Study of the Within-Batch TID Response Variability on Silicon-Based VDMOS Devices
Abstract
:1. Introduction
2. Experiment Details
3. Experimental Results
4. Discussion
- The ionization of radiation particles in SiO2 produces electron–hole pairs, the number of which is related to the ionization dose.
- When the positive bias is applied to the gate, the drift motion of the electron–hole pairs in the oxide layer is the most significant. The electrons are removed by a fast drift (ps magnitude) towards the anodic ohmic contact, and the holes are relatively slow (s magnitude) to the cathodic ohmic contact.
- In the drift process, some holes are captured to form the trap center. In the shallow-level trap center located in the gap of SiO2, about 1 eV is distributed in the whole SiO2 body. The holes can be transported in a jump mode. The center of the deep-level trap with more than 3 eV in the gap of SiO2 is mainly distributed near the SiO2-Si interface, which is the relatively stable positive charge () trapped by the oxide layer.
- In the transition layer of the SiO2-Si interface, the holes captured by the oxide layer are exchanged with the electrons in the substrate Si through the tunneling effect and finally captured by the defects at the interface to form the interface traps ().
- Therefore, the main reason for the variation in device parameters after irradiation is that the ionizing radiation destroys the energy band equilibrium, generates electron–hole pairs, and forms oxide-trapped charges and interface traps. The oxide layer is the most sensitive part to TID radiation in the MOS system [19].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grant, D.A.; Gowar, J. Power MOSFETS: Theory and Applications, 1st ed.; John Wiley & Sons, Incorporated: New York, NY, USA, 1989; pp. 17–21. [Google Scholar]
- Singh, G.; Galloway, K.F.; Russell, T.J. Radiation-Induced Interface Traps in Power Mosfets. IEEE Trans. Nucl. Sci. 1986, 33, 1454–1459. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Research on the Radiation Effects of VDMOS Power Devices in Space Instruments. Master’s Thesis, National University of Defense Technology, Changsha, China, 2017. [Google Scholar]
- Hu, Z.; Liu, Z.; Shao, H.; Zhang, Z.; Ning, B.; Chen, M.; Bi, D.; Zou, S. Impact of within-wafer process variability on radiation response. Microelectron. J. 2011, 42, 883–888. [Google Scholar] [CrossRef]
- Gerardin, S.; Bagatin, M.; Cornale, D.; Ding, L.; Mattiazzo, S.; Paccagnella, A.; Faccio, F.; Michelis, S. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs. IEEE Trans. Nucl. Sci. 2015, 62, 2398–2403. [Google Scholar] [CrossRef]
- Bagatin, M.; Gerardin, S.; Ferrarese, F.; Paccagnella, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Visconti, A.; Wang, P.X. Sample-to-Sample Variability and Bit Errors Induced by Total Dose in Advanced NAND Flash Memories. IEEE Trans. Nucl. Sci. 2014, 61, 2889–2895. [Google Scholar] [CrossRef]
- Guillermin, J.; Sukhaseum, N.; Varotsou, A.; Privat, A.; Garcia, P.; Vaillé, M.; Thomas, J.C.; Chatry, N.; Poivey, C. Part-to-part and lot-to-lot variability study of TID effects in bipolar linear devices. In Proceedings of the 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, 19–23 September 2016; pp. 1–8. [Google Scholar]
- Zheng, Q.; Cui, J.; Yu, X.; Li, Y.; Lu, W.; He, C.; Guo, Q. Measurement and Evaluation of the Within-Wafer TID Response Variability on BOX Layer of SOI Technology. IEEE Trans. Nucl. Sci. 2021, 68, 2516–2523. [Google Scholar] [CrossRef]
- Zheng, Q.; Cui, J.; Yu, X.; Li, Y.; Lu, W.; He, C.; Guo, Q. Impact of TID on Within-Wafer Variability of Radiation-Hardened SOI Wafers. IEEE Trans. Nucl. Sci. 2021, 68, 1423–1429. [Google Scholar] [CrossRef]
- Ma, T.; Bonaldo, S.; Mattiazzo, S.; Baschirotto, A.; Enz, C.; Paccagnella, A.; Gerardin, S. Increased Device Variability Induced by Total Ionizing Dose in 16-nm Bulk nFinFETs. IEEE Trans. Nucl. Sci. 2022, 69, 1437–1443. [Google Scholar] [CrossRef]
- Mo, J.J.; Chen, H.; Wang, L.P.; Yu, F.X. Total Ionizing Dose Effect and Single Event Burnout of VDMOS with Different Inter Layer Dielectric and Passivation. J. Electron. Test.-Theory Appl. 2017, 33, 255–259. [Google Scholar] [CrossRef]
- Li, X.; Jia, Y.; Zhou, X.; Zhao, Y.; Tang, Y.; Li, Y.; Liu, G.; Jia, G. Degradation of Radiation-Hardened Vertical Double-Diffused Metal-Oxide-Semiconductor Field-Effect Transistor During Gamma Ray Irradiation Performed After Heavy Ion Striking. IEEE Electron Device Lett. 2020, 41, 216–219. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Qiao, M.; Zhou, X.; Wang, T.; Zhang, B. Total Ionizing Dose Effects in 30-V Split-Gate Trench VDMOS. IEEE Trans. Nucl. Sci. 2020, 67, 2009–2014. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Liu, Z.; Xu, J. Investigation of irradiation effects and model parameter extraction for VDMOS field effect transistor exposed to gamma rays. Radiat. Phys. Chem. 2021, 185, 109478. [Google Scholar] [CrossRef]
- Qin, Z.; Yang, J.; Li, X. Displacement damage on P-channel VDMOS caused by different energy protons. Nucl. Instrum. Methods Phys. Res. Sect. B 2019, 461, 232–236. [Google Scholar] [CrossRef]
- Schwank, J.R.; Shaneyfelt, M.R.; Fleetwood, D.M.; Felix, J.A.; Dodd, P.E.; Paillet, P.; Ferlet-Cavrois, V. Radiation Effects in MOS Oxides. IEEE Trans. Nucl. Sci. 2008, 55, 1833–1853. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, Y. Introduction to Radiation Hardened Integrated Circuit, 1st ed.; Tsinghua University Press: Beijing, China, 2011; pp. 13–14. [Google Scholar]
- Liu, W. Radiation Effects and Reinforcement Techniques of Silicon Semiconductor Devices, 1st ed.; Science Press: Beijing, China, 2013; pp. 10–19. [Google Scholar]
- Oldham, T.R.; McLean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 2003, 50, 483–499. [Google Scholar] [CrossRef] [Green Version]
- ASTM F996-11; Standard Test Method for Separating an Ionizing Radiation-Induced MOSFET Threshold Voltage Shift Into Components Due to Oxide Trapped Holes and Interface States Using the Subthreshold Current-Voltage Characteristics. ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- He, Y.; Shi, Q.; Li, B.; Luo, H.; Lin, L. Oxide-trap and Interface-trap Charge Separation Analysis Techniques on MOSFET. Reliab. Environ. Test. Electron. Prod. 2006, 24, 26–29. [Google Scholar] [CrossRef]
- Wu, H.; Huang, W. A 60V Radiation Hardened VDMOS Power Device. Reliab. Environ. Test. Electron. Prod. 2021, 39, 33–37. [Google Scholar]
- Fan, P. Research on the Radiation and Thermal Stress Reliability of Typical Domestic VDMOS for Satellites Application. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2018. [Google Scholar]
- Yang, G.; Wu, W.; Zhang, X.; Tang, P.; Yang, J.; Zhang, L.; Liu, S.; Sun, W. Experimental investigation on total-ionizing-dose radiation effects on the electrical properties of SOI-LIGBT. Solid-State Electron. 2021, 175, 107952. [Google Scholar] [CrossRef]
- Liu, S.; DiCienzo, C.; Bliss, M.; Zafrani, M.; Boden, M.; Titus, J.L. Analysis of Commercial Trench Power MOSFETs’ Responses to Co60 Irradiation. IEEE Trans. Nucl. Sci. 2008, 55, 3231–3236. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; He, Y.; Wang, X.; Yue, L.; En, Y.; Liu, M. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Phys. Sin. 2015, 64, 078501. [Google Scholar] [CrossRef]
- Huang, J. Research on Current Model Induced by Total Dose Effects in NMOS Transistors. Master’s Thesis, University of Electronic Science and Technology of China, Chendu, China, 2016. [Google Scholar]
- Bonaldo, S.; Zhang, E.X.; Zhao, S.E.; Putcha, V.; Parvais, B.; Linten, D.; Gerardin, S.; Paccagnella, A.; Reed, R.A.; Schrimpf, R.D.; et al. Total-Ionizing-Dose Effects in InGaAs MOSFETs With High-k Gate Dielectrics and InP Substrates. IEEE Trans. Nucl. Sci. 2020, 67, 1312–1319. [Google Scholar] [CrossRef]
- Liu, G.Z.; Li, B.; Xiao, Z.Q.; Sun, J.H.; Yu, Z.G.; Wei, J.H.; Wang, H.B.; Hong, G.S.; Shi, J.W. The TID Characteristics of a Radiation Hardened Sense-Switch pFLASH Cell. IEEE Trans. Device Mater. Reliab. 2020, 20, 358–365. [Google Scholar] [CrossRef]
- Shi, M.; Wu, G.; Geng, L.; Zhang, R. Semiconductor Device Physics, 3rd ed.; Xi’an Jiaotong University Press: Xi’an, China, 2008; pp. 240–241. [Google Scholar]
- Galloway, K.F.; Gaitan, M.; Russell, T.J. A Simple Model for Separating Interface and Oxide Charge Effects in MOS Device Characteristics. IEEE Trans. Nucl. Sci. 1984, 31, 1497–1501. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, Y.; Chen, Z. Investigation of Total-Ionizing Dose Effects on the Two-Dimensional Transition Metal Dichalcogenide Field-Effect Transistors. IEEE Access 2019, 7, 79989–79996. [Google Scholar] [CrossRef]
- Soliman, F.A.S.; Al-Kabbani, A.S.S.; Rageh, M.S.I.; Sharshar, K.A.A. Effects of electron-hole generation, transport and trapping in MOSFETs due to γ-ray exposure. Appl. Radiat. Isot. 1995, 46, 1337–1343. [Google Scholar] [CrossRef]
- Xie, T.T.; Ge, H.; Lv, Y.H.; Chen, J. The impact of total ionizing dose on RF performance of 130 nm PD SOI I/O nMOSFETs. Microelectron. Reliab. 2021, 116, 114001. [Google Scholar] [CrossRef]
- Sun, Y.B.; Wan, X.; Liu, Z.Y.; Jin, H.; Yan, J.Z.; Li, X.J.; Shi, Y.L. Investigation of total ionizing dose effects in 4H-SiC power MOSFET under gamma ray radiation. Radiat. Phys. Chem. 2022, 197, 110219. [Google Scholar] [CrossRef]
Test Equipment | Test Parameter | Test Conditions |
---|---|---|
B1500A | ||
B1500A | Curve | |
B1500A | Curve | |
B1500A | ||
BC3193 | ||
BC3193 |
Test Parameter | Standard Deviation |
---|---|
Increase | |
Increase | |
Decrease | |
Increase | |
Increase | |
Not Obvious |
Parameter | Elements | Major Impacts |
---|---|---|
The oxide-trapped charges and the interface traps work together | Positively correlated with | |
Positively correlated with | ||
Contrary to the trend of SS changes | Negatively correlated with | |
It is related to the increase in the number of charges in the space charge region and the decrease in the width of the depletion layer | Exponential Relationship with | |
After irradiation, a conductive channel is formed, and the changing trend is the same as the threshold voltage | Positively correlated with | |
Regulation of channel reverse voltage (VGS-VTH) | No Obvious |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Cui, J.; Zheng, Q.; Li, P.; Cui, X.; Li, Y.; Guo, Q. Study of the Within-Batch TID Response Variability on Silicon-Based VDMOS Devices. Electronics 2023, 12, 1403. https://doi.org/10.3390/electronics12061403
Li X, Cui J, Zheng Q, Li P, Cui X, Li Y, Guo Q. Study of the Within-Batch TID Response Variability on Silicon-Based VDMOS Devices. Electronics. 2023; 12(6):1403. https://doi.org/10.3390/electronics12061403
Chicago/Turabian StyleLi, Xiao, Jiangwei Cui, Qiwen Zheng, Pengwei Li, Xu Cui, Yudong Li, and Qi Guo. 2023. "Study of the Within-Batch TID Response Variability on Silicon-Based VDMOS Devices" Electronics 12, no. 6: 1403. https://doi.org/10.3390/electronics12061403
APA StyleLi, X., Cui, J., Zheng, Q., Li, P., Cui, X., Li, Y., & Guo, Q. (2023). Study of the Within-Batch TID Response Variability on Silicon-Based VDMOS Devices. Electronics, 12(6), 1403. https://doi.org/10.3390/electronics12061403