Triangular Slot-Loaded Wideband Planar Rectangular Antenna Array for Millimeter-Wave 5G Applications
Abstract
:1. Introduction
2. Antenna Design
2.1. Single Element
2.2. Design Procedure
3. Feed Network and Array Design
4. Simulated and Measured Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F., Jr. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; MacCartney, G.R.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Alhalabi, R.A. High efficiency planar and RFIC-based antennas for millimeter-wave communication systems. Ph.D. Thesis, UC San Diego, San Diego, CA, USA, 2010. [Google Scholar]
- Ashraf, N.; Vettikalladi, H.; Alkanhal, M.A. A DR loaded substrate integrated waveguide antenna for 60 GHz high speed wireless communication systems. Int. J. Antennas Propag. 2014, 2014, 146301. [Google Scholar] [CrossRef]
- Haraz, O.M.; Elboushi, A.; Alshebeili, S.A.; Sebak, A.-R. Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks. IEEE Access 2014, 2, 909–913. [Google Scholar] [CrossRef]
- Vettikalladi, H.; Sethi, W.T.; Alkanhal, M.A. High gain and high efficient stacked antenna array with integrated horn for 60 GHz communication systems. Int. J. Antennas Propag. 2014, 2014, 418056. [Google Scholar] [CrossRef]
- Mohamed, I.; Sebak, A.R. High-gain series-fed aperture-coupled microstrip antenna array. Micro. Optical Tech. Lett. 2015, 57, 91–94. [Google Scholar] [CrossRef]
- Park, S.-J.; Shin, D.-H.; Park, S.-O. Low side-lobe substrate integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device. IEEE Trans. Antennas Propag. 2015, 64, 923–932. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Sorkherizi, M.S.; Kishk, A.A. Wideband low-loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding. IEEE Trans. Antennas Propag. 2016, 64, 5094–5101. [Google Scholar] [CrossRef]
- Saad, A.A.R.; Mohamed, H.A. Printed millimeter-wave MIMO based slot antenna arrays for 5G networks. AEU-Int. J. Elect. Commun. 2019, 99, 59–69. [Google Scholar] [CrossRef]
- Jilani, S.F.; Alomainy, A. A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2983–2986. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A.A. Broadband mm-Wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Trans. Antennas Propag. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, H.; Chen, Z.; Wen, P. A compact gain-enhanced vivaldi antenna array with suppressed mutual coupling for 5G mmWave application. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 776–779. [Google Scholar] [CrossRef]
- Khattak, M.I.; Sohail, A.; Khan, U.; Barki, Z.; Witjaksono, G. Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks. Prog. Electromagn. Res. 2019, 89, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Tahir, F.A. A broadband wire hexagon antenna array for future 5G communications in 28 GHz band. Micro. Optical Tech. Lett. 2019, 61, 696–701. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. Broadband planar antenna array for future 5G communication standards. IET Microw. Antennas Propag. 2019, 13, 2661–2668. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. A wide-band rhombus monopole antenna array for millimeter wave applications. Micro. Optical Tech. Lett. 2020, 62, 2111–2117. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. A high gain and wideband narrow-beam antenna for 5G millimeter-wave applications. IEEE Access 2020, 8, 29430–29434. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. A novel snowflake fractal antenna for dual-beam applications in 28 GHz band. IEEE Access 2020, 8, 19873–19879. [Google Scholar] [CrossRef]
W | L | g | ||||
5.5 | 7.5 | 4.5 | 5 | 3.5 | 4 | 0.5 |
− | ||||||
1 | 1 | 3 | 1.4 | 2 | 1.7 | − |
Ref. | Array Size | Array Elements | Freq. Range | Bandwidth | Efficiency | Peak Gain |
---|---|---|---|---|---|---|
mm2 | (GHz) | (GHz) | (%) | (dBi) | ||
[12] | 26 × 21 | 2–D Array | Multiband | >70 | 13.5 | |
[13] | 99.2 × 17.45 | 16 | 24–31 | 7 | 20.15 | |
[14] | 60 × 28.82 | 8 | 24.55–28.5 | 3.95 | 11.32 | |
[15] | 31 × 7 | 4 | Multiband | 98.75 | 13.5 | |
[16] | 45 × 20 | 4 | 25–35 | 10 | >85 | 12.15 |
[17] | 40 × 15 | 4 | 23.76–42.15 | 15.42 | >83 | 11.5 |
[18] | 40 × 19.22 | 4 | 26–30.63 | 4.63 | >85 | 11.24 |
[19] | 37.6 × 14.3 | 4 | 23.41–33.92 | 10.51 | >90 | 10.7 |
[20] | 32 × 12 | 4 | 25.28–29.04 | 3.76 | >80 | 10.12 |
Proposed | 35.5 × 14.85 | 4 | 26–45 | 19 | >90 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Sun, H.; Rafique, U.; Yi, Z. Triangular Slot-Loaded Wideband Planar Rectangular Antenna Array for Millimeter-Wave 5G Applications. Electronics 2021, 10, 778. https://doi.org/10.3390/electronics10070778
Ahmad I, Sun H, Rafique U, Yi Z. Triangular Slot-Loaded Wideband Planar Rectangular Antenna Array for Millimeter-Wave 5G Applications. Electronics. 2021; 10(7):778. https://doi.org/10.3390/electronics10070778
Chicago/Turabian StyleAhmad, Iftikhar, Houjun Sun, Umair Rafique, and Zhang Yi. 2021. "Triangular Slot-Loaded Wideband Planar Rectangular Antenna Array for Millimeter-Wave 5G Applications" Electronics 10, no. 7: 778. https://doi.org/10.3390/electronics10070778
APA StyleAhmad, I., Sun, H., Rafique, U., & Yi, Z. (2021). Triangular Slot-Loaded Wideband Planar Rectangular Antenna Array for Millimeter-Wave 5G Applications. Electronics, 10(7), 778. https://doi.org/10.3390/electronics10070778