AEI-DNET: A Novel DenseNet Model with an Autoencoder for the Stock Market Predictions Using Stock Technical Indicators
Abstract
:1. Introduction
- Present a novel framework for stock price prediction, namely, AEI-DNET using 1D DenseNet and an autoencoder, reducing the training and testing time complexities.
- Propose a method to predict the buy/sell/hold signal based on the short-, medium-, and long-term predictions made by the 1D DenseNet framework.
- Propose a robust framework for stock market prediction due to efficient STIs selection using an autoencoder.
- Present a framework that predicted the future stock prices and helped the decision-makers decide their actions, i.e., buy, sell, or hold.
- Obtain state-of-the-art performance over the Yahoo Finance data due to the ability of DenseNet to present the complex price transformations in a viable manner.
2. Related Work
3. Proposed Methodology: AEI-DNET
Algorithm 1: Steps for Stock Market Prediction. |
START INPUT: STIs, StockData OUTPUT: Price prediction, Decision recommendation STIs: Stock technical indicators StockData: Yahoo Finance data Price prediction: Closing price of stocks Decision recommendation: Recommending decision to buy, hold, or sell a stock //STIs approximation α←STIsEstimation (StockData) //Dimension Reduction RSTIs←DimensionReduction (α) //Model training Training ID-DenseNet over RSTIs and StockData, and measure training accuracy and time r_dense, t_dense r_dense, t_dense, TrainedModel←ID-DenseNet (RSTIs, StockData) //Model testing For each stock S in→TestData (a) Compute keypoints (b) [Price prediction, Decision recommendation]←Predict (TrainedModel) (c) Compute test performance and time End For FINISH |
3.1. Data Acquisition and Preprocessing
3.2. Datapoints Labeling
3.3. Stock Technical Indicators
3.3.1. Simple Moving Average (MA)
3.3.2. Weighted Moving Average (WMA)
3.3.3. Exponential Moving Average (EA)
3.3.4. Relative Strength Index (RSI)
3.3.5. Chande Momentum Oscillator (CMO)
3.3.6. Williams Percent Range (Williams %R)
3.3.7. Price Rate of Change (PRC)
3.3.8. Hull Moving Average (HMA)
3.3.9. Triple Exponential Moving Average (TEA)
3.3.10. Directional Movement Index (DMI)
3.3.11. Psychological Line (PL)
3.3.12. Commodity Channel Index (CCI)
3.3.13. Chaikin Money Flow Index (CMF)
3.3.14. Moving Average Convergence Divergence (MAD)
3.3.15. Stochastic Oscillator %K (SO)
3.3.16. Moving Average Deviation (MD)
3.3.17. Rank Correlation Index (RCI)
3.3.18. Bollinger Bands (BB)
3.4. Dimensionality Reduction
Autoencoder
3.5. Model Training
1D DenseNet
4. Experimental Results
4.1. Dataset
4.2. Evaluation Parameters
4.3. Experimental Results
4.4. Comparison with ML-Based Methods
4.5. Comparison with Other Techniques
4.6. Discussion
4.6.1. Advantages
- A novel framework employs STIs and stock data to predict future stock trends.
- Computationally efficient, as we employed an autoencoder framework for dimensionality reduction.
- A robust approach that can assist the business community in making timely beneficial decisions.
- The proposed approach predicts stock trends and provides intelligent decisions to hold, buy, or sell a product.
- Our method’s processing or prediction time was 1.051 ms, which is remarkable.
- Proposed a novel approach that opened a new research area in the field of natural language processing or text analysis.
4.6.2. Limitations
- The model needs evaluation on an unseen database to show its generalization ability better.
- This study is currently limited to the US stock market only. Therefore, a more generalized model shall enable us to include other stock markets, such as the Asian and European stock markets.
- More DL-based frameworks can be tested with the employed technique to enhance the prediction accuracy further.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E. Deep learning for stock market prediction. Entropy 2020, 22, 840. [Google Scholar] [CrossRef]
- Asadi, S.; Hadavandi, E.; Mehmanpazir, F.; Nakhostin, M.M. Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowl.-Based Syst. 2012, 35, 245–258. [Google Scholar] [CrossRef]
- Akhter, S.; Misir, M.A. Capital markets efficiency: Evidence from the emerging capital market with particular reference to Dhaka stock exchange. South Asian J. Manag. 2005, 12, 35. [Google Scholar]
- Miao, K.; Chen, F.; Zhao, Z.G. Stock price forecast based on bacterial colony RBF neural network. J. Qingdao Univ. (Nat. Sci. Ed.) 2007, 2, 11. [Google Scholar]
- Lehoczky, J.; Schervish, M. Overview and history of statistics for equity markets. Annu. Rev. Stat. Its Appl. 2018, 5, 265–288. [Google Scholar] [CrossRef]
- Hoseinzade, E.; Haratizadeh, S. CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Syst. Appl. 2019, 129, 273–285. [Google Scholar] [CrossRef]
- Jiang, W. Applications of deep learning in stock market prediction: Recent progress. Expert Syst. Appl. 2021, 115537. [Google Scholar] [CrossRef]
- Weng, B.; Ahmed, M.A.; Megahed, F.M. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst. Appl. 2017, 79, 153–163. [Google Scholar] [CrossRef]
- Bustos, O.; Pomares-Quimbaya, A. Stock market movement forecast: A Systematic review. Expert Syst. Appl. 2020, 156, 113464. [Google Scholar] [CrossRef]
- Shah, D.; Isah, H.; Zulkernine, F. Stock market analysis: A review and taxonomy of prediction techniques. Int. J. Financ. Stud. 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Olivas, E.S.; Guerrero, J.D.M.; Martinez-Sober, M.; Magdalena-Benedito, J.R.; Serrano, L. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2009; ISBN 1605667676. [Google Scholar]
- Aldin, M.M.; Dehnavi, H.D.; Entezari, S. Evaluating the employment of technical indicators in predicting stock price index variations using artificial neural networks (case study: Tehran Stock Exchange). Int. J. Bus. Manag. 2012, 7, 25. [Google Scholar]
- Tsai, C.-F.; Lin, Y.-C.; Yen, D.C.; Chen, Y.-M. Predicting stock returns by classifier ensembles. Appl. Soft Comput. 2011, 11, 2452–2459. [Google Scholar] [CrossRef]
- Corbet, S.; Eraslan, V.; Lucey, B.; Sensoy, A. The effectiveness of technical trading rules in cryptocurrency markets. Financ. Res. Lett. 2019, 31, 32–37. [Google Scholar] [CrossRef]
- Sezer, O.B.; Ozbayoglu, A.M. Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Appl. Soft Comput. 2018, 70, 525–538. [Google Scholar] [CrossRef]
- Sobolev, D.; Chan, B.; Harvey, N. Buy, sell, or hold? A sense-making account of factors influencing trading decisions. Cogent Econ. Financ. 2017, 5, 1295618. [Google Scholar] [CrossRef]
- Liang, D.; Tsai, C.-F.; Lu, H.-Y.R.; Chang, L.-S. Combining corporate governance indicators with stacking ensembles for financial distress prediction. J. Bus. Res. 2020, 120, 137–146. [Google Scholar] [CrossRef]
- Shynkevich, Y.; McGinnity, T.M.; Coleman, S.A.; Belatreche, A.; Li, Y. Forecasting price movements using technical indicators: Investigating the impact of varying input window length. Neurocomputing 2017, 264, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Chun, D.; Cho, H.; Ryu, D. Economic indicators and stock market volatility in an emerging economy. Econ. Syst. 2020, 44, 100788. [Google Scholar] [CrossRef]
- Dai, Z.; Dong, X.; Kang, J.; Hong, L. Forecasting stock market returns: New technical indicators and two-step economic constraint method. N. Am. J. Econ. Financ. 2020, 53, 101216. [Google Scholar] [CrossRef]
- Fayek, M.B.; El-Boghdadi, H.M.; Omran, S.M. Multi-objective optimization of technical stock market indicators using gas. Int. J. Comput. Appl. 2013, 68, 41–48. [Google Scholar]
- Maguluri, L.P.; Ragupathy, R. An Efficient Stock Market Trend Prediction Using the Real-Time Stock Technical Data and Stock Social Media Data. Int. J. Intell. Eng. Syst. 2020, 13, 316–332. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Chen, W. Predicting stock price using two-stage machine learning techniques. Comput. Econ. 2021, 57, 1237–1261. [Google Scholar] [CrossRef]
- Agrawal, M.; Khan, A.U.; Shukla, P.K. Stock indices price prediction based on technical indicators using deep learning model. Int. J. Emerg. Technol. 2019, 10, 186–194. [Google Scholar]
- JuHyok, U.; Lu, P.; Kim, C.; Ryu, U.; Pak, K. A new LSTM based reversal point prediction method using upward/downward reversal point feature sets. Chaos Solitons Fractals 2020, 132, 109559. [Google Scholar]
- Yang, C.; Zhai, J.; Tao, G. Deep learning for price movement prediction using convolutional neural network and long short-term memory. Math. Probl. Eng. 2020, 2020, 2746845. [Google Scholar] [CrossRef]
- Lee, J.W. Stock price prediction using reinforcement learning. In Proceedings of the 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), Pusan, Korea, 12–16 June 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 690–695. [Google Scholar]
- Gu, Y.; Yan, D.; Yan, S.; Jiang, Z. Price forecast with high-frequency finance data: An autoregressive recurrent neural network model with technical indicators. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Online, 19–23 October 2020; pp. 2485–2492. [Google Scholar]
- Chiewhawan, T.; Vateekul, P. Explainable deep learning for thai stock market prediction using textual representation and technical indicators. In Proceedings of the 8th International Conference on Computer and Communications Management, Singapore, 17–19 July 2020; pp. 19–23. [Google Scholar]
- Vargas, M.R.; dos Anjos, C.E.M.; Bichara, G.L.G.; Evsukoff, A.G. Deep leaming for stock market prediction using technical indicators and financial news articles. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Wu, J.M.-T.; Li, Z.; Herencsar, N.; Vo, B.; Lin, J.C.-W. A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. Multimed. Syst. 2021, 1–20. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Ayo, C.K.; Adebiyi, M.; Otokiti, S.O. Stock price prediction using neural network with hybridized market indicators. J. Emerg. Trends Comput. Inf. Sci. 2012, 3, 1–9. [Google Scholar]
- Yıldırım, D.C.; Toroslu, I.H.; Fiore, U. Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators. Financ. Innov. 2021, 7, 1. [Google Scholar] [CrossRef]
- Hunter, J.S. The exponentially weighted moving average. J. Qual. Technol. 1986, 18, 203–210. [Google Scholar] [CrossRef]
- Lawrance, A.J.; Lewis, P.A.W. An exponential moving-average sequence and point process (EMA1). J. Appl. Probab. 1977, 14, 98–113. [Google Scholar] [CrossRef]
- Ţăran-Moroşan, A. The relative strength index revisited. Afr. J. Bus. Manag. 2011, 5, 5855–5862. [Google Scholar]
- Di Lorenzo, R. Other Oscillators. In Basic Technical Analysis of Financial Markets; Springer: Berlin/Heidelberg, Germany, 2013; pp. 189–220. [Google Scholar]
- Seker, S.E.; Cihan, M.; Khaled, A.-N.; Ozalp, N.; Ugur, A. Time series analysis on stock market for text mining correlation of economy news. Int. J. Soc. Sci. Humanit. Stud. 2013, 6, 69–91. [Google Scholar]
- Letchford, A.; Gao, J.; Zheng, L. Optimizing the moving average. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Raudys, A.; Lenčiauskas, V.; Malčius, E. Moving averages for financial data smoothing. In Proceedings of the International Conference on Information and Software Technologies, Kaunas, Lithuania, 10–11 October 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 34–45. [Google Scholar]
- Lam, W.-S.; Chong, T.T.-L. Profitability of the directional indicators. Appl. Financ. Econ. Lett. 2006, 2, 401–406. [Google Scholar] [CrossRef]
- Maitah, M.; Procházka, P.; Cermak, M.; Šrédl, K. Commodity channel index: Evaluation of trading rule of agricultural commodities. Int. J. Econ. Financ. Issues 2016, 6, 176–178. [Google Scholar]
- Thomsett, M.C. CMF--Chaikin Money Flow: Changes Anticipating Price Reversal; FT Press: Upper Saddle River, NJ, USA, 2010; ISBN 0132492067. [Google Scholar]
- Hung, N.H. Various moving average convergence divergence trading strategies: A comparison. Invest. Manag. Financ. Innov. 2016, 13, 363–369. [Google Scholar] [CrossRef]
- Markus, L.; Weerasinghe, A. Stochastic oscillators. J. Differ. Equ. 1988, 71, 288–314. [Google Scholar] [CrossRef] [Green Version]
- Halimawan, A.A.; Sukarno, S. Stock Price Forecasting Accuracy Analysis using Mean Absolut Deviation (MAD) and Mean Absolute Percentage Error (MAPE) on Smoothing Moving Average and Exponential Moving Average Indicator (Empirical Study 10 LQ 45 Stock with Largest Capitalization from pe. Indones. J. Bus. Adm. 2013, 2, 68283. [Google Scholar]
- Hernández-Aguirre, A.; Villa-Diharce, E.; Barba-Moreno, S. An estimation distribution algorithm with the spearman’s rank correlation index. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA, USA, 12–16 July 2008; pp. 469–470. [Google Scholar]
- Bollinger, J. Using bollinger bands. Stock. Commod. 1992, 10, 47–51. [Google Scholar]
- Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text classification algorithms: A survey. Information 2019, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Azar, J.; Makhoul, A.; Couturier, R. Using DenseNet for IoT multivariate time series classification. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Chung, H.; Shin, K. Genetic algorithm-optimized long short-term memory network for stock market prediction. Sustainability 2018, 10, 3765. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Li, J.; Wang, J.; Qin, L. A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 2021, 33, 4741–4753. [Google Scholar] [CrossRef]
- Majumder, I.; Dash, P.K.; Bisoi, R. Short-term solar power prediction using multi-kernel-based random vector functional link with water cycle algorithm-based parameter optimization. Neural Comput. Appl. 2020, 32, 8011–8029. [Google Scholar] [CrossRef]
Forecast Horizon | Threshold (%) |
---|---|
1 | 0.65 |
3 | 1.15 |
5 | 1.50 |
7 | 1.80 |
10 | 2.15 |
15 | 2.70 |
20 | 3.10 |
25 | 3.50 |
30 | 4.00 |
S. No. | Column | Description |
---|---|---|
1. | Date | Day of the month, e.g., 3/12/2012 |
2. | Open | The opening price of the stock. |
3. | High | The highest price at which the stock was traded during a day. |
4. | Low | The lowest price at which the stock was traded during a day. |
5. | Close | The closing price of the stock. |
6. | Adj. Close | The adjusted closing price of the stock, factoring in corporate actions, such as stock splits, dividends, and rights offerings. |
7. | Volume | The number of shares traded in the stock. |
Sr. No. | Stock Market | Symbol | From (Training) | To (Training) | From (Testing) | To (Testing) |
---|---|---|---|---|---|---|
1. | Meta Platforms, Inc. | FB | 19-May-2012 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
2. | Twitter, Inc. | TWTR | 11-July-2013 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
3. | Intel Corporation | INTC | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
4. | Apple Inc. | AAPL | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
5. | Microsoft Corporation | MSFT | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
6. | Alphabet Inc. (Google) | GOOG | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
7. | Tesla Inc. | TSLA | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
8. | Walmart Stores, Inc. | WMT | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
9. | Amazon.com, Inc. | AMZN | 1-October-2011 | 30-September-2018 | 1-October-2018 | 30-September-2021 |
10. | PayPal Holdings, Inc. | PYPL | 1-October-2011 | 30-September-2018 | 1-October2018 | 30-September-2021 |
Model | FB | TWTR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6991 | 0.6715 | 21.5340 | 20.9230 | 0.57 | 0.6930 | 0.6191 | 21.5657 | 20.9721 | 0.55 |
GARCH | 0.5914 | 0.6402 | 15.4358 | 21.0913 | 0.56 | 0.5751 | 0.6549 | 15.4352 | 21.0517 | 0.56 |
SVM | 0.6101 | 0.6492 | 16.2345 | 23.9194 | 0.66 | 0.5727 | 0.6256 | 16.2598 | 23.8510 | 0.68 |
FFNN | 0.5912 | 0.5163 | 16.6578 | 23.3912 | 0.56 | 0.5816 | 0.5373 | 16.6780 | 23.3454 | 0.57 |
LSTIM-I | 0.5731 | 0.5612 | 14.9340 | 18.9211 | 0.61 | 0.6022 | 0.5699 | 14.9251 | 18.9427 | 0.59 |
LSTIM-II | 0.5823 | 0.5862 | 14.2309 | 15.8814 | 0.61 | 0.6733 | 0.5719 | 14.2855 | 15.8890 | 0.62 |
LSTIM-III | 0.5411 | 0.5844 | 14.9325 | 17.8432 | 0.65 | 0.5100 | 0.5758 | 14.8919 | 17.8281 | 0.66 |
LSTIM-IV | 0.5101 | 0.5165 | 12.0328 | 17.4556 | 0.64 | 0.5148 | 0.5517 | 12.0328 | 17.5491 | 0.64 |
Proposed | 0.4212 | 0.4118 | 10.0121 | 12.1240 | 0.71 | 0.4236 | 0.3933 | 10.0314 | 12.1314 | 0.71 |
Model | INTC | AAPL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7052 | 0.6664 | 21.5537 | 20.9885 | 0.60 | 0.7372 | 0.7022 | 21.5398 | 20.9207 | 0.56 |
GARCH | 0.5740 | 0.6690 | 15.4870 | 21.0956 | 0.57 | 0.5853 | 0.6001 | 15.4393 | 21.1419 | 0.50 |
SVM | 0.6375 | 0.6260 | 16.2267 | 23.9582 | 0.66 | 0.6271 | 0.6536 | 16.2273 | 23.9023 | 0.65 |
FFNN | 0.6063 | 0.4974 | 16.6578 | 23.3871 | 0.56 | 0.5879 | 0.5083 | 16.6671 | 23.4911 | 0.51 |
LSTIM-I | 0.5502 | 0.6069 | 14.9236 | 18.9129 | 0.64 | 0.5748 | 0.6372 | 14.9279 | 18.9194 | 0.53 |
LSTIM-II | 0.5980 | 0.5919 | 14.2190 | 15.9504 | 0.68 | 0.5727 | 0.5735 | 14.2525 | 15.8690 | 0.58 |
LSTIM-III | 0.5576 | 0.5794 | 14.9412 | 17.8231 | 0.65 | 0.5356 | 0.5950 | 14.9993 | 17.8337 | 0.66 |
LSTIM-IV | 0.5521 | 0.5481 | 12.0347 | 17.4469 | 0.64 | 0.4968 | 0.4682 | 12.0276 | 17.4665 | 0.61 |
Proposed | 0.4191 | 0.4473 | 9.9788 | 12.1853 | 0.68 | 0.4580 | 0.3485 | 10.0541 | 12.1099 | 0.75 |
Model | MSFT | GOOG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7232 | 0.7066 | 21.5037 | 20.9514 | 0.55 | 0.6746 | 0.6612 | 21.5272 | 20.8947 | 0.61 |
GARCH | 0.6015 | 0.6340 | 15.4829 | 21.1250 | 0.62 | 0.5989 | 0.6108 | 15.4530 | 21.0858 | 0.58 |
SVM | 0.6375 | 0.6484 | 16.2223 | 23.9089 | 0.60 | 0.6387 | 0.6433 | 16.2316 | 23.9531 | 0.74 |
FFNN | 0.5078 | 0.5113 | 16.6696 | 23.2935 | 0.50 | 0.6278 | 0.5263 | 16.6638 | 23.4126 | 0.57 |
LSTIM-I | 0.5190 | 0.5604 | 14.9340 | 18.8891 | 0.60 | 0.5770 | 0.5541 | 14.9401 | 18.9550 | 0.64 |
LSTIM-II | 0.5492 | 0.5776 | 14.2800 | 15.8668 | 0.53 | 0.5752 | 0.5842 | 14.2309 | 15.8211 | 0.59 |
LSTIM-III | 0.5391 | 0.5749 | 14.9083 | 17.8432 | 0.66 | 0.5310 | 0.6189 | 14.8620 | 17.9011 | 0.64 |
LSTIM-IV | 0.5936 | 0.5429 | 12.0138 | 17.4010 | 0.61 | 0.4548 | 0.5490 | 12.0135 | 17.4785 | 0.63 |
Proposed | 0.4376 | 0.4081 | 9.9614 | 12.1406 | 0.66 | 0.4347 | 0.5113 | 9.9831 | 12.0880 | 0.68 |
Model | TSLA | WMT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7129 | 0.7189 | 21.5161 | 20.8240 | 0.50 | 0.7682 | 0.6374 | 21.5340 | 20.9241 | 0.52 |
GARCH | 0.5914 | 0.6212 | 15.4414 | 21.0299 | 0.58 | 0.5687 | 0.5962 | 15.4015 | 21.1252 | 0.64 |
SVM | 0.6101 | 0.6022 | 16.2401 | 23.9101 | 0.67 | 0.5329 | 0.7042 | 16.2526 | 23.9287 | 0.64 |
FFNN | 0.6651 | 0.4949 | 16.6775 | 23.3709 | 0.53 | 0.6204 | 0.4903 | 16.6887 | 23.3818 | 0.56 |
LSTIM-I | 0.5449 | 0.5627 | 14.8779 | 18.8791 | 0.59 | 0.5708 | 0.5642 | 14.8968 | 18.9283 | 0.61 |
LSTIM-II | 0.5722 | 0.5551 | 14.2586 | 15.8410 | 0.58 | 0.5516 | 0.5902 | 14.2040 | 15.8050 | 0.59 |
LSTIM-III | 0.5821 | 0.6312 | 14.9305 | 17.9023 | 0.64 | 0.5163 | 0.5752 | 14.9487 | 17.9031 | 0.62 |
LSTIM-IV | 0.4874 | 0.5040 | 11.9746 | 17.3821 | 0.66 | 0.4626 | 0.5165 | 12.0551 | 17.4619 | 0.64 |
Proposed | 0.3520 | 0.5079 | 10.0428 | 12.1240 | 0.64 | 0.4069 | 0.4304 | 10.0335 | 12.0697 | 0.71 |
Model | AMZN | PYPL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6535 | 0.6707 | 21.5445 | 20.8952 | 0.56 | 0.6965 | 0.6980 | 21.5564 | 20.9418 | 0.62 |
GARCH | 0.6116 | 0.6015 | 15.4304 | 21.1274 | 0.53 | 0.5800 | 0.6973 | 15.3990 | 21.0654 | 0.59 |
SVM | 0.6002 | 0.6543 | 16.2026 | 23.9272 | 0.63 | 0.6019 | 0.6342 | 16.2276 | 23.8832 | 0.66 |
FFNN | 0.6161 | 0.5034 | 16.7265 | 23.3541 | 0.63 | 0.6070 | 0.4614 | 16.6776 | 23.4186 | 0.51 |
LSTIM-I | 0.5740 | 0.5561 | 14.9369 | 18.9211 | 0.66 | 0.6041 | 0.5354 | 14.9334 | 18.8882 | 0.60 |
LSTIM-II | 0.5498 | 0.5977 | 14.1558 | 15.8814 | 0.67 | 0.5779 | 0.5842 | 14.1925 | 15.8853 | 0.67 |
LSTIM-III | 0.5033 | 0.5960 | 14.9149 | 17.8432 | 0.60 | 0.5023 | 0.5745 | 14.9951 | 17.9332 | 0.63 |
LSTIM-IV | 0.4948 | 0.4424 | 12.0280 | 17.4695 | 0.62 | 0.5848 | 0.5094 | 12.0078 | 17.4174 | 0.59 |
Proposed | 0.4099 | 0.3669 | 10.0126 | 12.0926 | 0.66 | 0.4378 | 0.4572 | 9.9720 | 12.0916 | 0.67 |
Model | FB | TWTR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6034 | 0.6992 | 21.5196 | 20.8407 | 0.55 | 0.6839 | 0.6850 | 21.5383 | 20.9232 | 0.52 |
GARCH | 0.5990 | 0.6925 | 15.4136 | 21.1364 | 0.53 | 0.5585 | 0.6819 | 15.4951 | 21.0117 | 0.57 |
SVM | 0.6032 | 0.5910 | 16.2411 | 23.9099 | 0.65 | 0.5745 | 0.7106 | 16.2554 | 23.8811 | 0.64 |
FFNN | 0.5717 | 0.4978 | 16.6317 | 23.3912 | 0.51 | 0.5890 | 0.5182 | 16.6520 | 23.3695 | 0.53 |
LSTIM-I | 0.5682 | 0.5989 | 14.9072 | 18.9216 | 0.60 | 0.5618 | 0.6151 | 14.9606 | 18.9191 | 0.62 |
LSTIM-II | 0.5993 | 0.5445 | 14.2198 | 15.8595 | 0.61 | 0.5914 | 0.5273 | 14.2248 | 15.8658 | 0.66 |
LSTIM-III | 0.5431 | 0.5926 | 14.9290 | 17.8451 | 0.59 | 0.5467 | 0.6741 | 14.9276 | 17.8231 | 0.69 |
LSTIM-IV | 0.5101 | 0.5850 | 11.9941 | 17.4556 | 0.57 | 0.4847 | 0.5342 | 12.0501 | 17.3908 | 0.61 |
Proposed | 0.4324 | 0.3846 | 10.0713 | 12.1716 | 0.66 | 0.5028 | 0.3965 | 10.0340 | 12.1266 | 0.71 |
Model | INTC | AAPL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7029 | 0.7096 | 21.5686 | 20.9230 | 0.50 | 0.7155 | 0.6360 | 21.5361 | 20.9610 | 0.60 |
GARCH | 0.5688 | 0.6675 | 15.4349 | 21.1040 | 0.54 | 0.5554 | 0.6703 | 15.4727 | 21.0994 | 0.57 |
SVM | 0.6428 | 0.6659 | 16.2317 | 23.9040 | 0.67 | 0.5688 | 0.7064 | 16.2495 | 23.9140 | 0.66 |
FFNN | 0.6147 | 0.5125 | 16.6682 | 23.3845 | 0.59 | 0.5832 | 0.5105 | 16.7393 | 23.4160 | 0.56 |
LSTIM-I | 0.5999 | 0.5656 | 14.9599 | 18.8555 | 0.63 | 0.5170 | 0.5413 | 15.0002 | 18.8424 | 0.60 |
LSTIM-II | 0.5491 | 0.5812 | 14.2219 | 15.8859 | 0.59 | 0.5708 | 0.6072 | 14.1622 | 15.9004 | 0.59 |
LSTIM-III | 0.5375 | 0.5929 | 14.9325 | 17.8161 | 0.71 | 0.5792 | 0.5812 | 14.9423 | 17.8231 | 0.62 |
LSTIM-IV | 0.4581 | 0.4922 | 11.9599 | 17.4334 | 0.61 | 0.4740 | 0.5439 | 12.0765 | 17.4697 | 0.56 |
Proposed | 0.4230 | 0.4168 | 10.0716 | 12.1240 | 0.73 | 0.4636 | 0.4270 | 10.0874 | 12.0962 | 0.75 |
Model | MSFT | GOOG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7104 | 0.7329 | 21.5436 | 20.9068 | 0.55 | 0.7087 | 0.6919 | 21.4872 | 20.8581 | 0.66 |
GARCH | 0.5829 | 0.6360 | 15.4575 | 21.0498 | 0.58 | 0.6056 | 0.7367 | 15.4831 | 21.0988 | 0.56 |
SVM | 0.5916 | 0.6128 | 16.2769 | 23.9025 | 0.66 | 0.5758 | 0.7115 | 16.1692 | 24.0096 | 0.68 |
FFNN | 0.6463 | 0.5163 | 16.7184 | 23.4875 | 0.60 | 0.5775 | 0.5165 | 16.6634 | 23.3049 | 0.56 |
LSTIM-I | 0.5530 | 0.5694 | 14.9583 | 18.8427 | 0.55 | 0.6587 | 0.5802 | 14.9199 | 18.9418 | 0.64 |
LSTIM-II | 0.5980 | 0.5928 | 14.2207 | 15.8373 | 0.69 | 0.5290 | 0.5665 | 14.1741 | 15.8536 | 0.62 |
LSTIM-III | 0.5197 | 0.6190 | 14.9301 | 17.8465 | 0.65 | 0.5684 | 0.5844 | 14.9204 | 17.8932 | 0.64 |
LSTIM-IV | 0.5038 | 0.5633 | 12.0546 | 17.4920 | 0.64 | 0.4892 | 0.5278 | 12.0706 | 17.5009 | 0.66 |
Proposed | 0.4179 | 0.3725 | 10.0702 | 12.0358 | 0.75 | 0.4757 | 0.3941 | 10.0058 | 12.1318 | 0.71 |
Model | TSLA | WMT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6950 | 0.6741 | 21.4991 | 20.9202 | 0.57 | 0.7729 | 0.6820 | 21.5499 | 20.9202 | 0.59 |
GARCH | 0.6565 | 0.5658 | 15.4277 | 21.0249 | 0.56 | 0.6006 | 0.6664 | 15.4358 | 21.0728 | 0.56 |
SVM | 0.5742 | 0.6154 | 16.2539 | 23.8896 | 0.73 | 0.5932 | 0.6645 | 16.2160 | 23.8512 | 0.64 |
FFNN | 0.5822 | 0.4792 | 16.6531 | 23.3822 | 0.59 | 0.5551 | 0.5111 | 16.6537 | 23.3963 | 0.59 |
LSTIM-I | 0.5466 | 0.5511 | 14.9502 | 18.9997 | 0.53 | 0.5421 | 0.5384 | 14.9270 | 18.9237 | 0.66 |
LSTIM-II | 0.5898 | 0.5862 | 14.1619 | 15.8236 | 0.60 | 0.5846 | 0.6032 | 14.2457 | 15.8663 | 0.59 |
LSTIM-III | 0.5745 | 0.6550 | 14.9365 | 17.8281 | 0.69 | 0.6270 | 0.5847 | 14.9430 | 17.8882 | 0.65 |
LSTIM-IV | 0.4767 | 0.4824 | 11.9781 | 17.4168 | 0.55 | 0.5143 | 0.5138 | 12.0712 | 17.4554 | 0.68 |
Proposed | 0.4711 | 0.3988 | 10.0198 | 12.1213 | 0.76 | 0.4321 | 0.4215 | 9.9987 | 12.1240 | 0.73 |
Model | AMZN | PYPL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6866 | 0.6715 | 21.5140 | 20.9785 | 0.50 | 0.6395 | 0.6717 | 21.5480 | 20.8882 | 0.58 |
GARCH | 0.5945 | 0.6338 | 15.4364 | 21.0479 | 0.56 | 0.6463 | 0.6308 | 15.4366 | 21.1151 | 0.56 |
SVM | 0.6108 | 0.6492 | 16.2802 | 23.9132 | 0.60 | 0.6701 | 0.6545 | 16.2427 | 23.9028 | 0.61 |
FFNN | 0.6486 | 0.5354 | 16.5899 | 23.3813 | 0.56 | 0.5772 | 0.5163 | 16.6691 | 23.3712 | 0.56 |
LSTIM-I | 0.5786 | 0.5708 | 14.9123 | 18.9329 | 0.65 | 0.5731 | 0.5916 | 15.0036 | 18.9105 | 0.64 |
LSTIM-II | 0.6415 | 0.5760 | 14.2394 | 15.8939 | 0.63 | 0.5933 | 0.6125 | 14.1930 | 15.8659 | 0.61 |
LSTIM-III | 0.6144 | 0.5631 | 14.9356 | 17.8745 | 0.58 | 0.5373 | 0.5877 | 14.9372 | 17.8564 | 0.61 |
LSTIM-IV | 0.5126 | 0.4755 | 12.0184 | 17.4647 | 0.68 | 0.5026 | 0.5262 | 12.0251 | 17.4391 | 0.61 |
Proposed | 0.4126 | 0.4332 | 10.0121 | 12.1160 | 0.75 | 0.4212 | 0.4312 | 10.0112 | 12.0704 | 0.70 |
Model | FB | TWTR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6991 | 0.6122 | 21.5169 | 20.8912 | 0.54 | 0.6613 | 0.6715 | 21.4789 | 20.9228 | 0.49 |
GARCH | 0.5255 | 0.6402 | 15.4567 | 21.0963 | 0.56 | 0.5961 | 0.6492 | 15.4929 | 21.1492 | 0.56 |
SVM | 0.6101 | 0.6432 | 16.2343 | 23.9348 | 0.69 | 0.5741 | 0.5811 | 16.2213 | 23.8868 | 0.67 |
FFNN | 0.5761 | 0.5575 | 16.7123 | 23.4271 | 0.55 | 0.6299 | 0.5489 | 16.6107 | 23.3798 | 0.55 |
LSTIM-I | 0.5177 | 0.5619 | 14.9061 | 18.8724 | 0.61 | 0.5888 | 0.5880 | 14.9227 | 18.8767 | 0.56 |
LSTIM-II | 0.6068 | 0.5221 | 14.1880 | 15.9091 | 0.61 | 0.5879 | 0.5506 | 14.2577 | 15.9282 | 0.59 |
LSTIM-III | 0.5920 | 0.5417 | 14.9819 | 17.8552 | 0.60 | 0.5106 | 0.6013 | 14.8884 | 17.8988 | 0.64 |
LSTIM-IV | 0.4589 | 0.5526 | 12.0196 | 17.4632 | 0.69 | 0.4859 | 0.5998 | 11.9735 | 17.4650 | 0.63 |
Proposed | 0.4578 | 0.4991 | 9.9908 | 12.1450 | 0.73 | 0.4336 | 0.4471 | 9.9681 | 12.1240 | 0.72 |
Model | INTC | AAPL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7963 | 0.7381 | 21.5244 | 20.8940 | 0.57 | 0.7239 | 0.6542 | 21.5172 | 20.8843 | 0.57 |
GARCH | 0.5857 | 0.6864 | 15.3993 | 21.0979 | 0.54 | 0.5674 | 0.6452 | 15.4480 | 21.0992 | 0.52 |
SVM | 0.6665 | 0.6383 | 16.2285 | 23.9194 | 0.70 | 0.6920 | 0.6724 | 16.2783 | 23.9179 | 0.67 |
FFNN | 0.5982 | 0.5910 | 16.7374 | 23.3415 | 0.50 | 0.6002 | 0.4882 | 16.6184 | 23.3894 | 0.53 |
LSTIM-I | 0.5936 | 0.5666 | 14.8640 | 18.9152 | 0.61 | 0.5584 | 0.5513 | 14.9354 | 18.9048 | 0.57 |
LSTIM-II | 0.6535 | 0.5787 | 14.2177 | 15.8814 | 0.56 | 0.5823 | 0.5816 | 14.2037 | 15.8553 | 0.61 |
LSTIM-III | 0.5865 | 0.4995 | 14.9325 | 17.8268 | 0.69 | 0.5592 | 0.5538 | 14.9949 | 17.8004 | 0.63 |
LSTIM-IV | 0.5198 | 0.5316 | 12.0942 | 17.4198 | 0.64 | 0.5101 | 0.5602 | 12.0519 | 17.4741 | 0.65 |
Proposed | 0.4817 | 0.4118 | 9.9376 | 12.1925 | 0.79 | 0.3420 | 0.4355 | 10.0287 | 12.0549 | 0.73 |
Model | MSFT | GOOG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.7035 | 0.6358 | 21.5183 | 20.8891 | 0.59 | 0.7406 | 0.6758 | 21.5579 | 20.8795 | 0.55 |
GARCH | 0.5914 | 0.6374 | 15.4706 | 21.0935 | 0.58 | 0.5945 | 0.5977 | 15.4540 | 21.1027 | 0.57 |
SVM | 0.6039 | 0.6123 | 16.2345 | 23.9194 | 0.65 | 0.6021 | 0.6600 | 16.2471 | 23.9286 | 0.65 |
FFNN | 0.6190 | 0.4557 | 16.7375 | 23.3613 | 0.57 | 0.5882 | 0.4672 | 16.5675 | 23.3520 | 0.58 |
LSTIM-I | 0.5530 | 0.5783 | 14.9340 | 18.9271 | 0.61 | 0.6414 | 0.5596 | 14.9624 | 18.9666 | 0.61 |
LSTIM-II | 0.6189 | 0.5164 | 14.1845 | 15.8597 | 0.63 | 0.5704 | 0.5905 | 14.2707 | 15.8459 | 0.60 |
LSTIM-III | 0.5586 | 0.5704 | 14.8661 | 17.8591 | 0.65 | 0.5220 | 0.5877 | 14.9455 | 17.8418 | 0.66 |
LSTIM-IV | 0.4992 | 0.5213 | 12.0247 | 17.5331 | 0.64 | 0.5076 | 0.5124 | 12.0468 | 17.3993 | 0.62 |
Proposed | 0.3534 | 0.3414 | 9.9518 | 12.1307 | 0.69 | 0.3991 | 0.3938 | 10.0033 | 12.1576 | 0.72 |
Model | TSLA | WMT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6732 | 0.6921 | 21.5885 | 20.8902 | 0.59 | 0.6927 | 0.6455 | 21.6083 | 20.9263 | 0.64 |
GARCH | 0.5900 | 0.6371 | 15.4710 | 21.0351 | 0.55 | 0.5847 | 0.6402 | 15.4885 | 21.0918 | 0.58 |
SVM | 0.5848 | 0.6478 | 16.2649 | 23.9875 | 0.63 | 0.6583 | 0.7133 | 16.1774 | 23.8636 | 0.70 |
FFNN | 0.6187 | 0.5147 | 16.6696 | 23.4075 | 0.53 | 0.5787 | 0.4701 | 16.7209 | 23.3912 | 0.56 |
LSTIM-I | 0.6039 | 0.5583 | 14.8379 | 18.9425 | 0.61 | 0.5983 | 0.4932 | 15.0195 | 18.9273 | 0.62 |
LSTIM-II | 0.6664 | 0.5826 | 14.2336 | 15.8736 | 0.62 | 0.5786 | 0.6096 | 14.2437 | 15.8664 | 0.66 |
LSTIM-III | 0.5261 | 0.5265 | 14.9826 | 17.8712 | 0.69 | 0.5670 | 0.6625 | 14.9282 | 17.8530 | 0.62 |
LSTIM-IV | 0.4483 | 0.5809 | 12.0166 | 17.4753 | 0.64 | 0.5014 | 0.4185 | 12.0200 | 17.4913 | 0.70 |
Proposed | 0.4306 | 0.4983 | 9.9317 | 12.0965 | 0.79 | 0.3856 | 0.4207 | 10.0684 | 12.0889 | 0.66 |
Model | AMZN | PYPL | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | AMAPE | MAE | RMSE | PCT | MAPE | AMAPE | MAE | RMSE | PCT | |
ARMA | 0.6497 | 0.6314 | 21.5368 | 20.8613 | 0.56 | 0.6817 | 0.6469 | 21.5631 | 20.9030 | 0.56 |
GARCH | 0.5512 | 0.6645 | 15.4721 | 21.0545 | 0.55 | 0.5752 | 0.6331 | 15.3681 | 21.0913 | 0.65 |
SVM | 0.5399 | 0.6456 | 16.2383 | 23.8421 | 0.65 | 0.6635 | 0.7062 | 16.2480 | 23.9355 | 0.66 |
FFNN | 0.5463 | 0.5482 | 16.7257 | 23.3905 | 0.54 | 0.6015 | 0.4629 | 16.6625 | 23.4707 | 0.63 |
LSTIM-I | 0.4923 | 0.5562 | 14.9340 | 18.9439 | 0.60 | 0.6011 | 0.6385 | 14.9982 | 18.8929 | 0.68 |
LSTIM-II | 0.6059 | 0.5953 | 14.2852 | 15.8827 | 0.64 | 0.5065 | 0.5998 | 14.2148 | 15.8041 | 0.61 |
LSTIM-III | 0.4642 | 0.5240 | 14.9325 | 17.8301 | 0.67 | 0.6180 | 0.5839 | 14.9445 | 17.8596 | 0.72 |
LSTIM-IV | 0.5144 | 0.5247 | 12.0077 | 17.4556 | 0.68 | 0.5554 | 0.5498 | 12.0215 | 17.4396 | 0.70 |
Proposed | 0.3846 | 0.3949 | 10.0161 | 12.1924 | 0.70 | 0.4428 | 0.3229 | 10.0062 | 12.1432 | 0.70 |
Method | MAPE | MAE | Time (ms) |
---|---|---|---|
Random forest | 3.18 | 54.06 | 1.316 |
Gradient boosting | 2.54 | 43.59 | 1.483 |
XGBoost | 2.48 | 42.85 | 2.373 |
Proposed | 0.41 | 8.12 | 1.051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albahli, S.; Nazir, T.; Mehmood, A.; Irtaza, A.; Alkhalifah, A.; Albattah, W. AEI-DNET: A Novel DenseNet Model with an Autoencoder for the Stock Market Predictions Using Stock Technical Indicators. Electronics 2022, 11, 611. https://doi.org/10.3390/electronics11040611
Albahli S, Nazir T, Mehmood A, Irtaza A, Alkhalifah A, Albattah W. AEI-DNET: A Novel DenseNet Model with an Autoencoder for the Stock Market Predictions Using Stock Technical Indicators. Electronics. 2022; 11(4):611. https://doi.org/10.3390/electronics11040611
Chicago/Turabian StyleAlbahli, Saleh, Tahira Nazir, Awais Mehmood, Aun Irtaza, Ali Alkhalifah, and Waleed Albattah. 2022. "AEI-DNET: A Novel DenseNet Model with an Autoencoder for the Stock Market Predictions Using Stock Technical Indicators" Electronics 11, no. 4: 611. https://doi.org/10.3390/electronics11040611
APA StyleAlbahli, S., Nazir, T., Mehmood, A., Irtaza, A., Alkhalifah, A., & Albattah, W. (2022). AEI-DNET: A Novel DenseNet Model with an Autoencoder for the Stock Market Predictions Using Stock Technical Indicators. Electronics, 11(4), 611. https://doi.org/10.3390/electronics11040611