Design Optimization of an Enhanced-Mode GaN HEMT with Hybrid Back Barrier and Breakdown Voltage Prediction Based on Neural Networks
Abstract
:1. Introduction
2. Device Structure
3. Simulation Models
3.1. Simulation Models
3.2. Simulation Calibration
4. Results and Discussions
4.1. DC Properties
4.2. Breakdown Properties
4.3. CV Properties
4.4. Neural Network Prediction
4.4.1. Data Collection
4.4.2. Establishment of Neural Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An Assessment of Wide Bandgap Semiconductors for Power Devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef]
- Dora, Y.; Chakraborty, A.; Mccarthy, L.; Keller, S.; Denbaars, S.P.; Mishra, U.K. High Breakdown Voltage Achieved on AlGaN/GaN HEMTs with Integrated Slant Field Plates. IEEE Electron Device Lett. 2006, 27, 713–715. [Google Scholar] [CrossRef]
- Qiao, S.; Fengbo, L.; Yafang, X.; Jialin, L.; Mengxiao, L.; Xichen, Z.; Keming, Z.; Bingzhi, Z.; Yian, Y. 2.2 kV Breakdown Voltage GaN Double-Channel Schottky Barrier Diode with One Grading-AlGaN Barrier and Polarization Junction. Micro Nanostruct. 2023, 178, 207562. [Google Scholar] [CrossRef]
- Millán, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Bhat, A.M.; Poonia, R.; Varghese, A.; Shafi, N.; Periasamy, C. AlGaN/GaN High Electron Mobility Transistor for Various Sensing Applications: A Review. Micro Nanostruct. 2023, 176, 207528. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, W.; Zhou, F.; Wang, Y.; Guo, L.; Ren, F.; Zhou, D.; Chen, D.; Zhang, R.; Zheng, Y.; et al. Over 10 kA/cm2 Inductive Current Sustaining Capability Demonstrated in GaN-on-GaN Pn Junction with High Ruggedness. Micro Nanostruct. 2022, 170, 207367. [Google Scholar] [CrossRef]
- Ishida, M.; Ueda, T.; Tanaka, T.; Ueda, D. GaN on Si Technologies for Power Switching Devices. IEEE Trans. Electron Devices 2013, 60, 3053–3059. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Lee, F.C.; Li, Q. Characterization and Enhancement of High-Voltage Cascode GaN Devices. IEEE Trans. Electron Devices 2015, 62, 270–277. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, Y.; Lyu, G.; Wei, J.; Sun, J.; Chen, K.J. 650-V Normally-OFF GaN/SiC Cascode Device for Power Switching Applications. IEEE Trans. Ind. Electron. 2022, 69, 8997–9006. [Google Scholar] [CrossRef]
- Oka, T.; Nozawa, T. AlGaN/GaN Recessed MIS-Gate HFET with High-Threshold-Voltage Normally-off Operation for Power Electronics Applications. IEEE Electron Device Lett. 2008, 29, 668–670. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, Z.; Wei, J.; Lei, J.; Tang, G.; Fu, K.; Cai, Y.; Zhang, B.; Chen, K.J. Integration of LPCVD-SiNx Gate Dielectric with Recessed-Gate E-Mode GaN MIS-FETs: Toward High Performance, High Stability and Long TDDB Lifetime. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 10.4.1–10.4.4. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, K.; Deng, X.; Zhang, X.; Fan, Y.; Sun, S.; Song, L.; Xing, Z.; Huang, W.; Yu, G.; et al. Normally Off AlGaN/GaN MIS-High-Electron Mobility Transistors Fabricated by Using Low Pressure Chemical Vapor Deposition Si3N4 Gate Dielectric and Standard Fluorine Ion Implantation. IEEE Electron Device Lett. 2015, 36, 1128–1131. [Google Scholar] [CrossRef]
- Han, P.-C.; Yan, Z.-Z.; Wu, C.-H.; Chang, E.Y.; Ho, Y.-H. Recess-Free Normally-off GaN MIS-HEMT Fabricated on Ultra-Thin-Barrier AlGaN/GaN Heterostructure. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019; pp. 427–430. [Google Scholar] [CrossRef]
- Hilt, O.; Brunner, F.; Cho, E.; Knauer, A.; Bahat-Treidel, E.; Würfl, J. Normally-off High-Voltage p-GaN Gate GaN HFET with Carbon-Doped Buffer. In Proceedings of the 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, San Diego, CA, USA, 23–26 May 2011; pp. 239–242. [Google Scholar] [CrossRef]
- Ge, M.; Li, Y.; Zhu, Y.; Chen, D.; Wang, Z.; Tan, S. Suppression of Leakage Current of P-GaN Gate AlGaN/GaN HEMTs with Beta-Ga2O3 Back Barrier. J. Phys. D Appl. Phys. 2021, 55, 065104. [Google Scholar] [CrossRef]
- Jia, M.; Hou, B.; Yang, L.; Zhang, M.; Chang, Q.; Niu, X.; Shi, C.; Du, J.; Wu, M.; Lu, H.; et al. Simulation and Analysis of Enhancement-Mode AlGaN/GaN HEMT with P-I-N Junction Gate. J. Phys. D Appl. Phys. 2024, 57, 265101. [Google Scholar] [CrossRef]
- Handa, H.; Ujita, S.; Shibata, D.; Kajitani, R.; Shiozaki, N.; Ogawa, M.; Umeda, H.; Tanaka, K.; Tamura, S.; Hatsuda, T.; et al. High-Speed Switching and Current-Collapse-Free Operation by GaN Gate Injection Transistors with Thick GaN Buffer on Bulk GaN Substrates. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 10.3.1–10.3.4. [Google Scholar] [CrossRef]
- Tanaka, K.; Morita, T.; Umeda, H.; Kaneko, S.; Kuroda, M.; Ikoshi, A.; Yamagiwa, H.; Okita, H.; Hikita, M.; Yanagihara, M.; et al. Suppression of Current Collapse by Hole Injection from Drain in a Normally-off GaN-Based Hybrid-Drain-Embedded Gate Injection Transistor. Appl. Phys. Lett. 2015, 107, 163502. [Google Scholar] [CrossRef]
- Aamir Ahsan, S.; Ghosh, S.; Sharma, K.; Dasgupta, A.; Khandelwal, S.; Chauhan, Y.S. Capacitance Modeling in Dual Field-Plate Power GaN HEMT for Accurate Switching Behavior. IEEE Trans. Electron Devices 2016, 63, 565–572. [Google Scholar] [CrossRef]
- Lee, H.-S.; Piedra, D.; Sun, M.; Gao, X.; Guo, S.; Palacios, T. 3000-V 4.3-mΩ·cm2 InAlN/GaN MOSHEMTs with AlGaN Back Barrier. IEEE Electron Device Lett. 2012, 33, 982–984. [Google Scholar] [CrossRef]
- Kilic, A.; Yildirim, R.; Eroglu, D. Machine Learning Analysis of Ni/SiC Electrodeposition Using Association Rule Mining and Artificial Neural Network. J. Electrochem. Soc. 2021, 168, 62514. [Google Scholar] [CrossRef]
- Hari, N.; Ahsan, M.; Ramasamy, S.; Sanjeevikumar, P.; Albarbar, A.; Blaabjerg, F. Gallium Nitride Power Electronic Devices Modeling Using Machine Learning. IEEE Access 2020, 8, 119654–119667. [Google Scholar] [CrossRef]
- Ma, H.; Duan, X.; Wang, S.; Liu, S.; Zhang, J.; Hao, Y. GaN JBS Diode Device Performance Prediction Method Based on Neural Network. Micromachines 2023, 14, 188. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, Y.; Chen, M.; Li, J.; Li, P.; Chen, B.; Zhao, S.; Wang, J.; Jiang, S.; Cai, M.; et al. Advanced Design of a III-Nitride Light-Emitting Diode via Machine Learning. Laser Photonics Rev. 2023, 17, 2300113. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides. Phys. Rev. B 1997, 56, R10024–R10027. [Google Scholar] [CrossRef]
- Ambacher, O.; Majewski, J.; Miskys, C.; Link, A.; Hermann, M.; Eickhoff, M.; Stutzmann, M.; Bernardini, F.; Fiorentini, V.; Tilak, V.; et al. Pyroelectric Properties of Al(In)GaN/GaN Hetero- and Quantum Well Structures. J. Phys. Condens. Matter 2002, 14, 3399. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef]
- Albrecht, J.D.; Wang, R.P.; Ruden, P.P.; Farahmand, M.; Brennan, K.F. Electron Transport Characteristics of GaN for High Temperature Device Modeling. J. Appl. Phys. 1998, 83, 4777–4781. [Google Scholar] [CrossRef]
- Farahmand, M.; Garetto, C.; Bellotti, E.; Brennan, K.F.; Goano, M.; Ghillino, E.; Ghione, G.; Albrecht, J.D.; Ruden, P.P. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries. IEEE Trans. Electron Devices 2001, 48, 535–542. [Google Scholar] [CrossRef]
- Bulutay, C. Electron Initiated Impact Ionization in AlGaN Alloys. Semicond. Sci. Technol. 2002, 17, L59. [Google Scholar] [CrossRef]
- Bai, Z.; Du, J.; Liu, Y.; Xin, Q.; Liu, Y.; Yu, Q. Study on the Electrical Degradation of AlGaN/GaN MIS-HEMTs Induced by Residual Stress of SiNx Passivation. Solid-State Electron. 2017, 133, 31–37. [Google Scholar] [CrossRef]
- Visalli, D.; Van Hove, M.; Srivastava, P.; Derluyn, J.; Das, J.; Leys, M.; Degroote, S.; Cheng, K.; Germain, M.; Borghs, G. Experimental and Simulation Study of Breakdown Voltage Enhancement of AlGaN/GaN Heterostructures by Si Substrate Removal. Appl. Phys. Lett. 2010, 97, 113501. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, R.; Lyu, Q.; Lau, K.M. High-Voltage p-GaN HEMTs with OFF-State Blocking Capability After Gate Breakdown. IEEE Electron Device Lett. 2019, 40, 530–533. [Google Scholar] [CrossRef]
- Kim, J.-G.; Cho, C.; Kim, E.; Hwang, J.S.; Park, K.-H.; Lee, J.-H. High breakdown voltage and low-current dispersion in AlGaN/GaN HEMTs with high-quality AlN buffer layer. IEEE Trans. Electron Devices 2021, 68, 1513–1517. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, X.; Sun, C.; Tang, W.; Zeng, C.; Chen, F.; He, T.; Yu, G.; Song, L.; Lin, W.; et al. Improvement of breakdown voltage and ON-resistance in normally-OFF AlGaN/GaN HEMTs using etching-free p-GaN stripe array gate. IEEE Trans. Electron Devices 2021, 68, 5041–5047. [Google Scholar] [CrossRef]
- Sun, T.; Yang, K.; Wei, J.; Jia, Y.; Deng, S.; Zhao, Z.; Zhang, B.; Luo, X. High-voltage polarization-superjunction GaN HEMT with built-In SBD for low reverse conduction loss. IEEE J. Electron Devices Soc. 2022, 10, 808–812. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; Guo, J.; Wu, H.; Liu, T.; Jiang, J. Enhancement of breakdown voltage in p-GaN gate AlGaN/GaN HEMTs with a stepped hybrid GaN/AlN buffer layer. IEEE J. Electron Devices Soc. 2022, 10, 197–202. [Google Scholar] [CrossRef]
- Guo, H.; Gong, H.; Shao, P.; Yu, X.; Wang, J.; Wang, R.; Yu, L.; Ye, J.; Chen, D.; Lu, H.; et al. Over 1200 V normally-OFF p-NiO gated AlGaN/GaN HEMTs on Si with a small threshold voltage shift. IEEE Electron Device Lett. 2022, 43, 268–271. [Google Scholar] [CrossRef]
- Wu, N.; Luo, L.; Xing, Z.; Li, S.; Zeng, F.; Cao, B.; Wu, C.; Li, G. Enhanced performance of low-leakage-current normally off p-GaN gate HEMTs using NH3 plasma pretreatment. IEEE Trans. Electron Devices 2023, 70, 4560–4564. [Google Scholar] [CrossRef]
Parameter | Unit | Value | Parameter Caption |
---|---|---|---|
Lg | µm | 1.4 | Length of the gate region |
Lgi | µm | 1–6 | Gate to the interface distance |
Lgs | µm | 1 | Distance from gate to source |
Lgd | µm | 5~20 | Distance from gate to drain |
TP-GaN | nm | 110 | Thickness of p-GaN layer |
Tbar | nm | 15 | Thickness of AlGaN barrier layer |
Tch | nm | 35 | Thickness of GaN channel layer |
Tbuf | µm | 0.1~4 | Thickness of GaN buffer layer |
Tbb | nm | 50 | Thickness of AlGaN back barrier layer |
Year | Device | BV (V) | Ron,sp (mΩ·cm2) | FOM (MW/cm2) |
---|---|---|---|---|
2019 | E-mode [33] | 1000 | 2.8 | 357.1 |
2021 | E-mode [34] | 2154 | 2.58 | 1793.3 |
2021 | E-mode [35] | 1449 | 2.73 | 769.1 |
2022 | E-mode [36] | 723 | 1.80 | 290.4 |
2022 | E-mode [37] | 1781 | 4.4 | 720.9 |
2022 | E-mode [38] | 1205 | 2.22 | 654.1 |
2023 | E-mode [39] | 690 | 3.975 | 119 |
2024 | This work | 2623 | 0.74 | 9297.5 |
Parameter | Value |
---|---|
Lgi | 0, 2, 3, 4,……, Lgd |
Lgd | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 |
Tbuf | 0.1, 0.5, 1, 2, 3, 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, K.; Hu, J.; Du, J.; Yu, Q. Design Optimization of an Enhanced-Mode GaN HEMT with Hybrid Back Barrier and Breakdown Voltage Prediction Based on Neural Networks. Electronics 2024, 13, 2937. https://doi.org/10.3390/electronics13152937
Tian K, Hu J, Du J, Yu Q. Design Optimization of an Enhanced-Mode GaN HEMT with Hybrid Back Barrier and Breakdown Voltage Prediction Based on Neural Networks. Electronics. 2024; 13(15):2937. https://doi.org/10.3390/electronics13152937
Chicago/Turabian StyleTian, Kuiyuan, Jinwei Hu, Jiangfeng Du, and Qi Yu. 2024. "Design Optimization of an Enhanced-Mode GaN HEMT with Hybrid Back Barrier and Breakdown Voltage Prediction Based on Neural Networks" Electronics 13, no. 15: 2937. https://doi.org/10.3390/electronics13152937
APA StyleTian, K., Hu, J., Du, J., & Yu, Q. (2024). Design Optimization of an Enhanced-Mode GaN HEMT with Hybrid Back Barrier and Breakdown Voltage Prediction Based on Neural Networks. Electronics, 13(15), 2937. https://doi.org/10.3390/electronics13152937