Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visuomotor Robot System Setup
2.2. Object Detection and Position Identification
2.2.1. Database
2.2.2. Object Detector
2.3. 3D Object Shape Reconstruction
2.3.1. Database
2.3.2. Three-Dimensional Object Shape Reconstructor
2.4. Grasping Parameters
2.4.1. Object Grasping Areas Database
2.4.2. Object Grasping Areas Generator (OGAG)
2.4.3. Grasping Orientation Angle
2.5. Implementation Details
2.6. Manipulation Tasks and Objects
3. Results
3.1. Three-Dimensional Object Shape Reconstruction
3.2. Object Grasping Areas
3.3. Grasping Orientation Angle
3.4. Autonomous Object Grasping and Relocation with Soft Hands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Sun, Y.; Zhang, Q.; Liu, F. Two-Stage Grasp Strategy Combining CNN-Based Classification and Adaptive Detection on a Flexible Hand. Appl. Soft Comput. J. 2020, 97, 106729. [Google Scholar] [CrossRef]
- Valarezo-Añazco, E.; Rivera-Lopez, P.; Park, N.; Oh, J.; Ryu, G.; Al-antari, M.; Kim, T.-S. Natural Object Manipulation Using Anthropomorphic Robotic Hand Through Deep Reinforcement Learning and Deep Grasping Probability Network. Appl. Intell. 2021, 51, 1041–1055. [Google Scholar] [CrossRef]
- Valarezo-Añazco, E.; Rivera Lopez, P.; Park, H.; Pak, N.; Oh, J.; Lee, S.; Byun, K.; Kim, T.-S. Human-like object grasping and relocation for an anthropomorphic robotic hand with natural hand pose priors in deep reinforcement learning. In Proceedings of the International Conference on Robotics and Computer Vision (ICRCV 2019), Bangkok, Thailand, 4–7 August 2019; pp. 46–50. [Google Scholar]
- Billard, A.; Kragic, D. Trends and Challenges in Robot Manipulation. Science 2019, 364, eaat8414. [Google Scholar] [CrossRef] [PubMed]
- Birglen, L.; Laliberte, T.; Gosselin, C.M. Underactuated Robotic Hands; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Haas, M.; Friedl, W.; Stillfried, G.; Hoppner, H. Human-Robotic Variable-Stiffness Grasps of Small-Fruit Containers Are Successful Even Under Severely Impaired Sensory Feedback. Front. Neurorobotics 2018, 12, 70. [Google Scholar] [CrossRef]
- Della Santina, C.; Arapi, V.; Averta, G.; Damiani, F.; Fiore, G.; Settimi, A.; Catalano, M.; Bacciu, D.; Bicchi, A.; Bianchi, M. Learning From Humans How to Grasp: A Data-Driven Architecture for Autonomous Grasping With Anthropomorphic Soft Hands. IEEE Robot. Autom. Lett. 2019, 4, 1533–1540. [Google Scholar] [CrossRef]
- Collet, A.; Martinez, M.; Srinivasa, S.S. The Moped Framework: Object Recognition and Pose Estimation for Manipulation. Int. J. Robot. Res. 2011, 30, 1284–1306. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Zhu, Y.; Martin-Martin, R.; Lu, C.; Fei-Fei, L.; Savarese, S. DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3338–3347. [Google Scholar]
- Fang, K.; Zhu, Y.; Garg, A.; Kurenkov, A.; Mehta, V.; Fei-Fei, L.; Savarese, S. Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-Supervision. Int. J. Robot. Res. 2019, 39, 202–216. [Google Scholar] [CrossRef]
- Gupta, A.; Eppner, C.; Levine, S.; Abbeel, P. Learning Dexterous Manipulation for a Soft Robotic Hand from Human Demonstrations. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 3786–3793. [Google Scholar]
- Bullock, I.; Ma, R.; Dollar, A. A Hand-Centric Classification of Human and Robot Dexterous Manipulation. IEEE Trans. Haptics 2013, 6, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.-M.; Mugahed, A.-A.; Jeong-Min, P.; Geon, G.; Tae-Yeon, K.; Rivera, P.; Valarezo, E.; Choi, M.-T.; Seung-Moo, M.; Kim, T.-S. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 2018, 157, 85–94. [Google Scholar]
- Valarezo-Añazco, E.; Rivera Lopez, P.; Park, N.; Oh, J.; Ryu, G.; Kim, T.-S. Fully Autonomous Object Grasping and Relocation System with Anthropomorphic Robotic Hands. In Proceedings of the Korea Communication Society Winter Symposium, Republic of Korea; 2021. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Wang, R.; Qin, Y.; Wang, Z.; Zheng, H. Group-Based Sparse Representation for Compressed Sensing Image Reconstruction with Joint Regularization. Electronics 2022, 11, 182. [Google Scholar] [CrossRef]
- Xie, X.; Guo, X.; Li, W.; Liu, J.; Xu, J. Deform2NeRF: Non-Rigid Deformation and 2D–3D Feature Fusion with Cross-Attention for Dynamic Human Reconstruction. Electronics 2023, 12, 4382. [Google Scholar] [CrossRef]
- Sipiran, I.; Gregor, R.; Schreck, T. Approximate Symmetry Detection in Partial 3D Meshes. Comput. Graph. Forum 2014, 33, 131–140. [Google Scholar] [CrossRef]
- Miltra, N.; Guibas, L.; Pauly, M. Partial and Approximate Symmetry Detection for 3D Geometry. ACM Trans. Graph. TOG 2006, 25, 560–568. [Google Scholar] [CrossRef]
- Rothganger, F.; Lazebnik, S.; Schmid, C.; Ponce, J. 3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints. Int. J. Comput. Vis. 2006, 66, 231–259. [Google Scholar] [CrossRef]
- Deng, X.; Qiu, S.; Jin, W.; Xue, J. Three-Dimensional Reconstruction Method for Bionic Compound-Eye System Based on MVSNet Network. Electronics 2022, 11, 1790. [Google Scholar] [CrossRef]
- Valarezo-Añazco, E.; Rivera, L.; Kim, T.-S. Three-dimensional Shape Reconstruction of Objects from a Single Depth View Using Deep U-Net CNN with Bottle-neck Skip Connections. IET Comput. Vis. 2021, 15, 24–35. [Google Scholar] [CrossRef]
- Brahmbhatt, S.; Ham, C.; Kemp, C.; Hays, J. ContactDB: Analyzing and Predicting Grasp Contact via Thermal Imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 8701–8711. [Google Scholar]
- Choi, C.; Schwarting, W.; DelPreto, J.; Rus, D. Learning Object Grasping for Soft Robot Hands. IEEE Robot. Autom. Lett. 2018, 3, 2370–2377. [Google Scholar] [CrossRef]
- Ficuciello, F.; Migiozzi, A.; Laudante, G.; Falco, P.; Siciliano, B. Vision-Basedgrasp Learning of an Anthropomorphic Hand-Arm System in a Synergy-Based Control Framework. Sci. Robot. 2019, 4, eaao4900. [Google Scholar] [CrossRef]
- Qb Robotics C++ Library. Available online: https://qbrobotics.com/ (accessed on 15 December 2020).
- Krasin, I.; Duerig, T.; Alldrin, N.; Ferrari, V.; Abu-El-Haija, S.; Kuznetsova, A.; Rom, H.; Uijlings, J.; Popov, S.; Kamali, S.; et al. OpenImages: A Public Dataset for Large-Scale Multi-Label and Multi-Class Image Classification. Available online: https://storage.googleapis.com/openimages/web/index.html (accessed on 15 December 2020).
- Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Duerig, T.; et al. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 2020, 128, 1956–1981. [Google Scholar] [CrossRef]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3296–3297. [Google Scholar]
- Kappler, D.; Bohg, J.; Schaal, S. Leveraging big data for grasp planning. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 4304–4311. [Google Scholar]
- Binvox, a 3D Mesh Voxelizer. Available online: https://www.patrickmin.com/binvox/ (accessed on 15 December 2020).
- Nooruddin, F.S.; Turk, G. Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Trans. Vis. Comput. Graph. 2003, 9, 191–205. [Google Scholar] [CrossRef]
- Varley, J.; Dechant, C.; Richardson, A.; Ruales, J.; Allen, P. Shape completion enabled robotic grasping. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2442–2447. [Google Scholar]
- Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; pp. 2149–2154. [Google Scholar]
- Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Brahmbhatt, S.; Handa, A.; Hays, J.; Fox, D. ContactGrasp: Functional Multi-finger Grasp Synthesis from Contact. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Heravi, E.J.; Aghdam, H.H.; Puig, D. An Optimized Convolutional Neural Network with Bottleneck and Spatial Pyramid pooling layers for Classification of Foods. Pattern Recognit. Lett. 2018, 105, 50–58. [Google Scholar] [CrossRef]
- Intel RealSense Python Library. Available online: https://github.com/IntelRealSense/librealsense (accessed on 15 December 2020).
- URX Python Library. Available online: https://github.com/SintefManufacturing/python-urx (accessed on 15 December 2020).
Object | Pringles Can | Ball | Air Can | Thermos | Flashlight | Bottle | Box | Tea Box | Monster Can | Tiger | Toy | Milk Box |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grasping | 9 | 10 | 9 | 10 | 10 | 10 | 9 | 9 | 9 | 10 | 9 | 10 |
Relocation | 9 | 10 | 9 | 10 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valarezo Añazco, E.; Guerrero, S.; Rivera Lopez, P.; Oh, J.-H.; Ryu, G.-H.; Kim, T.-S. Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand. Electronics 2024, 13, 379. https://doi.org/10.3390/electronics13020379
Valarezo Añazco E, Guerrero S, Rivera Lopez P, Oh J-H, Ryu G-H, Kim T-S. Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand. Electronics. 2024; 13(2):379. https://doi.org/10.3390/electronics13020379
Chicago/Turabian StyleValarezo Añazco, Edwin, Sara Guerrero, Patricio Rivera Lopez, Ji-Heon Oh, Ga-Hyeon Ryu, and Tae-Seong Kim. 2024. "Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand" Electronics 13, no. 2: 379. https://doi.org/10.3390/electronics13020379
APA StyleValarezo Añazco, E., Guerrero, S., Rivera Lopez, P., Oh, J. -H., Ryu, G. -H., & Kim, T. -S. (2024). Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand. Electronics, 13(2), 379. https://doi.org/10.3390/electronics13020379