Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles
Abstract
:1. Introduction
2. Health Management Systems for Batteries
2.1. Battery Terminologies
2.2. Architecture of the BMS
2.3. Stages of Performing BMS
2.3.1. Condition Monitoring
2.3.2. Hazard Protection
2.3.3. Charge/Discharge Management
2.3.4. Diagnosis
2.3.5. Data Management and Assessment
2.4. Issues of the BMS
2.4.1. Diversity of Battery Management Applications
2.4.2. Handling of Potential, but Unprecedented, Hazards
2.4.3. Lack of Safe Operating Areas for Specific Battery Cells
2.4.4. Ensuring an Efficient Operational State of the Peripheral Control Units and the Power Converters
2.5. Prognostic Methods
2.5.1. Physical Methods
2.5.2. Data-Based Methods
2.5.3. Hybrid Methods
2.6. Battery Management System Framework
3. Opportunities and Challenges on Prognosis of LIB Health
3.1. Technological Aspects
- Light weight: applications that make use of LIB go farther and faster due to their lightweight.
- High energy density: EV operates longer between charges while still consuming the same amount of power. LIBs are highly efficient and can be charged with electricity or renewable energies [11].
- Low self-density: the rate of self-discharge is far lower than that of lead acid batteries [96].
- No maintenance: LIBs require little to no maintenance to maintain high-performing products.
- Faster recharge: LIBs have little to no resistance, which allows you to charge at a much higher rate.
- Customizable: not only are LIBs more powerful, lighter, and hold charge longer than lead acid batteries, but they are customizable to fit your needs.
3.2. Cost Aspects
3.3. Security Aspects
3.4. Environmental Aspects
3.4.1. 3R Principle: Recycle, Reuse, and Reduce
3.4.2. Mitigated Emissions
3.4.3. Integration of Renewable Energies
4. Future Research Agenda
5. Summary and Closing Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Raszmann, E.; Baker, K.; Shi, Y.; Christensen, D. Modeling stationary lithium-ion batteries for optimization and predictive control. In Proceedings of the 2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 23–24 February 2017. [Google Scholar] [CrossRef]
- Liu-Henke, X.; Scherler, S.; Jacobitz, S. Verification oriented development of a scalable battery management system for lithium-ion batteries. In Proceedings of the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 11–13 April 2017. [Google Scholar] [CrossRef]
- Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Dubarry, M.; Devie, A.; Liaw, B.Y. The value of battery diagnostics and prognostics. J. Energy Power Sources 2014, 1, 242–249. [Google Scholar]
- Song, Y.; Liu, D.; Yang, C.; Peng, Y. Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery. Microelectron. Reliab. 2017, 75, 142–153. [Google Scholar] [CrossRef]
- Muñoz-Galeano, R.-B.N.; Pablo, J.; Sarmiento-Maldonado, H.O. SoC estimation for lithium-ion batteries: review and future challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, Z.; Sun, C. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter. IEEE Access 2018, 6, 17729–17740. [Google Scholar] [CrossRef]
- Daowd, M.; Antoine, M.; Omar, N.; Lataire, P.; van den Bossche, P.; van Mierlo, J. Battery management system-balancing modularization based on a single switched capacitor and bi-directional DC/DC converter with the auxiliary battery. Energies 2014, 7, 2897–2937. [Google Scholar] [CrossRef]
- Fujita, Y.; Hirose, Y.; Kato, Y.; Watanabe, T. Development of battery management system. FUJITSU TEN Tech. J. 2016, 42, 68–80. [Google Scholar]
- Allam, A.; Onori, S.; Marelli, S.; Taborelli, C. Battery health management system for automotive applications: A retroactivity-based aging propagation study. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 703–716. [Google Scholar] [CrossRef]
- Andwari, A.M.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A review of battery electric vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Akdere, M.; Giegerich, M.; Wenger, M.; Schwarz, R.; Koffel, S.; Fühner, T.; Waldhör, S.; Wachtler, J.; Lorentz, V.R.H.; März, M. Hardware and software framework for an open battery management system in safety-critical applications. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 5507–5512. [Google Scholar] [CrossRef]
- Brandl, M.; Gall, H.; Wenger, M.; Lorentz, V.; Giegerich, M.; Baronti, F.; Fantechi, G.; Fanucci, L.; Roncella, R.; Saletti, R.; et al. Batteries and battery management systems for electric vehicles. In Proceedings of the 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 12–16 March 2012; pp. 971–976. [Google Scholar] [CrossRef]
- Javed, K.; Gouriveau, R.; Zerhouni, N. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels. Mech. Syst. Signal Process. 2017, 94, 214–236. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, E.W.M.; Tsui, K.L.; Pecht, M. Battery management systems in electric and hybrid vehicles. Energies 2011, 4, 1840–1857. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Su, X.; Ma, P. Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression. Energies 2014, 7, 6492–6508. [Google Scholar] [CrossRef]
- Bruen, T.; Hooper, J.M.; Marco, J.; Gama, M.; Chouchelamane, G.H. Analysis of a battery management system (BMS) control strategy for vibration aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 battery cells. Energies 2016, 9, 255. [Google Scholar] [CrossRef]
- Shareef, H.; Islam, M.M.; Mohamed, A. A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 403–420. [Google Scholar] [CrossRef]
- Castro, T.S.; de Souza, T.M.; Silveira, J.L. Feasibility of electric vehicle: electricity by grid × photovoltaic energy. Renew. Sustain. Energy Rev. 2017, 69, 1077–1084. [Google Scholar] [CrossRef]
- Coffman, M.; Bernstein, P.; Wee, S. Integrating electric vehicles and residential solar PV. Transp. Policy 2017, 53, 30–38. [Google Scholar] [CrossRef]
- Gough, R.; Dickerson, C.; Rowley, P.; Walsh, C. Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage. Appl. Energy 2017, 192, 12–23. [Google Scholar] [CrossRef]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid electric vehicles and their challenges: A review. Renew. Sustain. Energy Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Palinski, M. A Comparison of electric vehicles and conventional automobiles: Costs and quality perspective. Bachelor’s Thesis, Novia University of Applied Sciences, Vaasa, Finland, 2017. [Google Scholar]
- Salisbury, M. Economic and Air Quality Benefits of Electric Vehicles in Nevada Executive Summary. Southwestern Energy Efficiency Project (SWEEP). 2014. Available online: http://www.swenergy.org/data/sites/1/media/documents/publications/documents/Economic_and_AQ_Benefits_of_EVs_in_NV-Sept_2014.pdf (accessed on 10 April 2018).
- Helmers, E.; Patrick, M. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef]
- Pappas, J.C.K. A New Prescription for electric cars. Energy Law J. 2014, 35, 151–198. [Google Scholar]
- Hall, D.; Moultak, M.; Lutsey, N. Electric Vehicle Capitals of the World: Demonstrating the Path to Electric Drive; International Council on Clean Transportatio: Washington, DC, USA, 2017. [Google Scholar]
- Varun, M.; Kumar, C. Problems in electric vehicles. Int. J. Appl. Res. Mech. Eng. 2012, 2, 63–73. [Google Scholar]
- Saha, B.; Quach, C.C.; Hogge, E.F.; Strom, T.H.; Hill, B.L.; Goebel, K. Battery health management system for electric UAVs. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011. [Google Scholar] [CrossRef]
- Cazzola, P.; Gorner, M.; Munuera, L. Global EV Outlook 2017: Two Million and Counting. International Energy Agency (IEA). 2017. Available online: https://webstore.iea.org/global-ev-outlook-2017 (accessed on 22 February 2018).
- Zhang, L.; Peng, H.; Ning, Z.; Mu, Z.; Sun, C. Comparative research on RC equivalent circuit models for lithium-ion batteries of electric vehicles. Appl. Sci. 2017, 7, 1002. [Google Scholar] [CrossRef]
- Rezvani, M.; Abuali, M.; Lee, S.; Lee, J.; Ni, J. A comparative analysis of techniques for electric vehicle battery Prognostics and Health Management (PHM). SAE Int. 2011, 11. [Google Scholar] [CrossRef]
- Xi, Z.; Jing, R.; Yang, X.; Decker, E. State of charge estimation of lithium-ion batteries considering model Bias and parameter uncertainties. In Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Buffalo, NY, USA, 17–20 August 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Li, L.; Bian, Y.; Zhang, X.; Xue, Q.; Fan, E.; Wu, F.; Renjie Chen, R. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. J. Power Sources 2018, 377, 70–79. [Google Scholar] [CrossRef]
- Li, J.; Lai, Q.; Wang, L.; Lyu, C.; Wang, H. A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery. Energy 2016, 114, 1266–1276. [Google Scholar] [CrossRef]
- Podder, S.; Khan, M.Z.R. Comparison of lead acid and Li-ion battery in solar home system of Bangladesh. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision, ICIEV, Dhaka, Bangladesh, 13–14 May 2016; pp. 434–438. [Google Scholar] [CrossRef]
- Leone, G.; Cristaldi, L.; Turrin, S. A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers. Measurement 2017, 108, 163–170. [Google Scholar] [CrossRef]
- Wei, J.; Dong, G.; Chen, Z. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans. Ind. Electron. 2017, 65, 5634–5643. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Saxena, A.; Celaya, J.R. Roychoudh loading profiles: Some lessons learned. In Proceedings of the European Conference on Prognostics and Health Management Society, Dresden, Germany, 3–5 July 2012. [Google Scholar]
- Chen, A.; Sen, P.K. Advancement in battery technology: a state-of-the-art review. In Proceedings of the 2016 IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Mathew, M.; Kong, Q.H.; McGrory, J.; Fowler, M. Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles. J. Power Sources 2017, 349, 94–104. [Google Scholar] [CrossRef]
- Su, X.; Wang, S.; Pecht, M.; Zhao, L.; Ye, Z. Interacting multiple model particle filter for prognostics of lithium-ion batteries. Microelectron. Reliab. 2017, 70, 59–69. [Google Scholar] [CrossRef]
- Khorasgani, H.; Biswas, G.; Sankararaman, S. Methodologies for system-level remaining useful life prediction. Reliab. Eng. Syst. Saf. 2016, 154, 8–18. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Vo, T.T.; Cao, Z.; Kapoor, A. An overview of lithium-ion batteries for electric vehicles. In Proceedings of the 2012 10th International Power & Energy Conference, Ho Chi Minh City, Vietnam, 12–14 December 2012; pp. 230–235. [Google Scholar] [CrossRef]
- Piromjit, P.; Tayjasanant, T. Peak-demand management for improving undervoltages in distribution systems with electric vehicle connection by stationary battery. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 7–10 August 2017. [Google Scholar] [CrossRef]
- Zhang, F.; Rehman, M.M.U.; Zane, R.; Maksimovic, D. Hybrid balancing in a modular battery management system for electric-drive vehicles. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 578–583. [Google Scholar] [CrossRef]
- Fleischer, C.; Sauer, D.U.; Barreras, J.V.; Schaltz, E.; Christensen, A.E. Development of software and strategies for battery management system testing on HIL simulator. In Proceedings of the 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 6–8 April 2016. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.-Y. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 2013, 4–16. [Google Scholar] [CrossRef]
- Zhang, L.; Ning, Z.; Peng, H.; Mu, Z.; Sun, C. Effects of vibration on the electrical performance of lithium-ion cells based on mathematical statistics. Appl. Sci. 2017, 7, 802. [Google Scholar] [CrossRef]
- Ruiz, V.; Pfrang, A.; Kriston, A.; Omar, N.; van den Bossche, P.; Boon-Brett, L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 2018, 81, 1427–1452. [Google Scholar] [CrossRef]
- Artakusuma, D.D.; Afrisal, H.; Cahyadi, A.I.; Wahyunggoro, O. Battery management system via bus network for multi battery electric vehicle. In Proceedings of the 2014 IEEE International Conference on Electrical Engineering and Computer Science, Kuta, Indonesia, 24–25 November 2014; pp. 179–181. [Google Scholar] [CrossRef]
- Sonoc, A.; Jeswiet, J.; Soo, V.K. Opportunities to improve recycling of automotive lithium ion batteries. Procedia CIRP 2015, 29, 752–757. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Belkacem, L.; Simeu-abazi, Z.; Dhouibi, H.; Gascard, E.; Messaoud, H. Diagnostic and prognostic of hybrid dynamic systems: Modeling and RUL evaluation for two maintenance policies. Reliab. Eng. Syst. Saf. 2017, 164, 98–109. [Google Scholar] [CrossRef]
- Pastor-Fernández, C.; Widanage, W.D.; Chouchelamane, G.H.; Marco, J. A SoH diagnosis and prognosis method to identify and quantify degradation modes in li-ion batteries using the IC/DV technique. In Proceedings of the 6th Hybrid and Electric Vehicles Conference (HEVC 2016), London, UK, 2–3 November 2016. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Melhem, F.Y.; Grunder, O.; Hammoudan, Z.; Moubayed, N. Optimization and energy management in smart battery storage system with integration of electric vehicles. Can. J. Electr. Comput. Eng. 2017, 40, 128–138. [Google Scholar] [CrossRef]
- Giegerich, M.; Akdere, M.; Freund, C.; Fuhner, T.; Grosch, J.L.; Koffel, S.; Schwarz, R.; Waldhor, S.; Wenger, M.; Lorentz, V.R.H.; et al. Open, flexible and extensible battery management system for lithium-ion batteries in mobile and stationary applications. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 991–996. [Google Scholar] [CrossRef]
- Gaines, L. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 2014, 1–2, 2–7. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Liu, L. Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 52, 1759–1767. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, S.; Ji, L.; Zhou, T.; Miao, Y.; Scott, K.; Li, D.; Yang, J.; Wu, X. Reuse of Ni-Co-Mn oxides from spent Li-ion batteries to prepare bifunctional air electrodes. Resour. Conserv. Recycl. 2018, 129, 135–142. [Google Scholar] [CrossRef]
- Yusof, M.S.; Toha, S.F.; Kamisan, N.; Hashim, N.N.W.N.; Abdullah, M. Battery cell balancing pptimisation for battery management system. IOP Conf. Ser. Mater. Sci. Eng. 2017, 184, 012021. [Google Scholar] [CrossRef]
- Rahman, A.; Rahman, M.; Rashid, M. Wireless battery management system of electric transport. IOP Conf. Ser. Mater. Sci. Eng. 2017, 260, 012029. [Google Scholar] [CrossRef]
- Piao, C.; Wang, Z.; Cao, J.; Zhang, W.; Lu, S. Lithium-ion battery cell-balancing algorithm for battery management system based on real-time outlier detection. Math. Probl. Eng. 2015, 2015. [Google Scholar] [CrossRef]
- Lin, J.-C.M. Development of a new battery management system with an independent balance module for electrical motorcycles. Energies 2017, 10, 1289. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Y.; Han, D. Design of energy storage management system based on FPGA in design of energy storage management system based on FPGA in Micro-Grid. IOP Conf. Ser. Earth Environ. Sci. 2017, 108, 052040. [Google Scholar] [CrossRef]
- Sutharssan, T.; Montalvao, D.; Chen, Y.K.; Wang, W.-C.; Pisac, C.; Elemara, H. A review on prognostics and health monitoring of proton exchange membrane fuel cell. Renew. Sustain. Energy Rev. 2017, 75, 440–450. [Google Scholar] [CrossRef]
- Elattar, H.M.; Elminir, H.K.; Riad, A.M. Prognostics: A literature review. Complex Intell. Syst. 2016, 2, 125–154. [Google Scholar] [CrossRef]
- Goebel, K.; Saha, B.; Saxena, A.; Celaya, J.R.; Christophersen, J.P. Prognostics in battery health management. IEEE Instrum. Meas. Mag. 2008, 11, 33–40. [Google Scholar] [CrossRef]
- Tsui, K.L.; Chen, N.; Zhou, Q.; Hai, Y.; Wang, W. Prognostics and health management: A review on data driven approaches. Math. Probl. Eng. 2014, 2015. [Google Scholar] [CrossRef]
- Wang, D.; Yang, F.; Zhao, Y.; Tsui, K.L. Battery remaining useful life prediction at different discharge rates. Microelectron. Reliab. 2017, 78, 212–219. [Google Scholar] [CrossRef]
- Wu, L.; Fu, X.; Guan, Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Appl. Sci. 2016, 6, 166. [Google Scholar] [CrossRef]
- Zhou, D.; Xue, L.; Song, Y.; Chen, J. On-Line Remaining useful life prediction of lithium-ion batteries based on the optimized Gray Model GM(1,1). Batteries 2017, 3, 21. [Google Scholar] [CrossRef]
- Arachchige, B.; Perinpanayagam, S.; Jaras, R. Enhanced prognostic model for lithium ion batteries based on particle filter state transition model modification. Appl. Sci. 2017, 7, 1172. [Google Scholar] [CrossRef]
- Zhou, D.; Gao, F.; Breaz, E.; Ravey, A.; Miraoui, A. Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach. Energy 2017, 138, 1175–1186. [Google Scholar] [CrossRef]
- Chang, Y.; Fang, H.; Zhang, Y. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery. Appl. Energy 2017, 206, 1564–1578. [Google Scholar] [CrossRef]
- Skima, H.; Medjaher, K.; Varnier, C.; Dedu, E.; Bourgeois, J. Microelectronics Reliability A hybrid prognostics approach for MEMS: From real measurements to remaining useful life estimation. Microelectron. Reliab. 2016, 65, 79–88. [Google Scholar] [CrossRef]
- Wu, X.; Ye, Q.; Wang, J. A hybrid prognostic model applied to SOFC prognostics. Int. J. Hydrog. Energy 2017, 42, 25008–25020. [Google Scholar] [CrossRef]
- Li, Z.; Wu, D.; Hu, C.; Terpenny, J. An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction. Reliab. Eng. Syst. Saf. 2018. [Google Scholar] [CrossRef]
- Khalastchi, E.; Kalech, M.; Rokach, L. A hybrid approach for improving unsupervised fault detection for robotic systems. Expert Syst. Appl. 2017, 81, 372–383. [Google Scholar] [CrossRef]
- Olivetti, E.A.; Ceder, G.; Gaustad, G.G.; Fu, X. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef]
- Xi, Z.; Zhao, X. Data driven prognostics with lack of training data sets. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Medjaher, K.; Zerhouni, N.; Baklouti, J. Data-driven prognostics based on health indicator construction: Application to PRONOSTIA’s data. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 1451–1456. [Google Scholar]
- Orcioni, S.; Ricci, A.; Buccolini, L.; Scavongelli, C.; Conti, M. Effects of variability of the characteristics of single cell on the performance of a lithium-ion battery pack. In Proceedings of the 2017 13th Workshop on Intelligent Solutions in Embedded Sysems (WISES), Hamburg, Germany, 12–13 June 2017; pp. 15–21. [Google Scholar] [CrossRef]
- Dey, S.; Perez, H.E.; Moura, S.J. Model-based battery thermal fault diagnostics: Algorithms, analysis, and experiments. IEEE Trans. Control Syst. Technol. 2017, 1–12. [Google Scholar] [CrossRef]
- Ye, X.; Zhao, Y.; Quan, Z. Thermal management system of lithium-ion battery module based on micro heat pipe array. Int. J. Energy Res. 2017, 42, 648–655. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, C.; Chen, Z. A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack. J. Power Sources 2017, 343, 216–225. [Google Scholar] [CrossRef]
- Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. Metrics for offline evaluation of prognostic performance. Int. J. Progn. Health Manag. 2010, 1, 1–20. [Google Scholar]
- Sreejith, R.; Rajagopal, K.R. An insight into motor and battery selections for three-wheeler electric vehicle. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 9–14. [Google Scholar] [CrossRef]
- Rizoug, N.; Sadoun, R.; Mesbahi, T.; Bartholumeus, P.; LeMoigne, P. Aging of high power Li-ion cells during real use of electric vehicles. IET Electr. Syst. Transp. 2017, 7, 14–22. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Purkayastha, R.; O’Neill, L.; Walus, S. Lithium-sulfur cell equivalent circuit network model parameterization and sensitivity Analysis. IEEE Trans. Veh. Technol. 2017, 66, 7711–7721. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y. An overview of recycling and treatment of spent LiFePO4 batteries in China. Resour. Conserv. Recycl. 2017, 127, 233–243. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, Y.; Huang, K.; Hu, J.; Li, C. Evaluation of lithium-ion batteries through the simultaneous consideration of environmental, economic and electrochemical performance indicators. J. Clean. Prod. 2018, 170, 915–923. [Google Scholar] [CrossRef]
- Amjad, S.; Neelakrishnan, S.; Rudramoorthy, R. Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renew. Sustain. Energy Rev. 2010, 14, 1104–1110. [Google Scholar] [CrossRef]
- Martínez, D.A.; Poveda, J.D.; Montenegro, D. Li-Ion battery management system based in fuzzy logic for improving electric vehicle autonomy. In Proceedings of the 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 31 May–2 June 2017. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; van Mierlo, J. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef]
- Badawy, M.O.; Sozer, Y. Power flow management of a grid tied PV-battery system for electric vehicles charging. IEEE Trans. Ind. Appl. 2017, 53, 1347–1357. [Google Scholar] [CrossRef]
- Cazzola, P.; Gorner, M.; Yi, J.T.; Yi, W. Global EV Outlook 2016 Electric Vehicles Initiative. International Energy Agency. 2016. Available online: https://www.iea.org/publications/freepublications/.../Global_EV_Outlook_2016.pdf (accessed on 10 February 2018).
- Purwadi, A.; Shani, N.; Heryana, N.; Hardimasyar, T.; Firmansyah, M.; Sr, A. Modelling and analysis of electric vehicle DC fast charging infrastructure based on PSIM. In Proceedings of the 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Malaysia, 3–5 December 2013; pp. 359–364. [Google Scholar] [CrossRef]
- Saw, L.H.; Tay, A.A.O.; Zhang, L.W. Thermal management of lithium-ion battery pack with liquid cooling. In Proceedings of the 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 15–19 March 2015; pp. 298–302. [Google Scholar] [CrossRef]
- Petroff, A. These Countries Want to Ditch Gas and Diesel Cars–26 July 2017. CNNMoney. 11 September 2017. Available online: http://money.cnn.com/2017/07/26/autos/countries-that-are-banning-gas-cars-for-electric/index.html (accessed on 4 February 2018).
- Wang, M.M.; Zhang, C.C.; Zhang, F.S. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Waste Manag. 2017, 67, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater. 2017, 326, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Boyden, A.; Soo, V.K.; Doolan, M. The environmental impacts of recycling portable lithium-ion batteries. Procedia CIRP 2016, 48, 188–193. [Google Scholar] [CrossRef]
- Fan, B.; Chen, X.; Zhou, T.; Zhang, J.; Xu, B. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. Res. 2016, 34, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Van der Vorst, G.; Denturck, K.; Van Langenhove, H.; Ghyoot, W.; Tytgat, J.; Vandeputte, K. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour. Conserv. Recycl. 2010, 54, 229–234. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Axsen, J.; Kempton, W. The future promise of Vehicle-to-Grid (V2G) integration: A sociotechnical review and research agenda. Annu. Rev. Environ. Resour. 2017, 42, 377–406. [Google Scholar] [CrossRef]
- OECD/IEA. World Energy Outlook 2017 Executive Summary. International Energy Agency, 2017. Available online: http://www.iea.org/publications/freepublications/publication/world-energy-outlook-2017---executive-summary---english-version.html (accessed on 7 February 2018).
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Fathabadi, H. Plug-in Hybrid Electric Vehicles (PHEVs): Replacing Internal Combustion Engine with Clean and Renewable Energy Based Auxiliary Power Sources. IEEE Trans. Power Electron. 2018. [Google Scholar] [CrossRef]
- Grunditz, E.A.; Thiringer, T. Performance analysis of current BEVs based on a comprehensive review of specifications. IEEE Trans. Transp. Electrification 2016, 2, 270–289. [Google Scholar] [CrossRef]
- Bashash, S.; Moura, S.J.; Fathy, H.K. Charge trajectory optimization of plug-in hybrid electric vehicles for energy cost reduction and battery health enhancement. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Yuan, X.; Tang, H.; Tang, Y.; Wang, M.; Zuo, J.; Song, Z.; Sun, J. Environmental impact analysis and process optimization of batteries based on life cycle assessment. J. Clean. Prod. 2018, 174, 1262–1273. [Google Scholar] [CrossRef]
- Hatzell, K.B.; Sharma, A.; Fathy, H.K. A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges and opportunities. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 584–591. [Google Scholar]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; van Mierlo, J.; van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Kong, Q.; Ruan, M.; Zi, Y. A health management system for marine cell group. IOP Conf. Ser. Earth Environ. Sci. 2017, 69, 012081. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, H.; Chen, Y.; Wang, C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J. Power Sources 2017, 351, 192–199. [Google Scholar] [CrossRef]
- Peng, X.; Garg, A.; Zhang, J.; Shui, L. Thermal management system design for batteries packs of electric vehicles: A Survey. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 24–26 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Canada | 0.22 | 0.84 | 2.48 | 5.31 | 9.69 | 14.91 | ||||||
China | 0.48 | 1.57 | 6.32 | 15.96 | 30.57 | 79.48 | 226.19 | 483.19 | ||||
France | 0.01 | 0.01 | 0.01 | 0.01 | 0.12 | 0.30 | 2.93 | 8.60 | 17.38 | 27.94 | 45.21 | 66.97 |
Germany | 0.02 | 0.02 | 0.02 | 0.09 | 0.10 | 0.25 | 1.65 | 3.86 | 9.18 | 17.52 | 29.60 | 40.92 |
India | 0.37 | 0.53 | 0.88 | 1.33 | 2.76 | 2.95 | 3.35 | 4.35 | 4.80 | |||
Japan | 1.08 | 3.52 | 16.13 | 29.60 | 44.35 | 60.46 | 70.93 | 86.39 | ||||
Korea | 0.06 | 0.34 | 0.85 | 1.45 | 2.76 | 5.67 | 10.77 | |||||
Netherlands | 0.01 | 0.15 | 0.27 | 1.12 | 1.91 | 4.16 | 6.83 | 9.37 | 13.11 | |||
Norway | 0.01 | 0.26 | 0.40 | 3.35 | 5.38 | 9.55 | 19.68 | 41.80 | 72.04 | 98.88 | ||
Sweden | 0.18 | 0.45 | 0.88 | 2.12 | 5.08 | 8.03 | ||||||
United Kingdom | 0.22 | 0.55 | 1.00 | 1.22 | 1.40 | 1.65 | 2.87 | 4.57 | 7.25 | 14.06 | 20.95 | 31.46 |
United States | 1.12 | 1.12 | 1.12 | 2.58 | 2.58 | 3.77 | 13.52 | 28.17 | 75.86 | 139.28 | 210.33 | 297.06 |
Others | 0.64 | 0.80 | 3.17 | 5.83 | 10.60 | 19.43 | 36.20 | 52.41 | ||||
Total | 1.37 | 1.70 | 2.16 | 4.54 | 7.48 | 16.42 | 55.16 | 112.95 | 226.79 | 420.34 | 745.61 | 1208.90 |
Energy density (W/Kg) | 72 to 200 (chargeable electric energy per weight of battery pack) |
Nominal voltage | 3.7 V |
Power density | 1800 (proportion of dischargeable electric energy to charged energy) |
Overcharge tolerance | Very low |
Cycle life | 500 to 1000 (Number of charge/discharge cycles in battery’s entire life) |
Operating rate of temperature | −20 °C to 60 °C |
Energy efficiency | 85 to 98% |
Energy cost | 500–2500 $/kWh |
Lifetime | 5 to 15 years |
Limitation | High energy cost/safety |
Prognostic Approaches | Categories of Approaches | Pros | Cons |
---|---|---|---|
Physical Approaches ([5,6,37]) | Electrical Circuit Model-Based Estimation (ECM) and Electro-chemical Model-Based Estimation (EChM) |
|
|
Data-based Approaches ([6,72,74]) | Machine Learning Approaches |
|
|
Filtering Approaches |
|
| |
Stochastic Approaches |
|
| |
Hybrid Approaches [26,77,78,79,80,81,82] | Series/Parallel Approach |
|
|
Aspect | Opportunities | Challenges | References |
---|---|---|---|
Technological |
|
| [1,9,23,60,61,62,63,64,65,66,67,68,69,70] |
Financial/Cost |
|
| [14,24,38,61,62,71] |
Security |
|
| [48,52,74,88,91] |
Environmental |
|
| [64,68,72,73,74,75,76,77,78,79,80,81,82,83,84,85] |
Country | Year | Expectations |
---|---|---|
Norway | 2025 |
|
India | 2030 |
|
France | 2040 |
|
After-2040 |
| |
Britain | 2040 |
|
2050 |
| |
China | - |
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omariba, Z.B.; Zhang, L.; Sun, D. Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles. Electronics 2018, 7, 72. https://doi.org/10.3390/electronics7050072
Omariba ZB, Zhang L, Sun D. Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles. Electronics. 2018; 7(5):72. https://doi.org/10.3390/electronics7050072
Chicago/Turabian StyleOmariba, Zachary Bosire, Lijun Zhang, and Dongbai Sun. 2018. "Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles" Electronics 7, no. 5: 72. https://doi.org/10.3390/electronics7050072
APA StyleOmariba, Z. B., Zhang, L., & Sun, D. (2018). Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles. Electronics, 7(5), 72. https://doi.org/10.3390/electronics7050072