An Optimized Multi-Level Control Method for Wireless Power Transfer System Using the Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
- (1)
- Compared to traditional impedance matching methods for resonant networks, this paper takes into account the transmission losses at various stages of the multi-level WPT system, including the DC-DC converter, which enables more stable power output and higher transmission efficiency.
- (2)
- Considering the variations in load and mutual coupling of the WPT system under different industrial conditions, a joint optimization objective function for power and efficiency is established, and the PSO algorithm is used for real-time solving, enabling constant power transmission and maximum efficiency in dynamic conditions.
- (3)
- The method used in this paper has good extended applicability and can be applied to various topologies of WPT systems, such as LCC-LCC and LCC-S.
- (4)
- This paper also establishes a 200 W wireless power transmission system to verify the effectiveness of the proposed method.
2. Analysis of the Circuit Model for Multi-Level Cascaded WPT Systems
2.1. Circuit Analysis for SS Compensated Topology
2.2. Analysis of Losses in the Boost Converter
2.3. Analysis of Losses in the Buck Converter
3. Analysis of Overall Transmission Efficiency and Power in Multi-Stage Controlled WPT Systems
3.1. Analysis of Overall Transmission Efficiency in WPT Systems
3.2. Analysis of Transfer Power in Multi-Stage Controlled WPT Systems
4. Efficiency Optimization Method Using Particle Swarm Optimization Algorithm
4.1. Formulation of the Objective Function
4.2. Maximum Efficiency Tracking Using Particle Swarm Optimization Algorithm
5. Experimental Validation
5.1. Load Estimation Experiment
5.2. Mutual Inductance Estimation Experiment
5.3. Experimental Verification of the Maximum Efficiency Tracking Based on PSO Algorithm
5.4. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Yao, S.; Pan, L.; Bie, Z.; Gao, Z.; Liu, Y.; Zhu, C. Prospects of capacitive power transfer technology in aerospace applications. Space Electron. Technol. 2024, 21, 1–10. [Google Scholar]
- Pothier, N. Spacecraft design considerations for spacecraft charging environments. In Proceedings of the 2017 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Seoul, Republic of Korea, 20–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 266–268. [Google Scholar]
- Zheng, L.; Zhang, J.; Bie, Z.; Wang, D.; Zhu, C. A Bidirectional Wireless Power Transfer System for Spacecraft Docking Mechanism. In Proceedings of the 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 27–29 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 275–280. [Google Scholar]
- Xie, J.; Song, X.; Zhang, Q.; Wang, W. Verification and Improvement of Electric Coupler Plugging in Spacecraft. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 227–230. [Google Scholar]
- Luo, B.; Hu, A.P.; Munir, H.; Zhu, Q.; Mai, R.; He, Z. Compensation Network Design of CPT Systems for Achieving Maximum Power Transfer Under Coupling Voltage Constraints. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 138–148. [Google Scholar] [CrossRef]
- Liu, W.; Luo, B.; He, X.; Wang, Z.; Mai, R. Analysis of compensation topology with constant-voltage/current output for multiple loads capacitive power transfer system. CSEE J. Power Energy Syst. 2023, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, B.; Cheng, H.; Wang, Z.; Jiang, C.; Mai, R. A multi-loads capacitive power transfer system for railway intelligent monitoring systems based on single relay plate. Int. J. Circuit Theory Appl. 2024, 52, 79–96. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Cui, S.; Bie, Z.; Chen, F.; Zhu, C. The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives. Renew. Sustain. Energy Rev. 2024, 189, 113910. [Google Scholar] [CrossRef]
- Luo, B.; Liu, Y.; Zhang, Y.; Bai, L.; Zhang, Y.; Wang, Z.; You, J.; Mai, R. A Multiple Independent-Load Output Capacitive Power Transfer System with High Coupler Misalignment-Tolerance for Railway Applications. IEEE Trans. Ind. Appl. 2024, 60, 7566–7577. [Google Scholar] [CrossRef]
- Zhang, L.; Song, D.; Zhao, X.; Zhang, Q. Analysis of the development of magnetic field coupled wireless power transfer technology. Space Electron. Technol. 2024, 21, 11–17. [Google Scholar]
- Zhang, L.; Yang, Z.; Zhang, Y.; Zhao, X.; Zhang, Q. Design and verification of micro-nano polymer spacecraft power system based on magnetic coupled wireless power transfer. Space Electron. Technol. 2024, 21, 79–85. [Google Scholar]
- Wang, D.; Cui, S.; Bie, Z.; Zhang, J.; Song, K.; Zhu, C. A Redundancy Design of Wireless Power Transfer System for Satellite Slip Ring with High Reliability. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless Power Transfer—An Overview. IEEE Trans. Ind. Electron. 2019, 66, 1044–1058. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Lee, C.K.; Hui, S.Y. On the relationship of quality factor and hollow winding structure of coreless printed spiral winding (CPSW) inductor. IEEE Trans. Power Electron. 2012, 27, 3050–3056. [Google Scholar]
- Cove, S.R.; Ordonez, M.; Shafiei, N.; Zhu, J. Improving Wireless Power Transfer Efficiency Using Hollow Windings with Track-Width-Ratio. IEEE Trans. Power Electron. 2016, 31, 6524–6533. [Google Scholar] [CrossRef]
- Lee, S.H.; Lorenz, R.D. Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap. IEEE Trans. Ind. Appl. 2011, 47, 2495–2504. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, Y.; Ma, D.; Tang, H. Enhancing the coupling of a two-coil system using a super’s caterer. Int. J. Mod. Phys. B 2016, 30, 1650015. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, C.Q.; Ma, T.; Zhang, B.; Xiang, J.; Zhou, J. Core Loss Optimization for Compact Coupler via Square Crushed Nanocrystalline Flake Ribbon Core. IEEE Trans. Power Electron. 2024, 39, 9095–9099. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, C.; Wang, Y.; Fan, Y.; Luo, B.; Cheng, Y. Compact Curved Coupler with Novel Flexible Nanocrystalline Flake Ribbon Core for Autonomous Underwater Vehicles. IEEE Trans. Power Electron. 2024, 39, 53–57. [Google Scholar] [CrossRef]
- Zhong, W.X.; Zhang, C.; Liu, X.; Hui, S.Y.R. A Methodology for Making a Three-Coil Wireless Power Transfer System More Energy Efficient Than a Two-Coil Counterpart for Extended Transfer Distance. IEEE Trans. Power Electron. 2015, 30, 933–942. [Google Scholar] [CrossRef]
- Ye, Z.; Sun, Y.; Dai, X.; Tang, C.; Wang, Z.; Su, Y. Energy Efficiency Analysis of U-coil Wireless Power Transfer System. IEEE Trans. Power Electron. 2015, 31, 4809–4817. [Google Scholar] [CrossRef]
- Beh, T.C.; Imura, T.; Kato, M.; Hori, Y. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching. In Proceedings of the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2011–2016. [Google Scholar]
- Xue, R.; Cheng, K.; Je, M. High-Efficiency Wireless Power Transfer for Biomedical Implants by Optimal Resonant Load Transformation. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 867–874. [Google Scholar] [CrossRef]
- Lim, Y.; Tang, H.; Lim, S.; Park, J. An Adaptive Impedance-Matching Network Based on a Novel Capacitor Matrix for Wireless Power Transfer. IEEE Trans. Power Electron. 2014, 29, 4403–4413. [Google Scholar] [CrossRef]
- Lee, G.; Waters, B.H.; Shin, Y.G.; Smith, J.R.; Park, W.S. A Reconfigurable Resonant Coil for Range Adaptation Wireless Power Transfer. IEEE Trans. Microw. Theory Tech. 2016, 64, 624–632. [Google Scholar] [CrossRef]
- Fu, M.; Ma, C.; Zhu, X. A Cascaded Boost–Buck Converter for High-Efficiency Wireless Power Transfer Systems. IEEE Trans. Ind. Inform. 2014, 10, 1972–1980. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wang, K.; Chen, W.; Yang, X. A Maximum Efficiency Point Tracking Control Scheme for Wireless Power Transfer Systems Using Magnetic Resonant Coupling. IEEE Trans. Power Electron. 2015, 30, 3998–4008. [Google Scholar] [CrossRef]
- Dai, X.; Li, X.; Li, Y.; Hu, A.P. Maximum Efficiency Tracking for Wireless Power Transfer Systems with Dynamic Coupling Coefficient Estimation. IEEE Trans. Power Electron. 2018, 33, 5005–5015. [Google Scholar] [CrossRef]
- Zhong, W.X.; Hui, S.Y.R. Maximum Energy Efficiency Tracking for Wireless Power Transfer Systems. IEEE Trans. Power Electron. 2015, 30, 4025–4034. [Google Scholar] [CrossRef]
- Zhong, W.; Hui, S.Y.R. Charging Time Control of Wireless Power Transfer Systems Without Using Mutual Coupling Information and Wireless Communication System. IEEE Trans. Ind. Electron. 2017, 64, 228–235. [Google Scholar] [CrossRef]
- Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 Years of Particle Swarm Optimization: Flourishing Voyage of Two Decades. Arch. Comput. Methods Eng. 2023, 30, 1663–1725. [Google Scholar] [CrossRef]
- Zhao, S.; Blaabjerg, F.; Wang, H. An Overview of Artificial Intelligence Applications for Power Electronics. IEEE Trans. Power Electron. 2021, 36, 4633–4658. [Google Scholar] [CrossRef]
Parameter | Physical Meaning | Value |
---|---|---|
f | Resonant frequency | 100 kHz |
Uin | DC input voltage | 28.0 V |
L1 | Inductance of the Boost converter | 30.0 uH |
C1 | Capacitance of the Boost converter | 200 uF |
RL1 | Resistance of the Boost inductor | 42 mΩ |
Cp | Primary-side resonant capacitor | 43.6 nF |
Lp | Primary-side coil inductance | 58.0 uH |
RLp | Series resistance of the primary coil | 243 mΩ |
Cs | Secondary-side resonant capacitor | 43.6 nF |
Ls | Secondary-side coil inductance | 58.0 uH |
RLs | Resistance of the secondary coil | 242 mΩ |
L2 | Inductance of the Buck converter | 30.0 uH |
RL2 | Resistance of the Buck inductor | 18 mΩ |
Ron | On-resistance of switches | 11 mΩ |
No. | Rload/Ω | Rload-est/Ω | Error |
---|---|---|---|
1 | 3.0 | 3.09 | 3.0% |
2 | 4.0 | 4.10 | 2.5% |
3 | 5.0 | 5.02 | 0.4% |
4 | 6.0 | 6.11. | 1.8% |
5 | 7.0 | 6.92 | 1.1% |
6 | 8.0 | 8.09 | 1.1% |
No. | Δx/cm | Δy/cm | Δz/cm | M/uH | Mcalc/uH | Error |
---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 20.99 | 20.86 | 0.6% |
2 | 1 | 0 | 1 | 16.01 | 15.98 | 0.2% |
3 | 0 | 1 | 1 | 14.63 | 14.60 | 0.2% |
4 | 0 | 0 | 2 | 12.62 | 12.61 | 0.08% |
Parameter | Meaning | Set Value |
---|---|---|
λ1 | Efficiency weight parameter | 0.99 |
λ2 | Power weight parameter | 0.01 |
N | Maximum number of iterations | 100 |
POP | Population size | 100 |
c1 | Individual learning factor | 0.3 |
c2 | Social learning factor | 0.7 |
wmax | Maximum inertia factor | 0.5 |
wmin | Minimum inertia factor | 0.1 |
Case | d1 | d2 | Uload/V | Iload/A | P/W | η |
---|---|---|---|---|---|---|
1 | 52% | 43% | 24.21 | 8.07 | 195.30 | 77.6% |
2 | 52% | 50% | 27.78 | 6.94 | 192.79 | 77.8% |
3 | 45% | 63% | 31.04 | 6.26 | 192.00 | 80.6% |
4 | 45% | 70% | 33.85 | 5.64 | 190.93 | 80.7% |
5 | 43% | 79% | 36.85 | 5.26 | 193.97 | 81.2% |
6 | 39% | 90% | 39.63 | 4.98 | 196.30 | 82.1% |
Case | d1 | d2 | Uload/V | Iload/A | P/W | η |
---|---|---|---|---|---|---|
1 | 15% | 23% | 24.43 | 8.14 | 198.88 | 86.2% |
2 | 14% | 26% | 28.40 | 7.10 | 201.62 | 86.3% |
3 | 13% | 38% | 31.47 | 6.29 | 198.06 | 86.2% |
4 | 12% | 41% | 34.53 | 5.76 | 198.77 | 86.3% |
5 | 13% | 49% | 37.36 | 5.34 | 199.45 | 86.2% |
6 | 12% | 60% | 39.90 | 4.99 | 198.98 | 86.0% |
Algorithm | Case | d1 | d2 | P/W | η |
---|---|---|---|---|---|
GA | 1 | 26% | 26% | 210.59 | 85.35% |
2 | 38% | 37% | 204.5 | 83.56% | |
3 | 23% | 44% | 194.98 | 85.84% | |
4 | 20% | 44% | 212.08 | 85.79% | |
5 | 13% | 50% | 192.73 | 86.37% | |
6 | 30% | 78% | 196.57 | 84.36% | |
FSO | 1 | 55% | 46% | 194.26 | 75.97% |
2 | 44% | 42% | 196.50 | 81.18% | |
3 | 39% | 56% | 206.03 | 82.54% | |
4 | 39% | 61% | 198.73 | 82.9%% | |
5 | 24% | 57% | 219.35 | 83.5% | |
6 | 21% | 68% | 228.63 | 84.3% | |
PSO | 1 | 15% | 23% | 198.88 | 86.2% |
2 | 14% | 26% | 201.62 | 86.3% | |
3 | 13% | 38% | 198.06 | 86.2% | |
4 | 12% | 41% | 198.77 | 86.3% | |
5 | 13% | 49% | 199.45 | 86.2% | |
6 | 12% | 60% | 198.98 | 86.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, L.; Wu, H.; Luo, B.; Li, H.; Zhang, Y.; Liu, S.; Zhao, L. An Optimized Multi-Level Control Method for Wireless Power Transfer System Using the Particle Swarm Optimization Algorithm. Electronics 2024, 13, 4341. https://doi.org/10.3390/electronics13224341
Zhao J, Li L, Wu H, Luo B, Li H, Zhang Y, Liu S, Zhao L. An Optimized Multi-Level Control Method for Wireless Power Transfer System Using the Particle Swarm Optimization Algorithm. Electronics. 2024; 13(22):4341. https://doi.org/10.3390/electronics13224341
Chicago/Turabian StyleZhao, Jianwei, Lin Li, Huan Wu, Bo Luo, Huayi Li, Yucai Zhang, Shanzong Liu, and Lei Zhao. 2024. "An Optimized Multi-Level Control Method for Wireless Power Transfer System Using the Particle Swarm Optimization Algorithm" Electronics 13, no. 22: 4341. https://doi.org/10.3390/electronics13224341
APA StyleZhao, J., Li, L., Wu, H., Luo, B., Li, H., Zhang, Y., Liu, S., & Zhao, L. (2024). An Optimized Multi-Level Control Method for Wireless Power Transfer System Using the Particle Swarm Optimization Algorithm. Electronics, 13(22), 4341. https://doi.org/10.3390/electronics13224341