A Review on Deep Learning Techniques for IoT Data
Abstract
:1. Introduction
2. Deep Learning Techniques
2.1. Supervised Learning
2.1.1. Recurrent Neural Networks (RNNs)
2.1.2. Long Short Term Memory (LSTM)
2.1.3. Convolutional Neural Networks (CNN’s)
2.1.4. Transformer-Based Deep Neural Networks
2.2. Unsupervised Learning
2.2.1. Autoencoder (AE)
2.2.2. Restricted Boltzmann Machines (RBMs)
2.2.3. Deep Belief Networks (DBNs)
3. IoT Applications and Challenges
3.1. Data Features of IoT
- Volume: In IoT, a billion devices will generate the huge data.
- Velocity: How the IoT data can be accessed quickly and efficiently in real time?
- Variety: Basically, IoT data is text, video, audio, sensor data, etc. It may be structured or unstructured data.
- Veracity: Refers to the accuracy, consistency and trust of data, which leads to precise analytics in effect.
- Variability: Basically, Data flow rate depends on IoT applications, generating data components, time and space.
- Value: To transform IoT big data into useful information and insights that offer many advantages to organizations.
3.2. Deep Learning Using IoT Devices
3.3. Applications of IoT
- Smart Home: Probably, the first application of the IoT is smart home. As per the IoT analytics, more than 70,000 people are searching about the ‘smart home’ every month. Many big companies funding the IoT startup for smart home projects. The smart home appliances include washing machines, refrigerators, bulbs, fans, televisions, smart doors which can built and communicate online each other with approves users to provide better monitoring and managing the appliances and also optimizing the energy consumption.
- Smart City: The hypothesis of the optimized traffic system I mentioned earlier, is one of the many aspects that constitute a smart city. This category is most specific to the cities. Mostly, the problems are common in all cities. However, sometimes, they may vary city to city. Global problems are also emerging in numerous cities, including safe drinking water, declining air quality and rising urban density. The IoT applications in city areas are water management, waste management, security, climate monitor, traffic management, etc. We can reduce the noise, pollution, accidents, parking problems, street light problems and public transport because of the smart transportation in cities.
- Health care: Relevant real-world knowledge is missing in the tools of modern medical science. It uses the remaining data, managed environments and medical examination volunteers mainly. By research, real-time field data, and testing, IoT opens the door to a sea of useful data. To improve the health of a patient, new technologies have been developed using the IoT in the medical field [150,151]. The sensors can monitor a wound’s state, blood pressure, heart rate, sugar and oxygen levels, body temperature, etc., without the presence of the doctors and medical practitioners. In the article [152], physiological signals are instantaneous and sensitive to neurological changes caused by the cognitive load imposed by diverse driving conditions, and are used to assess the relationship between neurological results and driving environments.
- Security: IoT can improve security everywhere in the world using smart cameras. Smart security systems can identify criminals or avoid dangerous situations by means of real-time digital image recognition. Security is the biggest challenge in the IoT field.
- Smart Retail: It is one of the biggest applications in the IoT field. Solutions for tracking goods while they are on the road, or getting suppliers to exchange inventory information have been on the market for years. However, it is also limited. The use of intelligent GPS and RFID technologies makes it easy to track the product between the output and the store and greatly reduce costs and time. The applications of IoT in retail are tracking location, inventory management, equipment maintenance, analyzing mall traffic, etc.
- Agriculture: Many researchers have already worked in this emerging application of IoT [153,154]. Through the growing use of the IoT, connected devices have penetrated everything from health and well-being to home automation, car and logistics to intelligent cities, security, retail and industrial IoT. However, since farming operations are remote and there are many resources that the IoT can monitored, the way farmers operate can be completely changed. Here, the major problem is to change farmers to smart farming. They can be benefited in many ways such as checking soil quality, weather conditions, cost management, reducing wastage, managing crop etc.
- Wearables: Now a days, we can see wearables with anyone which can monitor heart rate, sugar and oxygen levels, blood pressure, temperature, sleeping status, walk distance, etc. Wearable technology is an excellent aspect in IoT applications and is undoubtedly one of the first industries to use IoT.
- Industrial Automation: Remote access and control are enabled with industrial IoT networking, but more significantly data extraction, processing, sharing and analysis by various data sources. This has tremendous productivity and performance improvement potential. Their low cost and rapid development characterize the IIoT solutions. In order to achieve a better result in cost and customer service, IoT Applications can also re-engineer devices and their packages with IoT automation easily. Some applications are product flow monitoring, digitization, quality control, safety and security, package optimization, logistics and supply chain optimization.
3.4. Challenges
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swan, M. Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Hu, M.; Cao, D.; Ma, X.; Li, Q.; Liu, J. Self-deployable indoor localization with acoustic-enabled IoT devices exploiting participatory sensing. IEEE Internet Things J. 2019, 6, 5297–5311. [Google Scholar] [CrossRef]
- Wang, C.; Lin, H.; Jiang, H. CANS: Towards congestion-adaptive and small stretch emergency navigation with wireless sensor networks. IEEE Trans. Mob. Comput. 2015, 15, 1077–1089. [Google Scholar] [CrossRef]
- Hu, M.; Liu, W.; Peng, K.; Ma, X.; Cheng, W.; Liu, J.; Li, B. Joint routing and scheduling for vehicle-assisted multidrone surveillance. IEEE Internet Things J. 2018, 6, 1781–1790. [Google Scholar] [CrossRef]
- Hu, M.; Liu, W.; Lu, J.; Fu, R.; Peng, K.; Ma, X.; Liu, J. On the joint design of routing and scheduling for vehicle-assisted multi-UAV inspection. Future Gener. Comput. Syst. 2019, 94, 214–223. [Google Scholar] [CrossRef]
- Chen, M.; Herrera, F.; Hwang, K. Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access 2018, 6, 19774–19783. [Google Scholar] [CrossRef]
- Huang, T.; Lan, L.; Fang, X.; An, P.; Min, J.; Wang, F. Promises and challenges of big data computing in health sciences. Big Data Res. 2015, 2, 2–11. [Google Scholar] [CrossRef]
- RM, S.P.; Bhattacharya, S.; Maddikunta, P.K.R.; Somayaji, S.R.K.; Lakshmanna, K.; Kaluri, R.; Hussien, A.; Gadekallu, T.R. Load balancing of energy cloud using wind driven and firefly algorithms in internet of everything. J. Parallel Distrib. Comput. 2020, 142, 16–26. [Google Scholar]
- Castro-Neto, M.; Jeong, Y.S.; Jeong, M.K.; Han, L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36, 6164–6173. [Google Scholar] [CrossRef]
- Mahfouz, S.; Mourad-Chehade, F.; Honeine, P.; Farah, J.; Snoussi, H. Target tracking using machine learning and Kalman filter in wireless sensor networks. IEEE Sens. J. 2014, 14, 3715–3725. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhu, Y.; Wang, F.; Liu, J.; Ma, X.; Fan, X. Car4Pac: Last mile parcel delivery through intelligent car trip sharing. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4410–4424. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances that will Transform Life, Business, and the Global Economy; McKinsey Global Institute: San Francisco, CA, USA, 2013; Volume 180. [Google Scholar]
- Vangelista, L.; Zanella, A.; Zorzi, M. Long-range IoT technologies: The dawn of LoRaTM. In Future Access Enablers of Ubiquitous and Intelligent Infrastructures; Springer: Cham, Switzerland, 2015; pp. 51–58. [Google Scholar]
- Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Iwendi, C.; Maddikunta, P.K.R.; Gadekallu, T.R.; Lakshmanna, K.; Bashir, A.K.; Piran, M.J. A metaheuristic optimization approach for energy efficiency in the IoT networks. Softw. Pract. Exp. 2020, 51, 2558–2571. [Google Scholar] [CrossRef]
- Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7. [Google Scholar]
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Wei, G.; Sun, L. Fog computing: Focusing on mobile users at the edge. arXiv 2015, arXiv:1502.01815. [Google Scholar]
- Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Commun. Surv. Tuts 2014, 16, 1996–2018. [Google Scholar] [CrossRef] [Green Version]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Briefings Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. IEEE Commun. Surv. Tutorials 2018, 20, 2923–2960. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 2018, 48, 144–156. [Google Scholar] [CrossRef]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Kaluri, R.; Rajput, D.S.; Srivastava, G.; Baker, T. Analysis of Dimensionality Reduction Techniques on Big Data. IEEE Access 2020, 8, 54776–54788. [Google Scholar] [CrossRef]
- Lakshmanna, K.; Khare, N. Mining DNA Sequence Patterns with Constraints Using Hybridization of Firefly and Group Search Optimization. J. Intell. Syst. 2018, 27, 349–362. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Mao, S.; Zhang, Y.; Leung, V.C. Big Data: Related Technologies, Challenges and Future Prospects; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Ma, X.; Yao, T.; Hu, M.; Dong, Y.; Liu, W.; Wang, F.; Liu, J. A Survey on Deep Learning Empowered IoT Applications. IEEE Access 2019, 7, 181721–181732. [Google Scholar] [CrossRef]
- Rodrigues, A.P.; Fernandes, R.; Shetty, A.; Lakshmanna, K.; Shafi, R.M. Real-Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques. Comput. Intell. Neurosci. 2022, 2022. [Google Scholar] [CrossRef]
- Wu, M.; Chen, L. Image recognition based on deep learning. In Proceedings of the 2015 Chinese Automation Congress (CAC), Wuhan, China, November27–29 2015; pp. 542–546. [Google Scholar]
- Khosravy, M.; Nakamura, K.; Hirose, Y.; Nitta, N.; Babaguchi, N. Model Inversion Attack by Integration of Deep Generative Models: Privacy-Sensitive Face Generation from a Face Recognition System. IEEE Trans. Inf. Forensics Secur. 2022. [Google Scholar] [CrossRef]
- Dehghani, M.; Taghipour, M.; Sadeghi Gougheri, S.; Nikoofard, A.; Gharehpetian, G.B.; Khosravy, M. A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime. Energies 2021, 14, 8035. [Google Scholar] [CrossRef]
- Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A review of machine learning and IoT in smart transportation. Future Internet 2019, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Park, S.J. Quantitative evaluation of task-induced neurological outcome after stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef]
- Hussain, I.; Hossain, M.A.; Jany, R.; Bari, M.A.; Uddin, M.; Kamal, A.R.M.; Ku, Y.; Kim, J.S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Yu, A.W.; Lee, H.; Le, Q.V. Learning to skim text. arXiv 2017, arXiv:1704.06877. [Google Scholar]
- Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Song, X.; Kanasugi, H.; Shibasaki, R. DeepTransport: Prediction and Simulation of Human Mobility and Transportation Mode at a Citywide Level. In Proceedings of the IJCAI, New York, NY, USA, 9–15 July 2016; Volume 16, pp. 2618–2624. [Google Scholar]
- Liang, V.C.; Ma, R.T.; Ng, W.S.; Wang, L.; Winslett, M.; Wu, H.; Ying, S.; Zhang, Z. Mercury: Metro density prediction with recurrent neural network on streaming CDR data. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016; pp. 1374–1377. [Google Scholar]
- HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.K.R. A deep recurrent neural network based approach for internet of things malware threat hunting. Future Gener. Comput. Syst. 2018, 85, 88–96. [Google Scholar] [CrossRef]
- Roy, B.; Cheung, H. A deep learning approach for intrusion detection in internet of things using bi-directional long short-term memory recurrent neural network. In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 21–23 November 2018; pp. 1–6. [Google Scholar]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Wang, K.C.; Zemel, R. Classifying NBA offensive plays using neural networks. In Proceedings of the MIT Sloan Sports Analytics Conference, Toronto, ON, Canada, 11–12 March 2016; Volume 4. [Google Scholar]
- Shah, R.; Romijnders, R. Applying deep learning to basketball trajectories. arXiv 2016, arXiv:1608.03793. [Google Scholar]
- Yang, T.Y.; Brinton, C.G.; Joe-Wong, C.; Chiang, M. Behavior-based grade prediction for MOOCs via time series neural networks. IEEE J. Sel. Top. Signal Process. 2017, 11, 716–728. [Google Scholar] [CrossRef]
- Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.; Guibas, L.J.; Sohl-Dickstein, J. Deep knowledge tracing. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 505–513. [Google Scholar]
- Steinberg, L. Changing the game: The rise of sports analytics. Forbes. Retrieved March 2015, 14, 2017. [Google Scholar]
- Singh, B.; Marks, T.K.; Jones, M.; Tuzel, O.; Shao, M. A multi-stream bi-directional recurrent neural network for fine-grained action detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1961–1970. [Google Scholar]
- Pigou, L.; Van Den Oord, A.; Dieleman, S.; Van Herreweghe, M.; Dambre, J. Beyond temporal pooling: Recurrence and temporal convolutions for gesture recognition in video. Int. J. Comput. Vis. 2018, 126, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Neverova, N.; Wolf, C.; Lacey, G.; Fridman, L.; Chandra, D.; Barbello, B.; Taylor, G. Learning human identity from motion patterns. IEEE Access 2016, 4, 1810–1820. [Google Scholar] [CrossRef]
- Asghar, M.Z.; Lajis, A.; Alam, M.M.; Rahmat, M.K.; Nasir, H.M.; Ahmad, H.; Al-Rakhami, M.S.; Al-Amri, A.; Albogamy, F.R. A Deep Neural Network Model for the Detection and Classification of Emotions from Textual Content. Complexity 2022, 2022. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans. Neural Netw. 2001, 12, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sak, H.; Senior, A.; Beaufays, F. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv 2014, arXiv:1402.1128. [Google Scholar]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-to-end learning of driving models from large-scale video datasets. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2174–2182. [Google Scholar]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Wen, Y.; Hong, R. Multicolumn bidirectional long short-term memory for mobile devices-based human activity recognition. IEEE Internet Things J. 2016, 3, 1124–1134. [Google Scholar] [CrossRef]
- Dataset, O. OPPORTUNITY+ Activity+ Recognition. 2012. Available online: https://archive.ics.uci.edu/ml/datasets (accessed on 19 November 2015).
- Lu, W.; Zhang, J.; Zhao, X.; Wang, J.; Dang, J. Multimodal sensory fusion for soccer robot self-localization based on long short-term memory recurrent neural network. J. Ambient Intell. Humaniz. Comput. 2017, 8, 885–893. [Google Scholar] [CrossRef]
- Manic, M.; Amarasinghe, K.; Rodriguez-Andina, J.J.; Rieger, C. Intelligent buildings of the future: Cyberaware, deep learning powered, and human interacting. IEEE Ind. Electron. Mag. 2016, 10, 32–49. [Google Scholar] [CrossRef]
- Gensler, A.; Henze, J.; Sick, B.; Raabe, N. Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM Neural Networks. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002858–002865. [Google Scholar]
- Hada-Muranushi, Y.; Muranushi, T.; Asai, A.; Okanohara, D.; Raymond, R.; Watanabe, G.; Nemoto, S.; Shibata, K. A deep-learning approach for operation of an automated realtime flare forecast. arXiv 2016, arXiv:1606.01587. [Google Scholar]
- Reddy, T.; RM, S.P.; Parimala, M.; Chowdhary, C.L.; Hakak, S.; Khan, W.Z. A deep neural networks based model for uninterrupted marine environment monitoring. Comput. Commun. 2020, 157, 64–75. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015, arXiv:1511.03677. [Google Scholar]
- Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv 2016, arXiv:1604.08880. [Google Scholar]
- Gao, Y.; Xiang, X.; Xiong, N.; Huang, B.; Lee, H.J.; Alrifai, R.; Jiang, X.; Fang, Z. Human action monitoring for healthcare based on deep learning. IEEE Access 2018, 6, 52277–52285. [Google Scholar] [CrossRef]
- Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Tröster, G.; Millán, J.d.R.; Roggen, D. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Rajput, D.S.; Kaluri, R.; Srivastava, G. Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evol. Intell. 2020, 13(2), 185–196. [Google Scholar] [CrossRef]
- Reiss, A.; Stricker, D. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the 2012 16th International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 108–109. [Google Scholar]
- Bächlin, M.; Roggen, D.; Tröster, G.; Plotnik, M.; Inbar, N.; Maidan, I.; Herman, T.; Brozgol, M.; Shaviv, E.; Giladi, N.; et al. Potentials of Enhanced Context Awareness in Wearable Assistants for Parkinson’s Disease Patients with the Freezing of Gait Syndrome. In Proceedings of the ISWC, Linz, Austria, 4–7 September 2009; pp. 123–130. [Google Scholar]
- Ibrahim, M.S.; Muralidharan, S.; Deng, Z.; Vahdat, A.; Mori, G. A hierarchical deep temporal model for group activity recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1971–1980. [Google Scholar]
- Asghar, M.Z.; Albogamy, F.R.; Al-Rakhami, M.S.; Asghar, J.; Rahmat, M.K.; Alam, M.M.; Lajis, A.; Nasir, H.M. Facial Mask Detection Using Depthwise Separable Convolutional Neural Network Model During COVID-19 Pandemic. Front. Public Health 2022, 10, 855254. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Alghazzawi, D.; Bamasag, O.; Albeshri, A.; Sana, I.; Ullah, H.; Asghar, M.Z. Efficient Prediction of Court Judgments Using an LSTM+ CNN Neural Network Model with an Optimal Feature Set. Mathematics 2022, 10, 683. [Google Scholar] [CrossRef]
- Zhu, J.; Pande, A.; Mohapatra, P.; Han, J.J. Using deep learning for energy expenditure estimation with wearable sensors. In Proceedings of the 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 501–506. [Google Scholar]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Prasoon, A.; Petersen, K.; Igel, C.; Lauze, F.; Dam, E.; Nielsen, M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2013; pp. 246–253. [Google Scholar]
- Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Ma, Y. Deepfood: Deep learning-based food image recognition for computer-aided dietary assessment. In International Conference on Smart Homes and Health Telematics; Springer: Cham, Switzerland, 2016; pp. 37–48. [Google Scholar]
- Pereira, C.R.; Pereira, D.R.; Papa, J.P.; Rosa, G.H.; Yang, X.S. Convolutional neural networks applied for parkinson’s disease identification. In Machine Learning for Health Informatics; Springer: Cham, Switzerland, 2016; pp. 377–390. [Google Scholar]
- Erol, B.A.; Majumdar, A.; Lwowski, J.; Benavidez, P.; Rad, P.; Jamshidi, M. Improved deep neural network object tracking system for applications in home robotics. In Computational Intelligence for Pattern Recognition; Springer: Cham, Switzerland, 2018; pp. 369–395. [Google Scholar]
- Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [Google Scholar] [CrossRef]
- Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C.; Meghini, C.; Vairo, C. Deep learning for decentralized parking lot occupancy detection. Expert Syst. Appl. 2017, 72, 327–334. [Google Scholar] [CrossRef]
- Valipour, S.; Siam, M.; Stroulia, E.; Jagersand, M. Parking-stall vacancy indicator system, based on deep convolutional neural networks. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 655–660. [Google Scholar]
- Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Li, H.; Li, Y.; Porikli, F. Deeptrack: Learning discriminative feature representations online for robust visual tracking. IEEE Trans. Image Process. 2015, 25, 1834–1848. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Iandola, F.; Jin, P.H.; Keutzer, K. Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 129–137. [Google Scholar]
- Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al. End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316. [Google Scholar]
- Shin, M.; Paik, W.; Kim, B.; Hwang, S. An IoT platform with monitoring robot applying CNN-based context-aware learning. Sensors 2019, 19, 2525. [Google Scholar] [CrossRef] [Green Version]
- Mittal, G.; Yagnik, K.B.; Garg, M.; Krishnan, N.C. Spotgarbage: Smartphone app to detect garbage using deep learning. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 940–945. [Google Scholar]
- Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Trans. Serv. Comput. 2017, 11, 249–261. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- CireşAn, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-column deep neural network for traffic sign classification. Neural Netw. 2012, 32, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Hong, Y.; Choi, Y.; Byun, H. Real-time traffic sign recognition based on a general purpose GPU and deep-learning. PLoS ONE 2017, 12, e0173317. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ding, H.; Bidgoli, F.A.; Zhou, B.; Iribarren, C.; Molloi, S.; Baldi, P. Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 2017, 36, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Gu, X.; Liu, K.; Dai, X.; Ma, H. Deep learning based intelligent basketball arena with energy image. In International Conference on Multimedia Modeling; Springer: Cham, Switzerland, 2017; pp. 601–613. [Google Scholar]
- Toshev, A.; Szegedy, C. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660. [Google Scholar]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Steen, K.A.; Christiansen, P.; Karstoft, H.; Jørgensen, R.N. Using deep learning to challenge safety standard for highly autonomous machines in agriculture. J. Imaging 2016, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Kautz, T.; Groh, B.H.; Hannink, J.; Jensen, U.; Strubberg, H.; Eskofier, B.M. Activity recognition in beach volleyball using a Deep Convolutional Neural Network. Data Min. Knowl. Discov. 2017, 31, 1678–1705. [Google Scholar] [CrossRef]
- Bell, S.; Bala, K. Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graph. (TOG) 2015, 34, 1–10. [Google Scholar] [CrossRef]
- Xiao, L.; Yichao, X. Exact clothing retrieval approach based on deep neural network. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016; pp. 396–400. [Google Scholar]
- Advani, S.; Zientara, P.; Shukla, N.; Okafor, I.; Irick, K.; Sampson, J.; Datta, S.; Narayanan, V. A multitask grocery assist system for the visually impaired: Smart glasses, gloves, and shopping carts provide auditory and tactile feedback. IEEE Consum. Electron. Mag. 2016, 6, 73–81. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Liu, Q.; Yin, Y.; Cheng, L.; Zimmermann, R. Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective. IEEE Trans. Multimed. 2016, 19, 874–888. [Google Scholar] [CrossRef]
- Becker, M. Indoor positioning solely based on user’s sight. In International Conference on Information Science and Applications; Springer: Singapore, 2017; pp. 76–83. [Google Scholar]
- Njima, W.; Ahriz, I.; Zayani, R.; Terre, M.; Bouallegue, R. Deep CNN for Indoor Localization in IoT-Sensor Systems. Sensors 2019, 19, 3127. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Hu, R.; Chen, J.; Zhou, L. A transformer-based deep neural network for arrhythmia detection using continuous ECG signals. Comput. Biol. Med. 2022, 144, 105325. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 213–229. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Lee, H.; Battle, A.; Raina, R.; Ng, A.Y. Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2007; pp. 801–808. [Google Scholar]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103. [Google Scholar]
- Shao, H.; Jiang, H.; Wang, F.; Zhao, H. An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.-Based Syst. 2017, 119, 200–220. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.; Kim, C.O. A deep learning model for robust wafer fault monitoring with sensor measurement noise. IEEE Trans. Semicond. Manuf. 2016, 30, 23–31. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L. Geological disaster recognition on optical remote sensing images using deep learning. Procedia Comput. Sci. 2016, 91, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4346–4354. [Google Scholar]
- Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 1325–1339. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, Y.; Liu, J.; Jiang, X. Semi-supervised deep extreme learning machine for Wi-Fi based localization. Neurocomputing 2015, 166, 282–293. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, K.; Zhang, W.; Zhang, Y.; Gu, J. Deep neural networks for wireless localization in indoor and outdoor environments. Neurocomputing 2016, 194, 279–287. [Google Scholar] [CrossRef]
- Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot. Sensors 2017, 17, 1967. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. In Iberoamerican Congress on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 14–36. [Google Scholar]
- Mocanu, D.C.; Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Liotta, A. Big IoT data mining for real-time energy disaggregation in buildings. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 003765–003769. [Google Scholar]
- Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Proceedings of the Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, USA, 21 August 2011; Volume 25, pp. 59–62. [Google Scholar]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep learning for indoor fingerprinting using channel state information. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 1666–1671. [Google Scholar]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Trans. Veh. Technol. 2016, 66, 763–776. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, X.; Gao, Q.; Yue, H.; Wang, H. Device-free wireless localization and activity recognition: A deep learning approach. IEEE Trans. Veh. Technol. 2016, 66, 6258–6267. [Google Scholar] [CrossRef]
- Ma, X.; Yu, H.; Wang, Y.; Wang, Y. Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE 2015, 10, e0119044. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Song, G.; Hong, H.; Xie, K. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [Google Scholar] [CrossRef]
- Chang, C.Y.; Bhattacharya, S.; Raj Vincent, P.; Lakshmanna, K.; Srinivasan, K. An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network. J. Healthc. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Kang, M.J.; Kang, J.W. Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 2016, 11, e0155781. [Google Scholar] [CrossRef]
- Kahou, S.E.; Bouthillier, X.; Lamblin, P.; Gulcehre, C.; Michalski, V.; Konda, K.; Jean, S.; Froumenty, P.; Dauphin, Y.; Boulanger-Lewandowski, N.; et al. Emonets: Multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 2016, 10, 99–111. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Mendis, G.J.; Wei, J. Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [Google Scholar] [CrossRef]
- Yuan, Z.; Lu, Y.; Wang, Z.; Xue, Y. Droid-sec: Deep learning in android malware detection. In Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014; pp. 371–372. [Google Scholar]
- Hussain, I.; Park, S.J. Big-Ecg: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hilbert, M. Big data for development: A review of promises and challenges. Dev. Policy Rev. 2016, 34, 135–174. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Bifet, A. Mining big data: Current status, and forecast to the future. ACM SIGKDD Explor. Newsl. 2013, 14, 1–5. [Google Scholar] [CrossRef]
- Hu, H.; Wen, Y.; Chua, T.S.; Li, X. Toward scalable systems for big data analytics: A technology tutorial. IEEE Access 2014, 2, 652–687. [Google Scholar] [CrossRef]
- Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [Google Scholar] [CrossRef]
- Saleem, T.J.; Chishti, M.A. Deep learning for Internet of Things data analytics. Procedia Comput. Sci. 2019, 163, 381–390. [Google Scholar] [CrossRef]
- Sudharsan, B.; Patel, P.; Breslin, J.; Ali, M.I.; Mitra, K.; Dustdar, S.; Rana, O.; Jayaraman, P.P.; Ranjan, R. Toward distributed, global, deep learning using iot devices. IEEE Internet Comput. 2021, 25, 6–12. [Google Scholar] [CrossRef]
- Lakshmanna, K.; Khare, N. Constraint-based measures for DNA sequence mining using group search optimization algorithm. Int. J. Intell. Eng. Syst. 2016, 9, 91–100. [Google Scholar] [CrossRef]
- Lakshmanna, K.; Khare, N. FDSMO: Frequent DNA sequence mining using FBSB and optimization. Int. J. Intell. Eng. Syst. 2016, 9, 157–166. [Google Scholar] [CrossRef]
- Hussain, I.; Young, S.; Park, S.J. Driving-induced neurological biomarkers in an advanced driver-assistance system. Sensors 2021, 21, 6985. [Google Scholar] [CrossRef]
- Gupta, N.; Khosravy, M.; Patel, N.; Dey, N.; Gupta, S.; Darbari, H.; Crespo, R.G. Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines. Appl. Intell. 2020, 50, 3990–4016. [Google Scholar] [CrossRef]
- Garg, D.; Khan, S.; Alam, M. Integrative use of IoT and deep learning for agricultural applications. In Proceedings of ICETIT 2019; Springer: Cham, Switzerland, 2020; pp. 521–531. [Google Scholar]
- Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 427–436. [Google Scholar]
- Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.N.; Amaratunga, G. Ensemble deep learning for regression and time series forecasting. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), Orlando, FL, USA, 9–12 December 2014; pp. 1–6. [Google Scholar]
- Gupta, N.; Khosravy, M.; Patel, N.; Dey, N.; Crespo, R.G. Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN. IEEE Trans. Ind. Informatics 2021, 18, 611–619. [Google Scholar] [CrossRef]
- Zhan, Z.H.; Li, J.Y.; Zhang, J. Evolutionary deep learning: A survey. Neurocomputing 2022, 483, 42–58. [Google Scholar] [CrossRef]
- Zhao, P.; Li, J.; Zeng, F.; Xiao, F.; Wang, C.; Jiang, H. ILLIA: Enabling k-Anonymity-Based Privacy Preserving Against Location Injection Attacks in Continuous LBS Queries. IEEE Internet Things J. 2018, 5, 1033–1042. [Google Scholar] [CrossRef]
- Stoica, I.; Song, D.; Popa, R.A.; Patterson, D.; Mahoney, M.W.; Katz, R.; Joseph, A.D.; Jordan, M.; Hellerstein, J.M.; Gonzalez, J.E.; et al. A berkeley view of systems challenges for ai. arXiv 2017, arXiv:1712.05855. [Google Scholar]
Applications in IoT | Reference | Dataset Used |
---|---|---|
Prediction of Transport or Group density | [43,44] | data of the Telecommunication department/CDR |
Smart city | [44,45,46] | data of the Telecommunication department/CDR, Climate data, IDS data |
Energy | [47] | Electric power consumption http://archive.ics.uci.edu/ml (accessed on 5 May 2022). |
Recognising images | [48,49] | SportVU dataset |
Education | [50,51] | MOOC dataset |
Sport and Retail | [52,53] | Sports data and MPII Cooking dataset, MERL Shopping Dataset |
Detection in physiology and psychology | [54,55] | Montalbano gesture recognition dataset, Google Abacus Dataset |
Applications in IoT | Reference | Dataset Used |
---|---|---|
Prediction of Transport or Group density | [44] | data of the Telecommunication department/CDR |
Small period traffic prediction | [59] | Caltrans Performance Measurement System (PeMS) database |
Autonomous driving | [60] | Large scale video dataset |
Detection in physiology and psychology | [61,62] | OPPORTUNITY [63], Skoda Dataset, NMHA Dataset |
Localization | [64] | locations and environment data |
Smart home and city | [43,65] | electrical consumption data, GPS data in Japan |
Energy | [66,67,68] | GermanSolarFarm data set, Forecast dataset, Beach dataset |
Health-care | [69,70,71] | Opportunity dataset [72,73], PAMAP2 dataset [74], Daphnet Gait dataset (DG) [75], Diagnoses clinical data |
Education | [51] | MOOC dataset |
Sport | [49,76] | NBA SportVu data, the Collective Activity Dataset and volleyball dataset. |
Applications in IoT | Reference | Dataset Used |
---|---|---|
Healthcare | [70,71,80,81,82,83,84] | Opportunity dataset [72], PAMAP2 dataset [74], Daphnet Gait dataset (DG) [75], human action recognition dataset, Cardiology dataset, Knee Cartilage dataset, Food Image dataset, Parkinson’s Disease data |
Smart home and city | [65,85,86,87,88] | Home Robotcs data, Brainrobotdata, Electric consumption data, CNRPark-EXT dataset, PKLot datasets |
Transportation | [89,90,91,92,93] | Traffic data, KITTI Object Detecion dataset, Driving dataset |
Recognizing images | [76,84,87,88,94,95,96,97,98,99,100] | PKLot datasets, CNRPark-EXT dataset, Garbage In Images (GINI) dataset, UEC-256/UEC-100 Dataset, Leaf Image dataset, German Traffic data, LISA US traffic sign dataset, parkinson’s disease dataset, full-field digital mammograms (FFDMs) |
Detection of physiology and psychology | [54,61,101] | Frames Labeled In Cinem, Leeds Sports Dataset, OPPORTUNITY, Skoda and Actitracker datasets, Gesture Data |
Agriculture | [96,102,103] | Leaf Image data, U.S. Geological Survey (USGS), Agriculture data |
Sport and Retail | [76,100,104,105,106,107] | Basket ball data, Vollyball data Group activity data, Real-world internet data, clothing image dataset, INRIA dataset |
Localization | [108,109,110] | Fingerprint data, GPS data |
Government | [111] | Climate Dataset |
Applications in IoT | Reference | Dataset Used |
---|---|---|
Fault Assessment | [119,120] | Diagnosis dataset, multivariate signal datasets |
Image Recognition | [121] | optical remote sensing images from Google Earth |
Detection in physiology and psychology | [122] | H3.6M dataset [123] |
Energy | [66] | GermanSolarFarm data set |
Localization | [124,125] | HTC Sensation data, Fingerprint dataset |
Public Sector | [121] | optical remote sensing images from Google Earth |
IoT Infrastructure | [126,127] | IDS dataset |
Applications in IoT | Reference | Dataset Used |
---|---|---|
Energy | [47,129] | Reference Energy Disaggregation Dataset (REDD) [130], Energy Consumption data |
Localization | [131,132,133] | Fingerprint dataset, received signal strength (RSS) data |
Health Sector | [69] | e International Classification of Diseases (ICD-9) codes |
Intelligent Transportation System | [134] | Traffic dataset |
Applications in IoT | Reference | Dataset Used |
---|---|---|
Transport | [120,136] | PeMS data set, Multivariat Time Series Dataset |
Energy | [66] | GermanSolarFarm data set |
Health Sector | [69,137] | International Classification of Diseases (ICD-9) codes |
Intelligent Transportation System | [138] | IDS dataset |
Image Recognition | [120] | Multivariat Time Series Dataset |
Detection of physiology and psychology | [139] | AFEW4 dataset |
Security | [140,141] | Security dataset, Malicious Dataset |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmanna, K.; Kaluri, R.; Gundluru, N.; Alzamil, Z.S.; Rajput, D.S.; Khan, A.A.; Haq, M.A.; Alhussen, A. A Review on Deep Learning Techniques for IoT Data. Electronics 2022, 11, 1604. https://doi.org/10.3390/electronics11101604
Lakshmanna K, Kaluri R, Gundluru N, Alzamil ZS, Rajput DS, Khan AA, Haq MA, Alhussen A. A Review on Deep Learning Techniques for IoT Data. Electronics. 2022; 11(10):1604. https://doi.org/10.3390/electronics11101604
Chicago/Turabian StyleLakshmanna, Kuruva, Rajesh Kaluri, Nagaraja Gundluru, Zamil S. Alzamil, Dharmendra Singh Rajput, Arfat Ahmad Khan, Mohd Anul Haq, and Ahmed Alhussen. 2022. "A Review on Deep Learning Techniques for IoT Data" Electronics 11, no. 10: 1604. https://doi.org/10.3390/electronics11101604
APA StyleLakshmanna, K., Kaluri, R., Gundluru, N., Alzamil, Z. S., Rajput, D. S., Khan, A. A., Haq, M. A., & Alhussen, A. (2022). A Review on Deep Learning Techniques for IoT Data. Electronics, 11(10), 1604. https://doi.org/10.3390/electronics11101604