Recognition of Street Landscape Patterns in Kunming City Based on Intelligent Decision Algorithm and Regional Cultural Expression
Abstract
:1. Introduction
2. Research Objects and Methods
2.1. Research Object and Current Status
2.2. Selection of Evaluation Methods
2.3. Evaluation Factors and Evaluation Models
2.4. Determination of Indicator Weights
3. Research Results and Discussion
3.1. Evaluation Model Total Weight Analysis
3.2. Correlation Analysis Between Evaluation Model Factors
3.3. Analysis of the Street with the Highest Single Landscape Factor Score
3.4. Analysis of Regional Street Patterns
4. Conclusions
4.1. Main Findings and Work Contributions
4.2. Research Significance and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Y.; Xie, R.; Yu, F.R.; Huang, T.; Liu, Y. Green intelligence networking for connected and autonomous vehicles in smart cities. IEEE Trans. Green Commun. Netw. 2022, 6, 1591–1603. [Google Scholar] [CrossRef]
- Tomala, M.; Staniec, K. Modelling of ML-Enablers in 5G Radio Access Network-Conceptual Proposal of Computational Framework. Electronics 2023, 12, 481. [Google Scholar] [CrossRef]
- Porteiro, R.; Nesmachnow, S.; Moreno-Bernal, P.; Torres-Aguilar, C.E. Computational intelligence for residential electricity consumption assessment: Detecting air conditioner use in households. Sustain. Energy Technol. Assess. 2023, 58, 103319. [Google Scholar] [CrossRef]
- Wang, F.; Tan, C.; Li, M.; Gu, D.; Wang, H. Research on traffic design of urban vital streets. Sustainability 2022, 14, 6468. [Google Scholar] [CrossRef]
- Wu, W.; Guo, J.; Ma, Z.; Zhao, K. Data-driven approach to assess street safety: Large-scale analysis of the microscopic design. ISPRS Int. J. Geo-Inf. 2022, 11, 537. [Google Scholar] [CrossRef]
- Bejleri, I.; Noh, S.; Bufkin, J.N.; Zhou, R.; Wasserman, D. Using 3D Rule-Based Modeling to Interactively Visualize “Complete Streets” Design Scenarios. Transp. Res. Rec. 2021, 2675, 14–30. [Google Scholar] [CrossRef]
- Rodriguez-Valencia, A.; Ortiz-Ramirez, H.A. Understanding green street design: Evidence from three cases in the US. Sustainability 2021, 13, 1916. [Google Scholar] [CrossRef]
- Maharoof, N.; Emmanuel, R.; Thomson, C. Compatibility of local climate zone parameters for climate sensitive street design: Influence of openness and surface properties on local climate. Urban Clim. 2020, 33, 100642. [Google Scholar] [CrossRef]
- Bai, M.; Hu, R.; Lian, H.; Zhou, W. Correlation Study of Commercial Street Morphology and Pedestrian Activity in Cold Region Summers under Thermal Comfort Guidance: A Case Study of Sanlitun, Beijing. Buildings 2024, 14, 1751. [Google Scholar] [CrossRef]
- Sahebgharani, A.; Wiśniewski, S. Developing a Bi-Level Optimization Model for the Coupled Street Network and Land Subdivision Design Problem with Various Lot Areas in Irregular Blocks. ISPRS Int. J. Geo-Inf. 2024, 13, 224. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, Q.; Jing, Y.; Xing, L.; An, R.; Tong, Z.; Liu, Y. Understanding the nonlinear effects of the street canyon characteristics on human perceptions with street view images. Ecol. Indic. 2023, 154, 110756. [Google Scholar] [CrossRef]
- Mu, X.; Mu, L.; Zhang, J. The Impact of Street Elements on Pedestrian Stopping Behavior in Commercial Pedestrian Streets from the Perspective of Commercial Vitality. Sustainability 2024, 16, 7727. [Google Scholar] [CrossRef]
- Xuan, W.; Zhao, L. Research on correlation between spatial quality of urban streets and pedestrian walking characteristics in china based on street view big data. J. Urban Plan. Dev. 2022, 148, 05022035. [Google Scholar] [CrossRef]
- Suzuki, M.; Mori, J.; Maeda, T.N.; Ikeda, J. The economic value of urban landscapes in a suburban city of Tokyo, Japan: A semantic segmentation approach using Google Street View images. J. Asian Archit. Build. Eng. 2023, 22, 1110–1125. [Google Scholar] [CrossRef]
- Zhang, A.; Song, L.; Zhang, F. Perception of pleasure in the urban running environment with street view images and running routes. J. Geogr. Sci. 2022, 32, 2624–2640. [Google Scholar] [CrossRef]
- Fang, F.; Greenlee, A.J.; He, Y.; Eutsler, E. Evaluating the quality of street trees in Washington, DC: Implications for environmental justice. Urban For. Urban Green. 2023, 85, 127947. [Google Scholar] [CrossRef]
- Wen, D.; Liu, M.; Yu, Z. Quantifying ecological landscape quality of urban street by open street view images: A case study of xiamen island, china. Remote Sens. 2022, 14, 3360. [Google Scholar] [CrossRef]
- Yu, X.; Her, Y.; Huo, W.; Chen, G.; Qi, W. Spatio-temporal monitoring of urban street-side vegetation greenery using Baidu Street View images. Urban For. Urban Green. 2022, 73, 127617. [Google Scholar] [CrossRef]
- Rui, Q.; Cheng, H. Quantifying the spatial quality of urban streets with open street view images: A case study of the main urban area of Fuzhou. Ecol. Indic. 2023, 156, 111204. [Google Scholar] [CrossRef]
- Wei, J.; Yue, W.; Li, M.; Gao, J. Mapping human perception of urban landscape from street-view images: A deep-learning approach. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102886. [Google Scholar] [CrossRef]
- Boeing, G.; Ha, J. Resilient by design: Simulating street network disruptions across every urban area in the world. Transp. Res. Part A Policy Pract. 2024, 182, 104016. [Google Scholar] [CrossRef]
- Xi, C.; Han, L.; Wang, J.; Feng, Z.; Kumar, P.; Cao, S.J. How can greenery space mitigate urban heat island? An analysis of cooling effect, carbon sequestration, and nurturing cost at the street scale. J. Clean. Prod. 2023, 419, 138230. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Yang, J. Simulation framework for early design guidance of urban streets to improve outdoor thermal comfort and building energy efficiency in summer. Build. Environ. 2023, 228, 109815. [Google Scholar] [CrossRef]
- Han, Y.; Zhong, T.; Yeh, A.G.; Zhong, X.; Chen, M.; Lü, G. Mapping seasonal changes of street greenery using multi-temporal street-view images. Sustain. Cities Soc. 2023, 92, 104498. [Google Scholar] [CrossRef]
- Cui, P.; Jiang, J.; Zhang, J.; Wang, L. Effect of street design on UHI and energy consumption based on vegetation and street aspect ratio: Taking Harbin as an example. Sustain. Cities Soc. 2023, 92, 104484. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Yao, Y. BMW-TOPSIS: A generalized TOPSIS model based on three-way decision. Inf. Sci. 2022, 607, 799–818. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, J.; Zhao, H. A robust method for avoiding rank reversal in the TOPSIS. Comput. Ind. Eng. 2022, 174, 108776. [Google Scholar] [CrossRef]
- Khan, M.J.; Ali, M.I.; Kumam, P.; Kumam, W.; Aslam, M.; Alcantud, J.C.R. Improved generalized dissimilarity measure-based VIKOR method for Pythagorean fuzzy sets. Int. J. Intell. Syst. 2022, 37, 1807–1845. [Google Scholar] [CrossRef]
- Jana, C.; Mohamadghasemi, A.; Pal, M.; Martinez, L. An improvement to the interval type-2 fuzzy VIKOR method. Knowl. Based Syst. 2023, 280, 111055. [Google Scholar] [CrossRef]
- Falch, L.; De Silva, C.W. Improvement of VIKOR method with application to Multi-Objective design problems. Int. J. Inf. Technol. Decis. Mak. 2023, 22, 777–802. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Pan, T.; Liu, H.; Si, H. Fuzzy Comprehensive Evaluation of Pilot Cadets’ Flight Performance Based on G1 Method. Appl. Sci. 2023, 13, 12058. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Guo, L.; Wang, L.; Cui, J.; Yang, C. Fuzzy Comprehensive Evaluation of Hydro-Viscous Drive Performance Degradation Based on Improved Game Theory Combination Weighting. IEEE Sens. J. 2024, 24, 23575–23584. [Google Scholar] [CrossRef]
- Moslem, S. A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable urban transport solutions. Eng. Appl. Artif. Intell. 2024, 128, 107447. [Google Scholar] [CrossRef]
- Chen, C.Y.; Huang, J.J. Deriving Fuzzy Weights from the Consistent Fuzzy Analytic Hierarchy Process. Mathematics 2022, 10, 3499. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, J.; Zhu, Y.; Chen, Q.; Liang, X. Systematic Evaluation and Optimization of Unmanned Aerial Vehicle Tilt Photogrammetry Based on Analytic Hierarchy Process. Appl. Sci. 2022, 12, 7665. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, H.; Zhou, L.; Yang, C.; Li, B.; Zhao, X. Fuzzy analytic hierarchy process with ordered pair of normalized real numbers. Soft Comput. 2023, 27, 12267–12288. [Google Scholar] [CrossRef]
- Zhang, B.; Pedrycz, W.; Fayek, A.R.; Dong, Y. A differential evolution-based consistency improvement method in AHP with an optimal allocation of information granularity. IEEE Trans. Cybern. 2020, 52, 6733–6744. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, C.; Chen, X.; Li, F.; Yi, D.; Wu, Y. Genetic algorithm optimised Hadamard product method for inconsistency judgement matrix adjustment in AHP and automatic analysis system development. Expert Syst. Appl. 2023, 211, 118689. [Google Scholar] [CrossRef]
- Xing, Z.; Zhao, S.; Guo, W.; Meng, F.; Guo, X.; Wang, S.; He, H. Coal resources under carbon peak: Segmentation of massive laser point clouds for coal mining in underground dusty environments using integrated graph deep learning model. Energy 2023, 285, 128771. [Google Scholar] [CrossRef]
- Jin, F.; Wang, F.; Zhao, K.; Chen, H.; Guirao, J.L. The method of judging satisfactory consistency of linguistic judgment matrix based on adjacency matrix and 3-loop matrix. AIMS Math. 2024, 9, 18944–18967. [Google Scholar] [CrossRef]
- Pant, S.; Kumar, A.; Ram, M.; Klochkov, Y.; Sharma, H.K. Consistency Indices in Analytic Hierarchy Process: A Review. Mathematics 2022, 10, 1206. [Google Scholar] [CrossRef]
- Srđević, Z.; Srđević, B.; Ždero, S.; Ilić, M. How MCDM method and the number of comparisons influence the priority vector. Comput. Sci. Inf. Syst. 2022, 19, 251–275. [Google Scholar] [CrossRef]
- Wang, L.; Su, Y. Economic Loss and Financial Risk Assessment of Ecological Environment Caused by Environmental Pollution under Big Data. Sustainability 2023, 15, 3834. [Google Scholar] [CrossRef]
- Jia, P.; Lv, J.; Sun, W.; Jin, H.; Meng, G.; Li, J. Modified analytic hierarchy process for risk assessment of fire and explosion accidents of external floating roof tanks. Process Saf. Prog. 2024, 43, 9–26. [Google Scholar] [CrossRef]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Hierarchical Model | Index | Matrix | Consistency Check | Hierarchical Model | Consistency Check | |||
---|---|---|---|---|---|---|---|---|
A-Bi | Bi | B1 | B2 | B3 | B4 | CR = 0.0750 < 0.1 | C1-Di | CR = 0.0833 < 0.1 |
B1 | 1.0000 | 0.5000 | 0.5000 | 0.5000 | C2-Di | CR = 0.0807 < 0.1 | ||
B2 | 2.0000 | 1.0000 | 2.0000 | 3.0000 | C3-Di | CR = 0.0999 < 0.1 | ||
B3 | 2.0000 | 0.5000 | 1.0000 | 2.0000 | C4-Di | CR = 0.0952 < 0.1 | ||
B4 | 2.0000 | 0.3333 | 0.5000 | 1.0000 | C5-Di | CR = 0.0961 < 0.1 | ||
B1-Ci | Ci | C1 | C2 | C3 | C4 | CR = 0.0456 < 0.1 | C6-Di | CR = 0.0985 < 0.1 |
C2 | 1.0000 | 2.0000 | 0.5000 | 2.0000 | C7-Di | CR = 0.0984 < 0.1 | ||
C3 | 0.5000 | 1.0000 | 0.5000 | 2.0000 | C8-Di | CR = 0.0994 < 0.1 | ||
C4 | 2.0000 | 2.0000 | 1.0000 | 2.0000 | C9-Di | CR = 0.0945 < 0.1 | ||
B2-Ci | Ci | C5 | C6 | C7 | C8 | CR = 0.0695 < 0.1 | C10-Di | CR = 0.0998 < 0.1 |
C5 | 1.0000 | 1.0000 | 2.0000 | 2.0000 | C11-Di | CR = 0.0969 < 0.1 | ||
C6 | 1.0000 | 1.0000 | 0.5000 | 2.0000 | C12-Di | CR = 0.0938 < 0.1 | ||
C7 | 0.5000 | 2.0000 | 1.0000 | 2.0000 | C13-Di | CR = 0.0971 < 0.1 | ||
C8 | 0.5000 | 0.5000 | 0.5000 | 1.0000 | C14-Di | CR = 0.0966 < 0.1 | ||
B3-Ci | Ci | C9 | C10 | C11 | CR = 0.0517 < 0.1 | C15-Di | CR = 0.0987 < 0.1 | |
C9 | 1.0000 | 2.0000 | 2.0000 | C16-Di | CR = 0.0932 < 0.1 | |||
C10 | 0.5000 | 1.0000 | 0.5000 | |||||
C11 | 0.5000 | 2.0000 | 1.0000 | |||||
B4-Ci | Ci | C12 | C13 | CR = 0.0000 < 0.1 | ||||
C12 | 1.0000 | 1.0000 | ||||||
C13 | 1.0000 | 1.0000 | ||||||
B5-Ci | Ci | C14 | C15 | C16 | CR = 0.0176 < 0.1 | |||
C14 | 1.0000 | 3.0000 | 2.0000 | |||||
C15 | 0.3333 | 1.0000 | 1.0000 | |||||
C16 | 0.5000 | 1.0000 | 1.0000 |
Target Layer | Criteria Layer | Total Weight | Factor Layer | Weight | Total Weight | Solution Layer | Total Weight of the Solution Layer |
---|---|---|---|---|---|---|---|
Assessment of regional street landscape in Kunming (A) | The general layout of the street (B1) | 0.1591 | Cross-sectional form of street (C1) | 0.1981 | 0.0315 | D1 | 0.0830 |
The rationality of street space layout (C2) | 0.3873 | 0.0616 | D2 | 0.0825 | |||
Architectural facade style and regionality (C3) | 0.2748 | 0.0437 | D3 | 0.1531 | |||
The degree of integration between greening and architecture (C4) | 0.1397 | 0.0222 | D4 | 0.2076 | |||
Plant landscape features (B2) | 0.3397 | Plant diversity and disposition (C5) | 0.3353 | 0.1139 | D5 | 0.0435 | |
Proportion and characteristics of native plants (C6) | 0.2416 | 0.0821 | D6 | 0.1274 | |||
Plant characteristic landscape construction (C7) | 0.2867 | 0.0974 | D7 | 0.1173 | |||
The coverage rate of street greening (C8) | 0.1364 | 0.0463 | D8 | 0.0505 | |||
Historical and cultural heritage (B3) | 0.2314 | Historical and cultural heritage and expression (C9) | 0.4905 | 0.1135 | D9 | 0.0513 | |
Integration of regional cultural elements (C10) | 0.1976 | 0.0457 | D10 | 0.0837 | |||
Creating a narrative landscape (C11) | 0.3119 | 0.0722 | |||||
Residents’ sense of participation and identity (B4) | 0.1689 | A sense of regional identity (C12) | 0.5000 | 0.0844 | |||
A sense of belonging among residents and tourists (C13) | 0.5000 | 0.0844 | |||||
Walking friendliness and accessibility (B5) | 0.1009 | Width of sidewalk (C14) | 0.5485 | 0.0553 | |||
Barrier-free design (C15) | 0.2106 | 0.0212 | |||||
Lighting design (C16) | 0.2409 | 0.0243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Xing, Z.; Chen, X.; Wang, J.; Yang, X.; Yang, L.; Wang, L.; Li, R.; Wang, Y. Recognition of Street Landscape Patterns in Kunming City Based on Intelligent Decision Algorithm and Regional Cultural Expression. Electronics 2024, 13, 4183. https://doi.org/10.3390/electronics13214183
Zhu X, Xing Z, Chen X, Wang J, Yang X, Yang L, Wang L, Li R, Wang Y. Recognition of Street Landscape Patterns in Kunming City Based on Intelligent Decision Algorithm and Regional Cultural Expression. Electronics. 2024; 13(21):4183. https://doi.org/10.3390/electronics13214183
Chicago/Turabian StyleZhu, Xingxiao, Zhizhong Xing, Xia Chen, Jing Wang, Xinyue Yang, Lei Yang, Lin Wang, Ruimin Li, and Yayu Wang. 2024. "Recognition of Street Landscape Patterns in Kunming City Based on Intelligent Decision Algorithm and Regional Cultural Expression" Electronics 13, no. 21: 4183. https://doi.org/10.3390/electronics13214183
APA StyleZhu, X., Xing, Z., Chen, X., Wang, J., Yang, X., Yang, L., Wang, L., Li, R., & Wang, Y. (2024). Recognition of Street Landscape Patterns in Kunming City Based on Intelligent Decision Algorithm and Regional Cultural Expression. Electronics, 13(21), 4183. https://doi.org/10.3390/electronics13214183