Catechins as Antimicrobial Agents and Their Contribution to Cosmetics
Abstract
:1. Introduction
2. Physicochemical Properties of Catechins
2.1. Physicochemical of Catechin
2.2. Source of Catechin Extraction
3. Catechin as Antimicrobial
3.1. Catechin Mechanism of Membrane Disruption
3.2. Catechin Mechanism of DNA Damage
3.3. Research on Antibacterial Activities of Catechins
4. Catechins and Their Synergetic Effects with Antibiotics
5. Further Use of Catechins in Cosmetics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kurnia, D.; Ramadhanty, Z.F.; Ardani, A.M.; Zainuddin, A.; Dharsono, H.D.A.; Satari, M.H. Bio-mechanism of catechin as pheromone signal inhibitor: Prediction of antibacterial agent action mode by in vitro and in silico study. Molecules 2021, 26, 6381. [Google Scholar] [CrossRef]
- Munggari, I.P.; Kurnia, D.; Deawati, Y.; Julaeha, E. Current research of phytochemical, medicinal and non-medicinal uses of uncaria gambir roxb.: A review. Molecules 2022, 27, 6551. [Google Scholar] [CrossRef]
- Rosaini, H.; Makmur, I.; Lestari, E.A.; Sidoretno, W.M.; Yetti, R.D. Formulation of gel peel off catechins mask from gambir (Uncaria gambir (Hunter) Roxb) with the PVP K-30 concentration variation. Int. J. Res. Rev. 2021, 8, 205–211. [Google Scholar]
- Kamal, S.; Surya, S.; Krismon, E.M. The formulation of lip balm by using gambir catechin (Jncaria Gambir Roxb.) and its hedonic test. In Proceedings of the Seminar Nasional 1 Baristand Industri Padang, Padang, Indonesia, 11 November 2020; pp. 33–38. [Google Scholar]
- Ningsih, E.; Rahayuningsih, S. Extraction, Isolation, Characterisation and Antioxidant Activity Assay of Catechin Gambir (Uncaria gambir (Hunter). Roxb). Al-Kim. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Alioes, Y.; Sukma, R.; Sekar, S. Effect of gambir catechin isolate (Uncaria gambir Roxb.) against rat triacylglycerol level (Rattus novergicus). In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012020. [Google Scholar]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. Environ. Res. 2021, 198, 110488. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. J. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef]
- Isemura, M. Catechin in human health and disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef]
- Han, Y.; Jia, F.; Bai, S.; Xiao, Y.; Meng, X.; Jiang, L. Effect of operating conditions on size of catechin/β-cyclodextrin nanoparticles prepared by nanoprecipitation and characterization of their physicochemical properties. LWT 2022, 153, 112447. [Google Scholar] [CrossRef]
- Sha, H.; Cui, B.; Yuan, C.; Li, Y.; Guo, L.; Liu, P.; Wu, Z. Catechin/β-cyclodextrin complex modulates physicochemical properties of pre-gelatinized starch-based orally disintegrating films. Int. J. Biol. Macromol. 2022, 195, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Putra, P.P.; Fauzana, A.; Lucida, H. In Silico analysis of physical-chemical properties, target potential, and toxicology of pure compounds from natural products. Indones. J. Pharm. Sci. Technol. 2020, 7, 107–117. [Google Scholar] [CrossRef]
- Malrianti, Y.; Kasim, A.; Asben, A.; Syafri, E.; Yeni, G.; Fudholi, A. Catechin extracted from Uncaria gambier Roxb for Nanocatechin production: Physical and chemical properties. Des. Nat. Ecodynamics 2021, 16, 393–399. [Google Scholar] [CrossRef]
- Suryo, J. Herbal Penyembuh Wasir dan Kanker Prostat; Bentang Pustaka: Yogyakarta, Indonesia, 2010. [Google Scholar]
- Jubair, N.; Fatima, A.; Mahdi, Y.K.; Abdullah, N.H. Evaluation of catechin synergistic and antibacterial efficacy on biofilm formation and acrA gene expression of uropathogenic E. coli clinical isolates. Antibiotics 2022, 11, 1223. [Google Scholar] [CrossRef]
- Mita, S.R.; Abdassah, M.; Supratman, U.; Shiono, Y.; Rahayu, D.; Sopyan, I.; Wilar, G. Nanoparticulate system for the transdermal delivery of catechin as an antihypercholesterol: In vitro and in vivo evaluations. Pharmaceuticals 2022, 15, 1142. [Google Scholar] [CrossRef]
- Abudureheman, B.; Yu, X.; Fang, D.; Zhang, H. Enzymatic oxidation of tea catechins and its mechanism. Molecules 2022, 27, 942. [Google Scholar] [CrossRef]
- Kong, C.; Zhang, H.; Li, L.; Liu, Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: A review. J. Oral Microbiol. 2022, 14, 2131117. [Google Scholar] [CrossRef] [PubMed]
- Rahmi, M.; Rita, R.S.; Yetti, H. Gambir Catechins (Uncaria gambir Roxb) Prevent Oxidative Stress in Wistar Male Rats Fed a High-Fat Diet. Maj. Kedokt. Andalas 2021, 44, 436–441. [Google Scholar]
- Mogana, R.; Adhikari, A.; Tzar, M.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Alkufeidy, R.M.; Altuwijri, L.A.; Aldosari, N.S.; Alsakabi, N.; Dawoud, T.M. Antimicrobial and synergistic properties of green tea catechins against microbial pathogens. J. King Saud Univ.-Sci. 2024, 36, 103277. [Google Scholar] [CrossRef]
- Mita, S.R.; Husni, P.; Putriana, N.A.; Maharani, R.; Hendrawan, R.P.; Dewi, D.A. A Recent Update on the Potential Use of Catechins in Cosmeceuticals. Cosmetics 2024, 11, 23. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Li, H.; Qiu, Z.; Yu, Y. Comparative assessment of the antibacterial efficacies and mechanisms of different tea extracts. Foods 2022, 11, 620. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, D.; Zou, J.; Wang, X. An alternative strategy for enhancing stability and antimicrobial activity of catechins by natural deep eutectic solvents. LWT 2022, 153, 112558. [Google Scholar] [CrossRef]
- Erttmann, S.F.; Gekara, N.O. Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nat. Commun. 2019, 10, 3493. [Google Scholar] [CrossRef] [PubMed]
- Ayub, A.; Cheong, Y.K.; Castro, J.C.; Cumberlege, O.; Chrysanthou, A. Use of Hydrogen Peroxide Vapour for Microbiological Disinfection in Hospital Environments: A Review. Bioengineering 2024, 11, 205. [Google Scholar] [CrossRef]
- Zhang, G.; Tan, Y.; Yu, T.; Wang, S.; Liu, L.; Li, C. Synergistic antibacterial effects of reuterin and catechin against Streptococcus mutans. LWT 2021, 139, 110527. [Google Scholar] [CrossRef]
- Singh, S.P.; Qureshi, A.; Hassan, W. Mechanisms of action by antimicrobial agents: A review. McGill J. Med. 2021, 19, 1–10. [Google Scholar] [CrossRef]
- Miklasińska, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Dziedzic, A.; Wąsik, T. Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules 2016, 21, 244. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Han, C.H.; Kang, S.H.; LEE, S.J.; Kim, S.W.; Shin, O.R.; SIM, Y.C.; LEE, S.J.; CHO, Y.H. Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model. Int. J. Urol. 2005, 12, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef]
- Yamada, M.; Mohammed, Y.; Prow, T.W. Advances and controversies in studying sunscreen delivery and toxicity. Adv. Drug Deliv. Rev. 2020, 153, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Bazzaz, B.S.F.; Sarabandi, S.; Khameneh, B.; Hosseinzadeh, H. Effect of catechins, green tea extract and methylxanthines in combination with gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa:-combination therapy against resistant bacteria. J. Pharmacopunct. 2016, 19, 312. [Google Scholar] [CrossRef] [PubMed]
- Aponte, T.R. Green Tea Polyphenol EGCG-S as an Antimicrobial Agent. Master’s Thesis, Montclair State University, Montclair, NJ, USA, 2018. [Google Scholar]
- Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother. 2004, 53, 225–229. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, G.; Du, M.; Zhang, X.; Zhou, S.; Chen, G.; Liao, Z.; Zhong, Q.; Wang, L.; Xu, X. The interplay between (−)-epigallocatechin-3-gallate (EGCG) and Aspergillus niger RAF106, an EGCG-biotransforming fungus derived from Pu-erh tea. LWT 2023, 180, 114678. [Google Scholar] [CrossRef]
- Syukri, D.; Azima, F.; Aprialdho, R. Study on the Utilization of Catechins from Gambir (Uncaria gambir Roxb) Leaves as Antioxidants Cooking Oil. Andalasian Int. J. Agric. 2022, 3, 12–25. [Google Scholar] [CrossRef]
- Zillich, O.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Jesus, A.; Mota, S.; Torres, A.; Cruz, M.T.; Sousa, E.; Almeida, I.F.; Cidade, H. Antioxidants in sunscreens: Which and what for? Antioxidants 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Properties | Pure Isolate of Catechin | Extracted Catechin | Nanocatechin |
---|---|---|---|
Appearance | - | Whitish yellow | Brownish yellow |
Catechin content (%) | - | 98.54% ± 0.089 | 98.65 ± 0.101 |
Molecular weight (g/mol) | 290.27 | 290.26 | 290.26 |
Critical temperature (K) | 964.3 | - | - |
Melting point (°C) | 175.5–177.2 | >159.73 | >253.37 |
Boiling point (K) | 1049.1 | - | - |
Critical press (Bar) | 68.3 | - | - |
Molar refractivity (cm3/mol) | 74.05 | - | - |
Polar surface area (PSA) | 10.38 | - | - |
pH | - | 4–5 | 4–5 |
Refractive index | - | 1.3755 | 1.3755 |
Density | - | 0.9332 | 0.9332 |
Rotation angle | - | 6.4 (+) | 6.4 (+) |
Water solubility (%) | - | 43.98 | 68.38 |
Water content (%) | - | 12.14 ± 0.254 | 11.88 ± 0.63 |
Antibiotic | Mechanism | Ref. |
---|---|---|
Beta Lactam | Inhibits bacteria cell wall and causes lysis. Catechin synergetics: Data not available. | [29] |
Vancomycin | Inhibits peptidoglycan synthesis. Catechin synergetics: Research indicates synergism. | [29,30] |
Bacitracin and Cyclosterine | Deactivates phospholipid carriers. Catechin synergetics: Data not available. | [29] |
Aminoglycoside | Inhibits complex 30S ribosomal subunit. Catechin synergetics: Research indicates synergism. | [15,29] |
Tetracycline | Inhibits complex 30S ribosomal subunit. Catechin synergetics: Research indicates synergism. | [15,29] |
Macrolides | Binds 50S ribosomal subunit, inhibiting tRNA transport. Catechin synergetics: Research indicates that erythromycin works synergistically with catechin. | [15,29] |
Oxazolidones | Inhibits complex 50S ribosomal subunit. Catechin synergetics: Data not available. | [29] |
Sulfonamides | Inhibits activity of p-aminobenzoic acid. Catechin synergetics: Data not available. | [29] |
Fluoroquinolone | Inhibits DNA gyrase and DNA topoisomerase. Catechin synergetics: Possible, but needs further research. | [29,31] |
Rifampicin | Inhibits RNA polymerase. Catechin synergetics: Research indicates synergism. |
Bacteria Strain | w/o Catechins | w/Catechins | Interpretation | Ref. |
---|---|---|---|---|
S. aureus ATCC 25923 | Erythromycin (E) 0.38 Clindamycin (C) 0.064 Cefoxitin (CF) 1 Vancomycin (V) 0.75 | E + CAT 0.50 C + CAT 0.064 CF + CAT 1 V + CAT 1 |
| [30] |
S. aureus ATCC 43300 | Erythromycin (E) 256 Clindamycin (C) 256 Cefoxitin (CF) 12 Vancomycin (V) 0.38 | E + CAT 256 C + CAT 256 CF + CAT 8 V + CAT 0.75 |
| [30] |
S. aureus ATCC 6538 | Erythromycin (E) 0.064 Clindamycin (C) 0.023 Cefoxitin (CF) 2 Vancomycin (V) 0.5 | E + CAT 0.19 C + CAT 0.032 CF + CAT 1.5 V + CAT 0.38 |
| [30] |
E. coli (not specific, chronic bacterial prostatitis) | Mean log10 CFU 100 µL in prostate tissue 3.586 ± 0.863 Mean log10 CFU 100 µL in urine 1.215 ± 1.024 | Mean log10 CFU 100 µL in prostate tissue 2.379 ± 0.392 Mean log10 CFU 100 µL in urine 1.271 ± 0.837 |
| [31] |
E. coli ATCC 25922 | Rifampicin 7.42 Tetracycline - Erythromycin - Clindamycin - Azithromycin 10.95 Vancomycin - Gentamicin 31.32 | Rifampicin 16 Tetracycline 10.4 Erythromycin 10 Clindamycin 10.45 Azithromycin 22.5 Vancomycin 10.4 Gentamicin 35 |
| [15] |
E. coli ATCC 8739 | Rifampicin 17.24 Tetracycline - Erythromycin - Clindamycin - Azithromycin 15.15 Vancomycin - Gentamicin 13.14 | Rifampicin 26 Tetracycline 9.1 Erythromycin 8.8 Clindamycin 9 Azithromycin 25 Vancomycin 9.5 Gentamicin 22 |
| [15] |
E. coli ATCC 43895 | Rifampicin - Tetracycline - Erythromycin - Clindamycin - Azithromycin 6.03 Vancomycin - Gentamicin 13.6 | Rifampicin 11.5 Tetracycline 12 Erythromycin 11.5 Clindamycin 11.45 Azithromycin 17 Vancomycin 11.8 Gentamicin 22 |
| [15] |
Formulation | Definition | Parameter |
---|---|---|
Serum | A cosmetic preparation that has low viscosity and a high active concentration. | pH adjusted to 4.5–6.5 Desired viscosity of 230–3000 mpa-s |
Facial Wash | Cleansing product that is used as a cleanser, makeup remover, or to eliminate skin impurities | pH adjusted to 4.5–6.5 Desired viscosity of <5 mPa-s |
Toner | Watery product used to minimize residual impurities to optimize pH levels of skin | pH adjusted to 4.5–6.5 |
Cream | Normally used to moisturize and enhance skin barrier | pH adjusted to 4.5–6.5 If intended as moisturizer, needs low oil content If intended as cleanser, needs high oil content |
Sunscreen | Topical product applied to reduce ultraviolet radiation from the sun | pH adjusted to 5.5 SPF optimized from 7 to 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mita, S.R.; Muhtar, N.I.; Kusuma, S.A.F.; Sriwidodo, S.; Hendrawan, R.P. Catechins as Antimicrobial Agents and Their Contribution to Cosmetics. Cosmetics 2025, 12, 11. https://doi.org/10.3390/cosmetics12010011
Mita SR, Muhtar NI, Kusuma SAF, Sriwidodo S, Hendrawan RP. Catechins as Antimicrobial Agents and Their Contribution to Cosmetics. Cosmetics. 2025; 12(1):11. https://doi.org/10.3390/cosmetics12010011
Chicago/Turabian StyleMita, Soraya Ratnawulan, Nurul Inaya Muhtar, Sri Agung Fitri Kusuma, Sriwidodo Sriwidodo, and Ryan Proxy Hendrawan. 2025. "Catechins as Antimicrobial Agents and Their Contribution to Cosmetics" Cosmetics 12, no. 1: 11. https://doi.org/10.3390/cosmetics12010011
APA StyleMita, S. R., Muhtar, N. I., Kusuma, S. A. F., Sriwidodo, S., & Hendrawan, R. P. (2025). Catechins as Antimicrobial Agents and Their Contribution to Cosmetics. Cosmetics, 12(1), 11. https://doi.org/10.3390/cosmetics12010011