihatin, T.; Rahayu, S.; Rifa’i, M.; Widyarti, S. Senyawa pada serbuk rimpang kunyit (Curcuma longa L.) yang berpotensi sebagai antioksidan. Bul. Anat. Dan Fisiol. 2020, 5, 35–42. [Google Scholar] [CrossRef]
- Threskeia, A.; Sandhika, W.; Rahayu, R.P. Effect of Turmeric (Curcuma longa) Extract Administration on Tumor Necrosis Fac-tor-Alpha and Type 1 Collagen Expression in UVB-Light Radiated BALB/c mice. J. Appl. Pharm. Sci. 2023, 13, 121–125. [Google Scholar] [CrossRef]
- Suryani, S.; Benny, F.; Wahyuni, W. Uji Efek Antiinflamasi secara In Vivo Nanopartikel Kurkumin yang Diformulasikan menggunakan Metode Reinforcement Gelasi Ionik. Pharmauho 2015, 1, 20–24. [Google Scholar]
- Rahmayunita, G.; Jacob, T.N.A.; Novianto, E.; Indriatami, W.; Rihatmadja, R.; Pusponegoro, E.H.D. A double-blind randomized controlled trial of topical Curcuma xanthorrhiza Roxb. on mild psoriasis: Clinical manifestations, histopathological features, and K6 expressions. Med. J. Indones. 2018, 27, 178–184. [Google Scholar] [CrossRef]
- Yunarto, N.; Aini, N.; Oktoberia, I.S.; Sulistyowati, I.; Kurniatri, A.A. Aktivitas Antioksidan serta Penghambatan HMG CoA dan Lipase dari Kombinasi Ekstrak Daun Binahong-Rimpang Temu Lawak. J. Kefarmasian Indones. 2019, 30, 89–96. [Google Scholar] [CrossRef]
- Sagita, N.D.; Sopyan, I.; Hadisaputri, Y.E. Kunir Putih (Curcuma zedoaria Rocs.): Formulasi, Kandungan Kimia dan Aktivitas Biologi. Maj. Farmasetika 2022, 7, 189–205. [Google Scholar] [CrossRef]
- Wulandari, R.; Puspitasari, P. Pengaruh Infusa Rimpang Temu Putih (Curcuma zedoaria (Berg.) Roscoe) terhadap Jumlah Leukosit dan Differential Counting (Diffcount) pada Kesembuhan Luka Laparatomi Pasca Bedah. J. Med. Lab. Sci. Technol. 2019, 2, 1689. [Google Scholar] [CrossRef]
- Ha, S.J.; Song, K.M.; Lee, J.; Kim, Y.H.; Lee, N.Y.; Kim, Y.E.; Lee, S.; Jung, S.K. Preventive Effect of Curcuma zedoaria Extract on UVB-Induced Skin In-flammation and Photoaging. J. Food Biochem. 2018, 42, 12598. [Google Scholar] [CrossRef]
- Paramita, S.; Moerad, E.B.; Ismail, S.; Marliana, E. Tracheospasmolytic and anti-inflammatory activity of indigenous Curcuma species as traditional antiasthmatic medicines. Nusant. Biosci. 2018, 10, 105–110. [Google Scholar] [CrossRef]
- Salman, S.; Indriana, M. Activity Ethanol Extract of Mangga (Curcuma mangga Val.) Feet Udem Rat White. J. Pharm. Sci. 2019, 2, 41–46. [Google Scholar] [CrossRef]
- Muchtaromah, B.; Mutmainah, F.N.; Prahardika, B.A.; Ahmad, M. Antioxidant and Antifungal Activities of Temu mangga (Curcuma mangga Val.) Extract in Some Solvents: Antioxidant and Antifungal Activities of C. mangga. Iran. J. Pharm. Sci. 2020, 16, 1–18. [Google Scholar]
- Yulianti, E.; Adelsa, A.; Putri, A. Penentuan nilai SPF (Sun Protection Factor) Ekstrak Etanol 70% Temu Mangga (Curcuma mangga) dan Krim Ekstrak Etanol 70% Temu Mangga (Curcuma mangga) secara In Vitro Menggunakan Metode Spektro-fotometri. Maj. Kesehat. Maj. Kesehat. 2015, 2, 41–50. [Google Scholar]
- Liu, X.; Zhang, R.; Shi, H.; Li, X.; Li, Y.; Taha, A.; Xu, C. Protective effect of curcumin against ultraviolet A irradiation induced photoaging in human dermal fibroblasts. Mol. Med. Rep. 2018, 20, 7227–7237. [Google Scholar] [CrossRef]
- Mohamad, E.A.; Rageh, M.; Ahmed, H. Curcumin provides skin Protection against UV radiation. Egypt. J. Chem. 2022, 65, 1341–1343. [Google Scholar] [CrossRef]
- Ismail, I.; Handayany, G.N.; Wahyuni, D.; Juliandri, J. Formulasi dan Penentuan Nilai SPF (Sun Protecting Factor) Sediaan Krim Tabir Surya Ekstrak Etanol dan Kemangi (Ocimum sanctum L.). J. Farm. Fak. Ilmu Kesehat. Univ. Islam 2014, 2, 6–11. [Google Scholar]
- Kanani, N. Pengaruh Temperatur terhadap Nilai Sun Protecting Factor (SPF) pada Ekstrak Kunyit Putih sebagai Bahan Pembuat Tabir Surya Menggunakan Pelarut Etil Asetat dan Metanol. J. Integr. Proses 2017, 6, 143–147. [Google Scholar] [CrossRef]
- Raymond-Lezman, J.R.; Riskin, S.I. Sunscreen Safety and Efficacy for the Prevention of Cutaneous Neoplasm. Cureus 2024, 16, e56369. [Google Scholar] [CrossRef]
- He, H.; Li, A.; Li, S.; Tang, J.; Li, L.; Xiong, L. Natural Components in Sunscreens: Topical Formulations with Sun Protection Factor (SPF). Biomed. Pharmacother. 2021, 134, 111161. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chong, L.; Huang, T.; Ma, Y.; Li, Y.; Ding, H. Natural products and extracts from plants as natural UV filters for sunscreens: A review. Anim. Model Exp. Med. 2023, 6, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-Based Active Photoprotectants for Sunscreen. Int. J. Cosmet. Sci. 2016, 38, 346–353. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Salvo, E.D.; Gangemi, S.; Genovese, C.; Cicero, N.; Casciaro, M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. Plants 2023, 12, 3579. [Google Scholar] [CrossRef] [PubMed]
- Nisa, R.U.; Nisa, A.N.; Tantray, A.Y.; Shah, A.H.; Jan, A.T.; Shah, A.A.; Wani, I.A. Plant Phenolics with Promising Therapeutic Applications Against Skin Disorders: A Mechanistic Review. J. Agric. Food Res. 2024, 16, 101090. [Google Scholar] [CrossRef]
- Hedge, A.R.; Kunder, M.U.; Narayanaswamy, M.; Murugesan, S.; Furtado, S.C.; Veerabhadraiah, B.B.; Srinivasan, B. Advancements in Sunscreen Formulations: Integrating Polyphenolic Nanocarrirers and Nanotechnology for Enhanced UV Protection. Environ. Sci. Pollut. Res. 2024, 31, 38061–38082. [Google Scholar]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in Sunscreens: Which and What For? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Resende, D.I.S.P.; Jesus, A.; Sousa, L.J.M.; Sousa, E.; Cruz, M.T.; Cidade, H.; Almeida, I.F. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals 2022, 15, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.M.T.; Baeza, A.G.; Limon, H.R.V.; Renteria, I.B.; Cabrera, M.A.R.; Estrada, K.R. Plant Secondary Metabolites Against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants 2022, 11, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Egambaram, O.P.; Pillai, S.K.; Ray, S.S. Materials Science Challenges in Skin UV Protection: A Review. Photochem. Photobiol. 2019, 96, 779–797. [Google Scholar] [CrossRef] [PubMed]
- Lorquin, F.; Lorquin, J.; Bruno, M.C.; Rollet, M.; Robin, M.; Giorgio, C.; Piccerelle, P. Lignosulfonate is an efficient SPF booster: Application to eco-friendly sunscreen formulations. Sustain. Chem. Pharm. 2021, 24, 100539. [Google Scholar] [CrossRef]
- Chaabana, H.; Ioannoua, I.; Paris, C.; Charbonnel, C.; Ghoula, M. The photostability of flavanones, flavonols and flavones and evolution of their antioxidant activity. J. Photochem. Photobiol. Chem. 2017, 336, 131–139. [Google Scholar] [CrossRef]
- Mansuri, R.; Diwan, A.; Kumar, H.; Dangwal, K.; Yadav, D. Potential of Natural Compounds as Sunscreen Agents. Pharmacogn. Rev. 2021, 15, 47–56. [Google Scholar] [CrossRef]
- Darmawan, M.A.; Ramadhani, N.H.; Hubeis, N.A.; Ramadhan, M.Y.A.; Sahlan, M.; Aziz, S.A.; Gozan, M. Natural sunscreen formulation with a high sun protection factor (SPF) from tengkawang butter and lignin. Ind. Crops Prod. 2022, 177, 114466. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.Y.; Wang, S.Q. The role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol. 2012, 67, 1013–1024. [Google Scholar] [CrossRef]
- Kockler, J.; Oelgemöller, M.; Robertson, S.; Glass, B.D. Photostability of sunscreens. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 91–110. [Google Scholar] [CrossRef]
- Kolbe, L.; Pissavini, M.; Tricaud, C.; Trullás, C.C.; Dietrich, E.; Matts, P.J. Anti-inflammatory/anti-oxidant activity of ingredients of sunscreen products? Implications for SPF. Int. J. Cosmet. Sci. 2019, 41, 320–324. [Google Scholar] [CrossRef]
- Meeran, S.M.; Akhtar, S.; Katiyar, S.K. Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J. Investig. Dermatol. 2009, 129, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef]
- Wiraningtyas, A.; Ruslan, R.; Agustina, S.; Hasanah, U. Penentuan Nilai Sun Protection Factor (SPF) dari Ekstrak Kulit Bawang Merah. J. Redoks J. Pendidik. Kim. Dan Ilmu Kim. 2019, 2, 34–43. [Google Scholar] [CrossRef]
- Saputri, M.; Razali, M.; Sari, N.; Nadia, S.; Anggreini, D. Mengenali Lebih Dekat Nilai SPF (Sun Protecting Factor) dalam Kosmetik. J. Pengabdi. Masy. Tjut Nyak Dhien 2024, 3, 33–38. [Google Scholar] [CrossRef]
- Afsar, T.; Razak, S.; Shabbir, M.; Khan, M.R. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R. Parker. Chem. Cent. J. 2018, 12, 5. [Google Scholar] [CrossRef]
- Sugihartini, N.; Firsty, G.R.; Laila, W.K.; Mulyaningsih, S.; Rais, I.R. Antioxidant, Tyrosinase Inhibition Activity, and In Vitro SPF Evaluation of Pepino Fruit Extract (Solanum muricatum Aiton) in Different Solvent Types and Concentrations. Pharm. Sci. Res. 2024, 11, 27–33. [Google Scholar]
- Sisa, M.; Bonnet, S.L.; Ferreira, D.; Van, W.J.H. Photochemistry of flavonoids. Molecules 2010, 15, 5196–5245. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Orellana, P.J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
Sources | Parameters | Specifications | References |
---|---|---|---|
Curcuma longa | Colour | Yellowish Orange | [70] |
Odour and taste | Characteristic | [70] | |
Stability | Curcumin is prone to degradation when exposed to sunlight, remains heat-resistant at 140 °C for up to 15 min, and is unstable at pH levels above 6.5 | [70] | |
Solubility | Curcuma longa extract is poorly soluble in water and ether but demonstrates good solubility in organic solvents such as ethanol and glacial acetic acid | [71] | |
Ash content | 6.20% | [72] | |
Water content | 8.11% | [72] | |
Curcuma xanthorrhiza | Colour | Yellowish brown | [73] |
Odour and taste | Characteristic | [73] | |
Stability | Curcumin is heat-stable but rapidly loses its colour when exposed to light | [73] | |
Solubility | Curcuma xanthorrhiza is readily soluble in solvents such as dimethyl sulfoxide (DMSO), ethanol, and acetone but exhibits only sparing solubility in aqueous solutions | [73] | |
Ash content | 4.8% | [74] | |
Water content | 9.1% | [74] |
Sources | Method | Result | References |
---|---|---|---|
Curcuma longa | DPPH | The IC50 values of Curcuma longa extracts with total flavonoid contents of 1089.5 ± 0.9 mg rutin/g extract and 620.7 ± 0.9 mg rutin/g extract were determined to be 26.4 ± 0.2 μg/mL and 291.3 ± 3.1 μg/mL, respectively. | [77] |
The IC50 value of Curcuma longa was determined to be 41.95 μg/mL. | [78] | ||
The IC50 values of Curcuma longa extracts obtained using water and ethanol were determined to be 5.31 μg/mL and 1.08 μg/mL, respectively. | [79] | ||
The free radical inhibition percentages of Curcuma longa ethanolic extracts at concentrations of 25, 50, 100, 250, and 500 μg/mL were determined to be 6.06 ± 0.27%, 7.76 ± 0.18%, 9.41 ± 0.27%, 19.64 ± 0.27%, and 32.51 ± 0.27%, respectively. | [80] | ||
The IC50 values of freshly grated and cut Curcuma longa were determined to be 114.7 μg/mL and 158.3 μg/mL, respectively. | [81] | ||
The IC50 value of the peel-off mask containing 10% Curcuma longa was determined to be 37.399 μg/mL. | [82] | ||
In serum formulations, the free radical inhibition percentages of 1.1% Curcuma longa extract combined with 2% collagen and 0.5% Curcuma longa extract combined with 2% collagen were determined to be 90.526 ± 1.87% and 36.594 ± 2.89%, respectively. | [83] | ||
The antioxidant activities of 2.8% and 0.9% Curcuma longa powder were determined to be 90.51 ± 0.24% and 81.76 ± 0.08%, respectively. | [84] | ||
ORAC | The antioxidant activity of Curcuma longa extracts with total flavonoid contents of 1089.5 ± 0.9 mg rutin/g extract and 620.7 ± 0.9 mg rutin/g extract were determined to be 14,090 ± 0.9 μmol TE/g and 4119.7 ± 0.7 μmol TE/g, respectively. | [77] | |
RPA | The absorbances of Curcuma longa extracts with total flavonoid contents of 1089.5 ± 0.9 mg rutin/g extract and 620.7 ± 0.9 mg rutin/g extract were measured as 0.3 ± 0.0 and 0.1 ± 0.0, respectively. | [77] | |
2-DR | The IC50 values of Curcuma longa extracts with total flavonoid contents of 1089.5 ± 0.9 mg rutin/g extract and 620.7 ± 0.9 mg rutin/g extract were determined to be 7.4 ± 1.3 μg/mL and 28.3 ± 2.3 μg/mL, respectively. | [77] | |
FRAP | The FRAP values of Curcuma longa extracts obtained using water and ethanol were measured as 646.67 ± 2.48 μM Fe[II] per 100 g and 3475.36 ± 173.10 μM Fe[II] per 100 g, respectively. | [79] | |
Curcuma xanthorrhiza | DPPH | The IC50 value of Curcuma xanthorrhiza was determined to be 80.4 ± 0.7 μg/mL. | [77] |
The antioxidant activity of Curcuma xanthorrhiza from different regions ranged from 0.13 ± 0.02 μmol TE/g to 1.11 ± 0.02 μmol TE/g. | [85] | ||
The antioxidant activities of Curcuma xanthorrhiza acetone extracts from different varieties were 1.56 ± 0.04 μmol TE/g, 3.28 ± 0.03 μmol TE/g, and 2.44 ± 0.09 μmol TE/g, while the antioxidant activities of ethyl acetate extracts were 1.59 ± 0.05 μmol TE/g, 2.11 ± 0.04 μmol TE/g, and 2.04 ± 0.13 μmol TE/g. | [86] | ||
The IC50 value of Curcuma xanthorrhiza used in gel formulation was determined to be 1973.38 ± 219.93 μg/mL | [87] | ||
The antioxidant activity of Curcuma xanthorrhiza ranged from 5.265 μmol TE/g DW to 14.960 μmol TE/g DW. | [88] | ||
ORAC | The antioxidant activity of Curcuma xanthorrhiza was determined to be 6490.3 ± 0.7 μmol TE/g. | [77] | |
2-DR | The IC50 value of Curcuma xanthorrhiza was determined to be 19.0 ± 1.7 μg/mL. | [77] | |
ABTS | The antioxidant activity of Curcuma xanthorrhiza from different regions ranged from 0.72 ± 0.18 to 4.14 ± 0.06 μmol TE/g. | [85] | |
The antioxidant activity of Curcuma xanthorrhiza acetone extracts from different varieties were determined to be 66.82 ± 4.22 μmol TE/g, 148.91 ± 6.10 μmol TE/g, and 92.86 ± 3.10 μmol TE/g, while the antioxidant activity of ethyl acetate extracts was 57.02 ± 4.30 μmol TE/g, 84.30 ± 5.10 μmol TE/g, and 90.38 ± 6.19 μmol TE/g. | [86] | ||
The IC50 value of Curcuma xanthorrhiza used in gel formulations was determined to be 700.65 ± 142.14 μg/mL. | [87] | ||
FRAP | The antioxidant activity of Curcuma xanthorrhiza from different regions ranged from 7.71 ± 1.29 μmol TE/g to 81.48 ± 4.43 μmol TE/g. | [85] | |
The antioxidant activity of Curcuma xanthorrhiza acetone extracts from different varieties were determined to be 51.24 ± 1.32, 115.23 ± 2.30, and 82.68 ± 1.50 μmol TE/g, while the antioxidant activity of ethyl acetate extracts was 51.76 ± 1.25, 65.41 ± 2.11, and 71.88 ± 1.48 μmol TE/g. | [86] | ||
CUPRAC | The antioxidant activity of Curcuma xanthorrhiza from different regions ranged from 18.37 ± 4.30 μmol TE/g to 211.68 ± 1.53 μmol TE/g. | [85] | |
Curcuma zedoaria | DPPH | The IC50 value of Curcuma zedoaria was determined to be 228.4 ± 3.4 μg/mL. | [77] |
The IC50 values of Curcuma zedoaria extract in different solvents, temperatures, and extraction times ranged from 184.25 ± 6.35 μg/mL to 956.16 ± 20.27 μg/mL. | [89] | ||
The IC50 value of Curcuma zedoaria extracted with ethanol was determined to be 49.72 ± 0.32 μg/mL, while the IC50 value of 2% Curcuma zedoaria combined with 4% Sepigel 305 was 135.8 μg/mL. | [90] | ||
The IC50 values of Curcuma zedoaria extracted with methanol, ethyl acetate, and n-hexane were determined to be 185.77 ± 3.91 μg/mL, 153.49 ± 2.66 μg/mL, and 837.92 ± 5.32 μg/mL, respectively. | [91] | ||
ORAC | The antioxidant activity of Curcuma zedoaria was determined to be 1790.3 ± 0.7 μmol TE/g. | [77] | |
2-DR | he IC50 value of Curcuma zedoaria was determined to be 20.2 ± 2.0 μg/mL. | [77] | |
Curcuma heyneana | DPPH | The IC50 values of Curcuma heyneana extracted with ethanol, n-hexane, methanol, and ethyl acetate were determined to be 338.38 μg/mL, greater than 500 μg/mL, and 363.26 μg/mL, respectively. | [92] |
The IC50 value of Curcuma heyneana was determined to be 37.75 μg/mL. | [93] | ||
The IC50 value of Curcuma heyneana extract in ethanol solvent was determined to be 102.15 μg/mL. | [94] | ||
Curcuma aeruginosa | DPPH | The IC50 value of Curcuma aeruginosa was determined to be 158.50 μg/mL. | [93] |
The IC50values of Curcuma aeruginosa extracted with methanol and n-hexane were determined to be 171 μg/mL and 1724 μg/mL, respectively. | [95] | ||
The IC50 values of Curcuma aeruginosa extract and its gel peel-off mask were determined to be 746.75 μg/mL and 5569.90 μg/mL, respectively. | [96] | ||
The IC50 value of Curcuma aeruginosa extracted with ethanol was determined to be 6.0313 μg/mL. | [97] | ||
Curcuma mangga | DPPH | The IC50 values of Curcuma mangga extracted with 50%, 70%, and 96% ethanol were determined to be 95.05 μg/mL, 88.51 μg/mL, and 75.06 μg/mL, respectively. | [98] |
The IC50 values of Curcuma mangga from different regions ranged from 37.338 ± 1.851 μg/mL to 268.802 ± 43.573 μg/mL. | [99] |
Sources | Method | Result | References |
---|---|---|---|
Curcuma longa | In Vivo (wound closure effect) | The result showed that the 10% Curcuma longa extract had the best wound closure effect (0 ± 0.00 cm2) compared with the positive control (0.11 ± 0.01 cm2) on day 14. | [102] |
In Vivo (wound closure effect) | The results showed that 10% Curcuma longa extract gel application could accelerate wound healing. | [103] | |
In Vivo (wound closure effect) | The results showed that the mean wound healing areas in rabbits after application of 5% Curcuma longa extract gel at 3, 7, and 14 days were 1.02, 0.06, and 0 cm, respectively. | [104] | |
In Vivo (wound closure effect) | The combination of Curcuma longa and Ca(OH)2 (2:1) resulted in the highest value of wound healing decrease, with a value of 13.88 ± 0.10 mm compared with the combination of Curcuma longa and Ca(OH)2 (1:2), which showed 10.97 ± 0.58 mm. | [105] | |
In Vitro (HPLC analysis) | After treatment with the plant extracts, the production of both cytokines decreased as the concentration of the Curcuma longa extract increased. The production of IL-6 cytokines for the positive control and plant extracts at doses of 75, 150, and 300 μg were 629.3, 374, 184.3, and 140 pg/mL, respectively. | [106] | |
In Vitro (ELISA kit) | The results showed that treatment with the Curcuma longa extract decreased pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, with values of 110, 300, and 100 pg/mL; 62.5, 225, and 90 pg/mL; and 50, 150, and 80 pg/mL at doses of 50, 100, and 150 µg/mL, respectively. | [107] | |
In Vivo (induced mice ear edema assay) | The results showed a percentage inhibition effect of Curcuma longa in ethanol extract on TPA(12-O-tetradecanoylphorbol-13-acetate) induced mice ear edema, with values of 2.28 ± 0.32%, 4.43 ± 1.19%, and 7.38 ± 1.24% at doses of 25, 50, and 100 mg/kg, respectively. | [108] | |
In Vitro (BSA denaturation assay using spectrophotometry) | The results showed the percentages of anti-inflammatory activity in the BSA denaturation assay at concentrations of 125, 250, 500, and 1000 μg/mL Curcuma longa, with values ranging from 41.45 ± 1.00% to 70.55 ± 0.77%, compared with salicylic acid (positive control), which ranged from 74.45 ± 0.42% to 96.85 ± 0.83%. | [109] | |
In Vivo (wound closure effect) | The results showed that Curcuma longa extract oily ointment at concentration 2.5% could heal the wound and improve collagen levels at wound area. | [110] | |
In Vitro (qRT PCR method) | Studies showed that the hexane extract of Curcuma longa significantly downregulated inflammatory cytokines (TNF-α and IL-6), with an 80-fold decrease and a 1.5-fold decrease, respectively, compared with the positive control group. | [111] | |
In Vivo (wound closure effect) | Curcumin-containing 5% and 10% ethanolic extract ointments showed significant wound healing, with wound contraction values of 100% after 28 and 26 days, respectively, while aspirin achieved 100% wound contraction after 30 days. | [112] | |
Curcuma domestica | In Vitro (human red blood cell) | The percentage inhibition of Curcuma domestica extract at 100 μg/mL was 89.39 ± 2.04%, compared with the positive control, aspirin at 100 μg/mL, which showed 93.88%. | [113] |
In Vitro (inhibition of protein denaturation assay) | The percentage inhibition of the extract at 10 μg/mL was 38.38%, and at 50 μg/mL was 51.24%, with the IC50 calculation showing a value of 46.87 μg/mL. A percentage inhibition greater than 20% indicates that the extract can effectively inhibit protein denaturation. | [114] | |
In Vitro (spectrophotometry) | The combination of Curcuma domestica Val. and Phoenix dactylifera L. extracts at 100 μg/mL yielded the highest percentage of inhibition, which was 65.64%. | [115] | |
In Vivo (hydrogen peroxide induced ulcer on the labial mucosa) | The results showed that the treatment group with the Curcuma domestica extract, topically, had a higher number of macrophages (5.36) and a smaller ulcer diameter (0.26 mm) compared to the control group on day 10. | [116] | |
In Vitro (Pearson test) | The results showed the most substantial differences in the treatment group with Curcuma domestica extract at concentrations of 125 μg/mL for cyclooxygenase-2 (COX-2) and 250 μg/mL for inducible nitric oxide synthase (iNOS), with values of 24.29 ± 5.88 and 29.24 ± 7.84, respectively, compared with the positive control group (82.29 ± 1.49 and 82.70 ± 1.67). | [117] | |
In Vivo (wound closure effect) | The results showed that the most effective Curcuma domestica extract gel for wound healing was at a 100% concentration, with a wound diameter of 15 mm on day 21. The largest diameter was observed in the negative control group, with a diameter of 20 mm on day 21, while the positive control group had a diameter of 16 mm. | [118] | |
Curcuma xanthorrhiza | In Vitro (inhibition of protein denaturation assay) | The IC50 value of Curcuma xanthorrhiza extract was determined to be 521.67 ± 5.80 µg/mL, while the IC50 value of Curcuma xanthorrhiza extract nanoparticles was 398.02 ± 1.78 µg/mL. This result indicates that the anti-inflammatory activity of Curcuma xanthorrhiza extract nanoparticles is superior to that of Curcuma xanthorrhiza extract. | [119] |
Curcuma zedoaria | In Vivo (wound closure effect) | The results showed that 0.75% and 1.5% nanoparticle gel of Curcuma zedoaria could accelerate wound healing. However, both concentrations did not give a significant difference of wound healing effect. | [120] |
Curcuma aeruginosa | In Vitro (nitric oxide production using spectrophotometer) | This study revealed that the rhizome extract of Curcuma aeruginosa Roxb. inhibited inducible nitric oxide synthesis, with values of 84.426% at 25 μg/mL and 83.606% at 50 μg/mL. | [121] |
Curcuma mangga | In Vitro (human dermal fibroblast cells viability) | The results showed that the cream containing 2%, 5%, and 10% w/w Curcuma mangga extract increased cell viability by over 100% before and after healing–cooling test at 3 μg/mL. | [122] |
In Vitro (protein denaturation inhibition method using spectrophotometer) | The result showed that the percentage inhibition of ethanol extract of Curcuma mangga increased from 38.38% at a concentration of 10 mg/mL to 51.24% at a concentration of 50 mg/mL. | [114] | |
Curcuma aromatica | In Vivo (induced mice ear edema assay) | The results showed the percentage inhibition effect of the ethanol extract on TPA-induced mice ear edema, with values of 14.26 ± 3.35%, 23.14 ± 3.83%, and 42.60 ± 4.23% at doses of 25, 50, and 100 mg/kg, respectively. | [108] |
Curcuma elata | In Vivo (induced mice ear edema assay) | The results showed the percentage inhibition effect of the ethanol extract on TPA-induced mice ear edema, with values of 9.34 ± 2.3%, 18.64 ± 2.26%, and 36.61 ± 2.92% at doses of 25, 50, and 100 mg/kg, respectively. | [108] |
Curcuma kwangsiensis | In Vivo (induced mice ear edema assay) | The results showed the percentage inhibition effect of the ethanol extract on TPA-induced mice ear edema, with values of 11.56 ± 2.16%, 22.19 ± 3.21%, and 39.23 ± 3.15% at doses of 25, 50, and 100 mg/kg, respectively. | [108] |
Curcuma rubescens | In Vivo (induced mice ear edema assay) | The results showed the percentage inhibition effect of the ethanol extract on TPA-induced mice ear edema, with values of 6.14 ± 1.06%, 14.54 ± 1.68%, and 28.26 ± 1.58% at doses of 25, 50, and 100 mg/kg, respectively. | [108] |
Curcumin | In Vivo (xylene-induced mice ear edema assay) | The effects of curcumin (95% purity) significantly decreased the relative weight of xylene-induced ears, with a value of 0.501% compared with the control group, which had a value of 0.617%. | [123] |
In Vivo (xylene-induced mice ear edema assay) | After topical administration to mice, curcumin showed anti-inflammatory activities by significantly reducing the ear edema in mice caused by xylene (extent of edema 17.9 ± 4.2 mg and 30.08% inhibition) | [124] | |
In Vivo (streptozotocin-induced diabetic rats) | The mean percentage of wound contraction in the curcumin-treated (40%) group was significantly higher compared with the control (30%) and gel-treated (35%) groups on day 7, with this significant difference continuing until day 19 after wound creation. | [125] | |
In Vivo (wound closure effect) | After 7 days, combination of nano-curcumin with CCS-OA (carboxymethyl chitosan and oxidized alginate) hydrogel could effectively improve the wound healing with decreasing wound area from 3 cm2 to 1 cm2. | [126] | |
In Vivo (wound closure effect) | The result showed that after days 21 post wounding, the wound contraction present in rats treated with the curcumin nanoformulation was higher than sulfadiazine. Curcumin had best wound closure effect (1.222 ± 0.441 cm2) compared with positive control (1.444 ± 0.726 cm2). | [127] | |
In Vivo (anti-inflammatory activity) | The result showed that curcumin-nanogel had a higher anti-inflammatory activity (61.8%) than free curcumin (33.2%). Diclofenac as a positive control had the highest anti-inflammatory activity (85.4%). | [128] | |
In Vivo (wound closure effect) | The result showed that after topical application of curcumin, 65.0% of the wounds were closed on day 6 and 100% closed on day 12. | [129] | |
In Vivo (experimental induced periodontitis) | The result showed a significant reduction in anti-inflammatory biomarkers after applying 12.5 μg/mL curcumin gels. | [130] | |
In Vivo (wound closure effect) | The result showed that the mean wound healing area in mice after application of curcumin gel at 7, 9, and 12 days were 71.1 ± 8,7%, 86.1 ± 7.8%, and 97.9 ± 2.8%, respectively. | [131] | |
In Vivo (carrageenan-induced rat paw edema) | The results showed that the pretreatment of gel and cream containing curcumin in rat showed the lower values in paw edema. | [132] |
Sources | Concentration | Method | Result | References |
---|---|---|---|---|
Curcuma longa | 1% of Curcuma longa (concentration of curcumin is unknown) | Spectrophotometry | Curcuma longa exhibits significant absorbance values within the 290–320 nm range, correlating to an SPF value of 12.35 ± 4.44. | [135] |
0.1%, 0.2%, 0.3%, 0.4%, and 0.5% of Curcuma longa (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 0.1% Curcuma longa is 1, which is significantly lower compared with 0.5% Curcuma longa, exhibiting an SPF value of 15. | [136] | |
1% of Curcuma longa (concentration of curcumin is unknown) | Spectrophotometry | The SPF value calculated for the pure extract was 17.451, while the Curcuma longa hydrogel exhibited a significantly higher SPF of 22.586. Maximum cell viability was observed at the highest dose of 200 μg/mL for both the Curcuma longa extract (75.55 ± 2.38%) and the Curcuma longa hydrogel (65.03 ± 2.65%), indicating that both CE and CG demonstrate effective UV-protection properties. | [137] | |
Combination of Curcuma longa and other excipients in sunscreen formulation (concentration of curcumin is unknown) | Spectrophotometry | The SPF values of the formula with the addition of Carbopol 934 and distilled water ranged from 0.30 to 7.32, whereas the SPF values of the formula without these components were 33.44 and 33.50. | [138] | |
Combination of Curcuma longa and Haematococus pluvialis (3:1, 1:1, 1:3) | Spectrophotometry | The SPF values of the combination of Curcuma longa and Haematococcus pluvialis extracts at ratios of 3:1, 1:1, and 1:3 were 15.203, 15.997, and 31.513, respectively. | [139] | |
500 and 1000 μg/mL of Curcuma longa (concentration of curcumin is unknown) | Spectrophotometry | The SPF values of 500 μg/mL and 1000 μg/mL Curcuma longa were 31.55 and 37.46, respectively. | [140] | |
200 μg/mL solution of Curcuma longa extract (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of the Curcuma longa extract was found to be 0.330 ± 0.08. | [141] | |
10% of Curcuma longa extract (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 10% Curcuma longa extract was lower than that of 10% pu’er tea extract, which had an SPF value of 0.36. | [142] | |
Curcuma domestica | 1% of Curcuma domestica extract (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 1% Curcuma domestica was 15.12 ± 1.55. | [56] |
Curcuma xanthorrhiza | 0.02% of Curcuma xanthorrhiza (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 0.02% Curcuma xanthorrhiza loaded in gel was 16.77. | [143] |
Curcuma zedoaria | 0.5, 1, 1.5, 2, 2.5, and 3% of Curcuma zedoaria (concentration of curcumin is unknown) | Spectrophotometry | Curcuma zedoaria at 3% exhibited the highest SPF value of 20.24 | [144] |
Curcuma heyneana | 5%, 7.5%, 10% of Curcuma heyneana in cream formulation (concentration of curcumin is unknown) | Spectrophotometry | The SPF values of 5%, 7.5%, and 10% Curcuma heyneana were 3.307 ± 0.12, 3.497 ± 0.18, and 4.965 ± 0.24, respectively | [145] |
15% of Curcuma heyneana (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 15% Curcuma heyneana was 27.40, categorizing it as offering ultra protection. | [146] | |
1, 2, 3, and 4% of Curcuma heyneana (concentration of curcumin is unknown) | Spectrophotometry | The SPF values of 1%, 2%, and 3% Curcuma heyneana fall under minimal protection, while the SPF value of 4% is categorized as medium protection. | [147] | |
1%, 2.5%, and 4% of Curcuma heyneana in gel formulation (concentration of curcumin is unknown) | Spectrophotometry | The SPF values of 1%, 2.5%, and 5% Curcuma heyneana were 4.84, 8.76, and 18.86, respectively. | [148] | |
1% and 2% of Curucma heyneana (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 1% Curcuma heyneana combined with 1% zinc oxide was 13.24 ± 0.20, compared with 12.25 ± 0.27 for 2% zinc oxide alone and 6.77 ± 0.04 for 2% Curcuma heyneana alone. | [149] | |
Curcuma mangga | 4 g of Curcuma mangga (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 4 g of Curcuma mangga in a cream formulation was 8.99. | [150] |
2.5%, 5%, 7.5%, 10%, 12.5% of Curcuma mangga in lotion formulation (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of the ethanolic extract of Curcuma mangga at a concentration of 3% was 28.65. However, the ethanolic extract o/w lotion containing 12.5% Curcuma mangga exhibited an SPF value of 12.82 ± 0.16, providing only medium protection and was, therefore, not efficient in preventing erythema and pigmentation. | [151] | |
5% Curcuma mangga (concentration of curcumin is unknown) | Spectrophotometry | The SPF value of 5% Curcuma mangga combined with 5% titanium dioxide was 2.799, compared with 2.050 for 5% titanium dioxide alone. | [152] | |
500, 1000, and 1500 μg/mL of Curcuma mangga | Spectrophotometry | The SPF values of 500, 1000, and 1500 μg/mL Curcuma mangga were 1.82, 3.68, and 5.55, respectively. | [140] | |
Curcumin | 4 mg/mL | Spectrophotometry | The SPF value of the formulation with a curcumin loading of 4 mg/mL was calculated to be 8.5. | [153] |
0.1% stock solution of pure Curcumin | Spectrophotometry | The SPF value of pure curcumin was determined to be 11.58. | [154] | |
Initial stock solution was prepared by taking 1% w/v curcumin | Spectrophotometry | The SPF value of curcumin was 11.58. | [155] |
Sources | Method | Result | References |
---|---|---|---|
Curcuma longa | Anti-inflammatory | Curcumin exerts its effects by reducing levels of inflammatory markers such as IL-1β, IL-6, and TNF-α. | [37] |
Curcumin reduces the release of arachidonic acid by decreasing the catalytic activity of phospholipase A2 and phospholipase C g1. | [156] | ||
Curcumin exhibits anti-inflammatory effects by inhibiting IL-6. | [106] | ||
Curcumin in Curcuma longa modulates the TLR4-MyD88-IRAK-MAPK-NFκB pathway in THP-1 cells and regulates the production of inflammatory cytokines. | [157] | ||
Curcumin enhances caspase-3 activity and inhibits the transcription factor NFκB. Additionally, it exhibits antiapoptotic properties and suppresses the paclitaxel-induced NFκB pathway in cancer cells. | [129] | ||
Antioxidant | Curcumin functions as an antioxidant by activating Nuclear Factor Erythroid 2–Related Factor 2 (Nrf2). | [158] | |
Sun protector | The absorption spectrum of Curcuma longa exhibits a peak wavelength at 320 nm and maximum absorption at 420 nm (blue light), indicating that the curcumin content in Curcuma longa can protect human skin fibroblasts from damage caused by blue light. | [142] | |
Curcumin decreases TNF-α expression and increases type I collagen expression in UVB-exposed skin. | [159] | ||
Curcuma domestica | Anti-inflammatory | Curcumin reduces neutrophil infiltration in inflammatory conditions and inhibits platelet aggregation. | [160] |
Curcumin reduces the production of iNOS (inducible nitric oxide synthase) and COX-2 by suppressing NF-κB through the TLR4 pathway. | [120] | ||
Sun protector | Curcuma domestica protects skin tissues from radical photons that cause skin damage. | [135] | |
Curcuma xanthorrhiza | Anti-inflammatory | Curcumin reduces the activity and concentrations of pro-inflammatory cytokines IL-6 and IL-8, enabling its function as an anti-inflammatory agent. | [161] |
Curcumin suppresses pro-inflammatory cytokines by inhibiting COX-2, iNOS, and the lipoxygenase pathway. | [133] | ||
Antioxidant | Curcumin contains a hydrogen atom in its phenolic group that acts as a radical scavenger, helping to maintain the integrity of cell membranes by preventing oxidative degradation caused by oxygen radicals and other reactive species. | [162] | |
Curcuma zedoaria | Anti-inflammatory | Curcumin inhibits the synthesis of nitric oxide (NO), thereby preventing UVB-induced skin inflammation. | [163] |
Curcumin acts as an anti-inflammatory agent with glucocorticoid-like properties, stimulating prostaglandins and collagenase. | [164] | ||
Sun protector | Curcuma zedoaria inhibits repetitive UVB-induced wrinkle formation, as well as the expression of COX-2 and MMP-13. It also suppresses UVB-induced MMP-1 promoter activity, along with EGFR, Src, MAPKKs/MAPKs, and Akt phosphorylation. | [165] | |
Curcuma mangga | Anti-inflammatory | Curcumin exhibits activity in inhibiting lipoxygenase. | [166] |
Curcumin reduces reactive oxygen species stimulated by neutrophils, inhibits the activation of pro-inflammatory mediators, and suppresses the activity of the cyclooxygenase enzyme. | [167] | ||
Antioxidant | Curcumin acts as a catalyst for the formation of hydroxyl radicals and serves as an antidote to oxygen and nitrogen radicals generated by biological processes in the body. | [168] | |
Sun protector | Curcumin absorbs UV light within the wavelength range of 200–400 nm, providing protection against both UVA and UVB rays. | [169] | |
Curcumin | Antioxidant | Curcumin can restore the activities and capacities of antioxidant enzymes. | [170] |
Sun protector | Curcumin inhibits UV-induced oxidative damage by promoting and regulating Nrf2 activation in HaCaT cells, thereby accelerating the accumulation of antioxidant regulators. | [37] | |
Curcumin inhibits collagen degradation and enhances collagen synthesis, while also promoting fibroblast repair and reducing the accumulation of UVA-induced ROS. | [170] | ||
Curcumin scavenges free radicals and restores histopathological alterations, protecting the skin from excessive UV exposure. | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabrina, A.M.; Azzahra, R.S.S.; Permata, I.N.; Dewi, H.P.; Safitri, R.A.; Maya, I.; Aulia, R.N.; Sriwidodo, S.; Mita, S.R.; Amalia, E.; et al. Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen. Cosmetics 2025, 12, 10. https://doi.org/10.3390/cosmetics12010010
Shabrina AM, Azzahra RSS, Permata IN, Dewi HP, Safitri RA, Maya I, Aulia RN, Sriwidodo S, Mita SR, Amalia E, et al. Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen. Cosmetics. 2025; 12(1):10. https://doi.org/10.3390/cosmetics12010010
Chicago/Turabian StyleShabrina, Ayunda Myela, Raden Siti Salma Azzahra, Ivana Nathania Permata, Humaira Praswatika Dewi, Ratnadani Amalia Safitri, Ira Maya, Rizqa Nurul Aulia, Sriwidodo Sriwidodo, Soraya Ratnawulan Mita, Eri Amalia, and et al. 2025. "Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen" Cosmetics 12, no. 1: 10. https://doi.org/10.3390/cosmetics12010010
APA StyleShabrina, A. M., Azzahra, R. S. S., Permata, I. N., Dewi, H. P., Safitri, R. A., Maya, I., Aulia, R. N., Sriwidodo, S., Mita, S. R., Amalia, E., & Putriana, N. A. (2025). Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen. Cosmetics, 12(1), 10. https://doi.org/10.3390/cosmetics12010010