ESFuse: Weak Edge Structure Perception Network for Infrared and Visible Image Fusion
Abstract
:1. Introduction
- We propose a novel two-branch unsupervised end-to-end IVIF model that effectively predicts weak edge structure and texture features in different modal images, and reduces the feature differences between modalities to preserve the unique information of each modal image.
- We propose a feature reconstruction module that optimizes the fusion process by comprehensively preserving the details and structural features by multiscale computation; thus, the fused image can more realistically reflect the information of the source images, significantly improving the fusion performance.
- We propose using the DIM to highlight the features in the complementary regions of the source images by multiplying the attention weights generated from the gradient map with the depth semantic information.The DIM can effectively enhance the importance and expressiveness of their features by means of fine-tuning them, and efficiently preserves and exploits the semantic structure.
- Extensive experiments cover IVIF image fusion, and downstream tasks such as semantic segmentation, target detection, pose estimation and depth estimation, the corresponding subjective and quantitative evaluation results consistently demonstrate the competing SOTA performance of the proposed ESFuse.
2. Related Work
2.1. Traditional-Based Methods
2.2. AE-Based Methods
2.3. GAN-Based Methods
2.4. Diffusion Model-Based Methods
3. Method
3.1. Head Interpreter
3.2. Spatial and Channel Attention Block
3.3. Edge Refinement
3.4. Detail Injection Module
3.5. Fusion Module
3.6. Loss Function
4. Experiments
4.1. Datasets
4.2. Implementation Details
4.3. Evaluation Metrics
4.4. Qualitative Comparison
4.5. Quantitative Comparison
4.6. Task-Driven Evaluation
4.7. Qualitative Results of DIM
4.8. Ablation Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, X.; Ye, T.; Cheng, X.; Liu, W.; Tan, H. Bridging the Gap Between Multi-Focus and Multi-Modal: A Focused Integration Framework for Multi-Modal Image Fusion. In Proceedings of the Winter Conference on Applications of Computer Vision WACV, Waikoloa, HI, USA, 3–8 January 2024; pp. 1628–1637. [Google Scholar]
- Sagar, A.S.; Chen, Y.; Xie, Y.; Kim, H.S. MSA R-CNN: A comprehensive approach to remote sensing object detection and scene understanding. Expert Syst. Appl. 2024, 241, 122788. [Google Scholar] [CrossRef]
- Xia, C.; Wang, J.; Ge, B. MLBSNet: Mutual Learning and Boosting Segmentation Network for RGB-D Salient Object Detection. Electronics 2024, 13, 2690. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J. MHDNet: A Multi-Scale Hybrid Deep Learning Model for Person Re-Identification. Electronics 2024, 13, 1435. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Kittler, J. MDLatLRR: A Novel Decomposition Method for Infrared and Visible Image Fusion. IEEE Trans. Image Process. 2020, 29, 4733–4746. [Google Scholar] [CrossRef]
- Jian, L.; Yang, X.; Zhou, Z.; Zhou, K.; Liu, K. Multi-scale image fusion through rolling guidance filter. Futur. Gener. Comput. Syst. 2018, 83, 310–325. [Google Scholar] [CrossRef]
- Hait, E.; Gilboa, G. Spectral total-variation local scale signatures for image manipulation and fusion. IEEE Trans. Image Process. 2018, 28, 880–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, J.; Feng, X.; He, G.; Fan, J. Fusion method for infrared and visible images by using non-negative sparse representation. Infrared Phys. Technol. 2014, 67, 477–489. [Google Scholar] [CrossRef]
- Zong, J.; Qiu, T. Medical image fusion based on sparse representation of classified image patches. Biomed. Signal Process. Control. 2017, 34, 195–205. [Google Scholar] [CrossRef]
- Paramanandham, N.; Rajendiran, K. Multi sensor image fusion for surveillance applications using hybrid image fusion algorithm. Multimed Tools. 2018, 77, 12405–12436. [Google Scholar] [CrossRef]
- Yang, Y.; Que, Y.; Huang, S.; Lin, P. Multiple Visual Features Measurement With Gradient Domain Guided Filtering for Multisensor Image Fusion. IEEE Trans. Instrum. Meas 2017, 66, 691–703. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, X.; Pei, H.; Zhao, Y. A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled Shearlet transform. Infrared Phys. Technol. 2015, 73, 286–297. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, J.; Ma, J. MURF: Mutually Reinforcing Multi-modal Image Registration and Fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12148–12166. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, X.; Huang, Z.; Wu, G.; Liu, R.; Zhong, W.; Luo, Z. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5802–5811. [Google Scholar]
- Liu, Y.; Chen, X.; Wang, Z.; Wang, Z.J.; Ward, R.K.; Wang, X. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 2018, 42, 158–173. [Google Scholar] [CrossRef]
- Fu, Q.; Fu, H.; Wu, Y. Infrared and Visible Image Fusion Based on Mask and Cross-Dynamic Fusion. Electronics 2023, 12, 4342. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, B.; Wang, G.; Lin, J. Pedestrian Detection Method Based on Two-Stage Fusion of Visible Light Image and Thermal Infrared Image. Electronics 2023, 12, 3171. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J.; Kittler, J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images. Inf. Fusion 2021, 73, 72–86. [Google Scholar] [CrossRef]
- Ma, J.; Tang, L.; Xu, M.; Zhang, H.; Xiao, G. STDFusionNet: An infrared and visible image fusion network based on salient target detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, S.; Zhang, J.; Liang, C.; Zhang, C.; Liu, J. Efficient and model-based infrared and visible image fusion via algorithm unrolling. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1186–1196. [Google Scholar] [CrossRef]
- Jian, L.; Yang, X.; Liu, Z.; Jeon, G.; Gao, M.; Chisholm, D. SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 2020, 70, 1–15. [Google Scholar] [CrossRef]
- Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Li, X.; Tan, H. Physical Perception Network and an All-weather Multi-modality Benchmark for Adverse Weather Image Fusion. arXiv 2024, arXiv:2402.02090. [Google Scholar]
- Li, H.; Xu, T.; Wu, X.J.; Lu, J.; Kittler, J. LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11040–11052. [Google Scholar] [CrossRef] [PubMed]
- Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv 2018, arXiv:1811.12231. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Li, X.; Li, X.; Tan, H.; Li, J. SAMF: Small-area-aware multi-focus image fusion for object detection. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 3845–3849. [Google Scholar]
- Li, X.; Zhou, F.; Tan, H.; Zhang, W.; Zhao, C. Multimodal medical image fusion based on joint bilateral filter and local gradient energy. Inf. Sci. 2021, 569, 302–325. [Google Scholar] [CrossRef]
- Quan, S.; Qian, W.; Guo, J.; Zhao, H. Visible and infrared image fusion based on curvelet transform. In Proceedings of the 2nd International Conference on Systems and Informatics (ICSAI 2014), Shanghai, China, 15–17 November 2014; pp. 828–832. [Google Scholar]
- Liu, S.; Wang, J.; Lu, Y.; Li, H.; Zhao, J.; Zhu, Z. Multi-focus image fusion based on adaptive dual-channel spiking cortical model in non-subsampled shearlet domain. IEEE Access. 2019, 7, 56367–56388. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Li, X.; Han, D.; Tan, H.; Hou, Z.; Yi, P. Multi-focus image fusion based on multiscale fuzzy quality assessment. Digit. Signal Process. 2024, 153, 104592. [Google Scholar] [CrossRef]
- Li, X.; Zhou, F.; Tan, H.; Chen, Y.; Zuo, W. Multi-focus image fusion based on nonsubsampled contourlet transform and residual removal. Signal Process. 2021, 184, 108062. [Google Scholar] [CrossRef]
- Li, X.; Wan, W.; Zhou, F.; Cheng, X.; Jie, Y.; Tan, H. Medical image fusion based on sparse representation and neighbor energy activity. Biomed. Signal Process. Control 2023, 80, 104353. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J. DenseFuse: A fusion approach to infrared and visible images. IEEE Trans. Image Process. 2018, 28, 2614–2623. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Tan, H.; Yang, L.; Wang, G.; Yi, P. DeDNet: Infrared and visible image fusion with noise removal by decomposition-driven network. Measurement 2024, 237, 115092. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Jiang, J.; Mei, X.; Zhang, X.P. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 2020, 29, 4980–4995. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Duan, H.; Pei, H.; Ding, L. Triple-discriminator generative adversarial network for infrared and visible image fusion. Neurocomputing 2022, 483, 183–194. [Google Scholar] [CrossRef]
- Nichol, A.Q.; Dhariwal, P. Improved denoising diffusion probabilistic models. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 8162–8171. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Zhao, Z.; Bai, H.; Zhu, Y.; Zhang, J.; Xu, S.; Zhang, Y.; Zhang, K.; Meng, D.; Timofte, R.; Van Gool, L. DDFM: Denoising diffusion model for multi-modality image fusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 8082–8093. [Google Scholar]
- Xu, Y.; Li, X.; Jie, Y.; Tan, H. Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model. arXiv 2024, arXiv:2404.17357. [Google Scholar]
- Chung, H.; Kim, J.; Mccann, M.T.; Klasky, M.L.; Ye, J.C. Diffusion posterior sampling for general noisy inverse problems. arXiv 2022, arXiv:2209.14687. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Tang, L.; Yuan, J.; Zhang, H.; Jiang, X.; Ma, J. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware. Inf. Fusion 2022, 83, 79–92. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Le, Z.; Jiang, J.; Guo, X. Fusiondn: A unified densely connected network for image fusion. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12484–12491. [Google Scholar]
- Toet, A. The TNO multiband image data collection. Data Brief 2017, 15, 249–251. [Google Scholar] [CrossRef]
- Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 1. [Google Scholar] [CrossRef]
- Hossny, M.; Nahavandi, S.; Creighton, D. Comments on ‘Information measure for performance of image fusion’. Electron. Lett. 2008, 44, 1066–1067. [Google Scholar]
- Zhao, J.; Laganiere, R.; Liu, Z. Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput. Inf. Control 2007, 3, 1433–1447. [Google Scholar]
- Liu, Z.; Forsyth, D.S.; Laganière, R. A feature-based metric for the quantitative evaluation of pixel-level image fusion. Comput. Vis. Image Underst. 2008, 109, 56–68. [Google Scholar] [CrossRef]
- Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Piella, G.; Heijmans, H. A new quality metric for image fusion. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429), Barcelona, Spain, 14–17 September 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 3, pp. III–173. [Google Scholar]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, J.; Fan, X.; Liu, R.; Zhong, W.; Luo, Z. Reconet: Recurrent correction network for fast and efficient multi-modality image fusion. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 539–555. [Google Scholar]
- Liang, P.; Jiang, J.; Liu, X.; Ma, J. Fusion from decomposition: A self-supervised decomposition approach for image fusion. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 719–735. [Google Scholar]
- Wang, D.; Liu, J.; Fan, X.; Liu, R. Unsupervised Misaligned Infrared and Visible Image Fusion via Cross-Modality Image Generation and Registration. In Proceedings of the International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Ranftl, R.; Lasinger, K.; Hafner, D.; Schindler, K.; Koltun, V. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1623–1637. [Google Scholar] [CrossRef]
- Tang, L.; Yuan, J.; Ma, J. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network. Inf. Fusion 2022, 82, 28–42. [Google Scholar] [CrossRef]
Methods | Venue | MSRS | ||||
---|---|---|---|---|---|---|
MURF [13] | TPAMI 2023 | 0.2575 | 0.6626 | 0.2242 | 0.3665 | 3.0720 |
LRRNET [24] | TPAMI 2023 | 0.4607 | 0.7110 | 0.3372 | 0.3928 | 2.6509 |
U2Fusion [54] | TPAMI 2020 | 0.3834 | 0.7599 | 0.3141 | 0.4686 | 2.3203 |
ReCoNet [55] | ECCV 2022 | 0.3927 | 0.3705 | 0.3760 | 0.3780 | 3.0006 |
Defusion [56] | ECCV 2022 | 0.4702 | 0.7483 | 0.3757 | 0.5142 | 2.6539 |
TarDAL [14] | CVPR 2022 | 0.3841 | 0.4855 | 0.1639 | 0.4088 | 1.7156 |
UMF-CMGR [57] | IJCAI 2022 | 0.3278 | 0.6560 | 0.2104 | 0.3510 | 2.1364 |
ESFuse | - | 0.5690 | 0.7714 | 0.4771 | 0.5247 | 3.3181 |
Road Sence | ||||||
MURF [13] | TPAMI 2023 | 0.3489 | 0.8017 | 0.3370 | 0.4852 | 6.6474 |
LRRNET [24] | TPAMI 2023 | 0.3936 | 0.5942 | 0.2460 | 0.5096 | 4.6399 |
U2Fusion [54] | TPAMI 2020 | 0.3604 | 0.8135 | 0.3705 | 0.5178 | 4.6377 |
ReCoNet [55] | ECCV 2022 | 0.4341 | 0.7414 | 0.3049 | 0.4785 | 3.8011 |
Defusion [56] | ECCV 2022 | 0.4085 | 0.7583 | 0.2870 | 0.4982 | 3.5582 |
TarDAL [14] | CVPR 2022 | 0.4536 | 0.7462 | 0.3038 | 0.4060 | 4.1746 |
UMF-CMGR [57] | IJCAI 2022 | 0.4183 | 0.8133 | 0.4022 | 0.5029 | 4.0954 |
ESFuse | - | 0.5486 | 0.7581 | 0.4536 | 0.4986 | 4.7343 |
TNO | ||||||
MURF [13] | TPAMI 2023 | 0.2297 | 0.7809 | 0.2077 | 0.4906 | 4.7921 |
LRRNET [24] | TPAMI 2023 | 0.3479 | 0.6771 | 0.2348 | 0.5514 | 4.3380 |
U2Fusion [54] | TPAMI 2020 | 0.2791 | 0.8333 | 0.2657 | 0.5592 | 3.4423 |
ReCoNet [55] | ECCV 2022 | 0.3304 | 0.7771 | 0.2291 | 0.5403 | 3.0014 |
Defusion [56] | ECCV 2022 | 0.3027 | 0.7671 | 0.1465 | 0.5165 | 2.2102 |
TarDAL [14] | CVPR 2022 | 0.4110 | 0.7684 | 0.2394 | 0.4402 | 3.3909 |
UMF-CMGR [57] | IJCAI 2022 | 0.2836 | 0.8178 | 0.2503 | 0.4990 | 2.7568 |
ESFuse | - | 0.4845 | 0.7852 | 0.3167 | 0.5575 | 4.8459 |
M3FD | ||||||
MURF [13] | TPAMI 2023 | 0.3468 | 0.7973 | 0.1816 | 0.4931 | 3.4529 |
LRRNET [24] | TPAMI 2023 | 0.3917 | 0.8447 | 0.3218 | 0.4479 | 2.4001 |
U2Fusion [54] | TPAMI 2020 | 0.4202 | 0.8790 | 0.4132 | 0.5481 | 2.7574 |
ReCoNet [55] | ECCV 2022 | 0.4498 | 0.8421 | 0.3304 | 0.4510 | 2.7424 |
Defusion [56] | ECCV 2022 | 0.4348 | 0.8512 | 0.3585 | 0.4677 | 1.8383 |
TarDAL [14] | CVPR 2022 | 0.4777 | 0.8257 | 0.2584 | 0.4030 | 1.8877 |
UMF-CMGR [57] | IJCAI 2022 | 0.4655 | 0.8624 | 0.4200 | 0.4273 | 2.0321 |
ESFuse | - | 0.5582 | 0.8832 | 0.4653 | 0.5487 | 3.5437 |
Method | Background | Car | Person | Bike | Curve | Car Stop | Color Tone | [email protected] |
---|---|---|---|---|---|---|---|---|
Infrared Image | 0.944 | 0.586 | 0.806 | 0.184 | 0.867 | 0.821 | 0.000 | 0.384 |
Visible Image | 0.974 | 0.873 | 0.407 | 0.823 | 0.660 | 0.555 | 0.481 | 0.682 |
MURF | 0.979 | 0.871 | 0.739 | 0.823 | 0.645 | 0.515 | 0.466 | 0.720 |
TarDAL | 0.982 | 0.888 | 0.811 | 0.827 | 0.660 | 0.550 | 0.464 | 0.740 |
U2Fusion | 0.981 | 0.880 | 0.823 | 0.815 | 0.667 | 0.429 | 0.261 | 0.694 |
ReCoNet | 0.982 | 0.886 | 0.823 | 0.829 | 0.659 | 0.540 | 0.462 | 0.740 |
Defusion | 0.980 | 0.871 | 0.820 | 0.797 | 0.645 | 0.357 | 0.440 | 0.701 |
LRRNet | 0.971 | 0.816 | 0.639 | 0.754 | 0.388 | 0.302 | 0.300 | 0.553 |
UMF-CMGR | 0.981 | 0.884 | 0.819 | 0.820 | 0.656 | 0.514 | 0.464 | 0.734 |
ESFuse | 0.984 | 0.889 | 0.805 | 0.827 | 0.659 | 0.543 | 0.484 | 0.741 |
Method | Background | Car | Person | Bike | Curve | Car Stop | Guardrail | mIoU |
---|---|---|---|---|---|---|---|---|
Visible Image | 97.92 | 86.79 | 39.97 | 70.51 | 53.33 | 71.84 | 85.90 | 72.32 |
Infrared Image | 96.14 | 61.90 | 70.00 | 24.46 | 33.64 | 20.67 | 0.06 | 39.53 |
LRRNet | 98.34 | 89.09 | 68.12 | 69.29 | 52.02 | 71.57 | 81.95 | 74.77 |
Defusion | 98.46 | 89.11 | 73.82 | 71.44 | 64.27 | 73.21 | 80.59 | 76.03 |
UMF-CMGR | 98.17 | 87.06 | 70.87 | 66.00 | 51.39 | 68.22 | 73.59 | 70.99 |
ReCoNet | 97.56 | 83.12 | 56.55 | 57.38 | 37.84 | 55.91 | 77.91 | 64.73 |
U2Fusion | 98.42 | 88.84 | 72.88 | 70.92 | 59.30 | 72.09 | 79.15 | 75.22 |
TarDAL | 98.45 | 89.50 | 73.17 | 69.84 | 61.49 | 72.21 | 80.53 | 75.60 |
MURF | 98.30 | 87.88 | 73.19 | 68.40 | 53.37 | 70.22 | 75.07 | 72.67 |
ESFuse | 98.50 | 89.64 | 74.40 | 69.48 | 60.30 | 73.46 | 81.76 | 76.33 |
Methods | |||||
---|---|---|---|---|---|
w/o DIM | 0.4696 | 0.6507 | 0.3838 | 0.5040 | 2.4739 |
w/o edge refinement | 0.5394 | 0.7668 | 0.4382 | 0.5087 | 3.1434 |
w/o multiscale reconstruction | 0.4994 | 0.7080 | 0.4119 | 0.5287 | 3.2434 |
ESFuse | 0.5690 | 0.7714 | 0.47709 | 0.5247 | 3.3181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Tan, H.; Cheng, X.; Li, X. ESFuse: Weak Edge Structure Perception Network for Infrared and Visible Image Fusion. Electronics 2024, 13, 4115. https://doi.org/10.3390/electronics13204115
Liu W, Tan H, Cheng X, Li X. ESFuse: Weak Edge Structure Perception Network for Infrared and Visible Image Fusion. Electronics. 2024; 13(20):4115. https://doi.org/10.3390/electronics13204115
Chicago/Turabian StyleLiu, Wuyang, Haishu Tan, Xiaoqi Cheng, and Xiaosong Li. 2024. "ESFuse: Weak Edge Structure Perception Network for Infrared and Visible Image Fusion" Electronics 13, no. 20: 4115. https://doi.org/10.3390/electronics13204115
APA StyleLiu, W., Tan, H., Cheng, X., & Li, X. (2024). ESFuse: Weak Edge Structure Perception Network for Infrared and Visible Image Fusion. Electronics, 13(20), 4115. https://doi.org/10.3390/electronics13204115