Determination of the Effective Electromagnetic Parameters of Complex Building Materials for Numerical Analysis of Wireless Transmission Networks
Abstract
:1. Introduction
2. Analyzed Models
2.1. Complex Building Materials—Hollow Clay Brick
2.2. Analytical Solution
2.3. Mathematical Model
2.4. Numerical Model
2.5. Initial Results of Numerical Analysis
3. Identification of Effective Electromagnetic Parameters
3.1. General Algorithm for Determining the Effective Parameters
- Limited resolutions, Δε, Δσ, constituting the maximum differences in all values of εr’ and σ, determining the number of iterations performed for εr’,opt (Nε) and σopt (Nσ):
3.2. Algorithm Implementation
- Reading and processing input data related to the considered wall variant.
- Reading the value of the maximum electric field determined in Section 3 and calculating Te,FDTD.
- Reading the data defining the range of the search domain of effective parameters and determining the accuracy of their selection.
- Creating vectors in order to find the best solutions’ effective parameters (εr’,opt and σopt), for which the value of relative error (δA) is lowest.
- Calculating temporary value of transmission coefficient for the successively adopted values of effective parameters (εr’ and σ), assuming that the wall is made of a solid brick (Equation (6)).
- Finding the value of relative error (δA) using Equation (14).
- Sorting solutions using the sort algorithm to create a list of calculated variants with the smallest approximation error (δA).
3.3. Effective Parameters of Hollow Bricks at f = 2.4 GHz
3.4. Effective Parameters of Hollow Bricks at f = 5 GHz
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anttalainen, T. Introduction to Telecommunications Network Engineering; Espoo-Vantaa Institute of Technology, ArtechHouse: Norwood, MA, USA, 2000. [Google Scholar]
- Yun, Z.; Iskander, M.F.; Zhang, Z. Complex-wall effect on propagation characteristics and MIMO capacities for an indoor wireless communication environment. IEEE Trans. Antennas Propag. 2004, 52, 914–922. [Google Scholar] [CrossRef]
- Zygiridis, T.T.; Kosmidou, E.P.; Prokopidis, K.P.; Kantartzis, N.V.; Antonopoulos, C.S.; Petras, K.I.; Tsiboukis, T.D. Numerical modeling of an indoor wireless environment for the performance evaluation of wlan systems. IEEE Trans. Magn. 2006, 42, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Austin, A.C.M.; Neve, M.J.; Rowe, G.B. Modeling propagation in multifloor buildings using the FDTD method. IEEE Trans. Antennas Propag. 2011, 59, 4239–4246. [Google Scholar] [CrossRef]
- Choroszucho, A.; Butryło, B. The numerical analysis of the influence conductivity of clinker bricks and the size of their hollows on the distribution of the electromagnetic field. Prz. Elektrotech. 2012, 88, 351–354. [Google Scholar]
- Choroszucho, A. Analysis of the influence of the complex structure of clay hollow bricks on the values of electric field intensity by using the FDTD method. Arch. Electr. Eng. 2016, 65, 745–759. [Google Scholar] [CrossRef]
- Lee, W.C.Y. Mobile Communications Design Fundamentals; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Morrow, R. Bluetooth Operations and Use; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Austin, A.C.M. Performance estimation for indoor wireless systems using FDTD method. Electron. Lett. 2015, 51, 1376–1378. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, Y.; Parini, C. FDTD characterization of UWB indoor radio channel including frequency dependent antenna directivities. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 191–194. [Google Scholar] [CrossRef]
- Choroszucho, A.; Butryło, B. Determination of replacement electrical parameters of clinker. In Proceedings of the XLI International Conference: Fundamentals of Electrotechnics and Circuit Theory: IC—SPETO’, Ustroń, Poland, 16–19 May 2018; pp. 85–86. [Google Scholar]
- Micheli, D.; Delfini, A.; Marchetti, M.; Gianola, P.; Bertin, G.; Diana, R. Measurements of the outdoor-to-indoor attenuation of mobile phone signal. Int. J. Commun. Antenna Propag. 2014, 4, 244–261. [Google Scholar] [CrossRef]
- Kersaudy, P.; Mostarshedi, S.; Sudret, B.; Picon, O.; Wiart, J. Stochastic Analysis of Scattered Field by Building Facades Using Polynomial Chaos. IEEE Trans. Antennas Propag. 2014, 62, 6382–6393. [Google Scholar] [CrossRef] [Green Version]
- Choroszucho, A. The analysis of the diameter of reinforcement, spacing between bars and the electrical parameters of the concrete on the values of the electric field intensity. Prz. Elektrotech. 2014, 90, 156–160. [Google Scholar]
- Leucci, G. Electromagnetic monitoring of concrete structures. In Proceedings of the XIII International Conference on Ground Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–5, ISBN 978-1-4244-4604-9. [Google Scholar]
- Choroszucho, A.; Butryło, B. Inhomogeneities and dumping of high frequency electromagnetic field in the space close to porous wall. Prz. Elektrotech. 2012, 88, 263–266. [Google Scholar]
- Micheli, D.; Gianola, P.; Bertin, G.; Delfini, A.; Pastore, R.; Marchetti, M.; Diana, R. Electromagnetic Shielding of Building Walls: From Roman times to the present age. IEEE Antennas Propag. Mag. 2016, 58, 20–31. [Google Scholar] [CrossRef]
- Serdyuk, Y.V.; Podoltsev, A.D.; Gubanski, S.M. Numerical simulations and experimental study of frequency-dependent dielectric properties of composite material with stochastic structure. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 379–392. [Google Scholar] [CrossRef]
- Steckiewicz, A.; Choroszucho, A. Optimization-based synthesis of a metamaterial electric cloak using nonhomogeneous composite materials. J. Electromagn. Waves Appl. 2019, 33, 1933–1941. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundyb, D.; Ibanescua, M.; Bermelc, P.; Joannopoulosa, J.D.; Johnson, S.G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Choroszucho, A.; Steckiewicz, A. Numerical analysis of the building materials electrical properties influence on the electric field intensity. In Engineering in Dependability of Computer Systems and Networks Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; Volume 987, pp. 99–109. [Google Scholar]
- Choroszucho, A.; Butryło, B. Local attenuation of electromagnetic field generated by wireless communication system inside the building. Prz. Elektrotech. 2011, 87, 123–126. [Google Scholar]
- Ouattara, Y.B.; Mostarshedi, S.; Richalot, E.; Wiart, J.; Picon, O. Near- and Far-Field Models for Scattering Analysis of Buildings in Wireless Communications. IEEE Trans. Antennas Propag. 2011, 59, 4229–4238. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics, the Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Dalkılıç, N.; Nabikoğlu, A. Traditional manufacturing of clay brick used in the historical buildings of Diyarbakir (Turkey). Front. Archit. Res. 2017, 6, 346–359. [Google Scholar] [CrossRef]
- EN 772-3. Methods of Test for Masonry Units. Determination of Net Volume and Percentage of Voids of Clay Masonry Units by Hydrostatic Weighing; European Committee for Standardization: Brussels, Belgium, 1998. [Google Scholar]
- EN 771-2. Specification for Masonry Units. Calcium Silicate Masonry Units; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- EN 771-1. Specification for Masonry Units. Clay Masonry Units; European Committee for Standardization: Brussels, Belgium, 2003. [Google Scholar]
- Peña, D.; Feick, R.; Hristov, H.D.; Grote, W. Measurement and modeling of propagation losses in brick and concrete walls for the 900-MHz band. IEEE Trans. Antennas Propag. 2003, 51, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.Y.; Tan, M.Y.; Tan, H.S. Multipath delay measurements and modeling for interfloor wireless communications. IEEE Trans. Veh. Technol. 2000, 49, 1334–1341. [Google Scholar] [CrossRef]
- Landron, O.; Feuerstein, M.J.; Rappaport, T.S. A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEE Trans. Antennas Propag. 1996, 44, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Hasted, J.B.; Moore, L. Microwave absorption by water in building materials: Aerated concrete. Br. J. Appl. Phys. 1965, 16, 1747–1754. [Google Scholar] [CrossRef]
- Hasted, J.B.; Shah, M.A. Microwave absorption by water in building materials. Br. J. Appl. Phys. 1964, 15, 825–836. [Google Scholar] [CrossRef]
- Pinhasi, Y.; Yahalom, A.; Petnev, S. Propagation of ultra wide-band signals in lossy dispersive media. In Proceedings of the IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS, Tel-Aviv, Israel, 13–14 May 2008; pp. 1–10. [Google Scholar]
- Kaiser, T. Smart Antennas: State of the Art; Hindawi Publishing Corporation: New York, NY, USA, 2005. [Google Scholar]
- Cuiñas, I.; García Sánchez, M. Permittivity and Conductivity Measurements of Building Materials at 5.8 GHz and 41.5 GHz. Wirel. Pers. Commun. Int. J. 2002, 20, 93–100. [Google Scholar] [CrossRef]
- Holloway, C.L.; Perini, P.L.; DeLyser, R.R.; Allen, K.C. Analysis of composite walls and their effects on short-path propagation modelling. IEEE Trans. Veh. 1997, 46, 730–738. [Google Scholar] [CrossRef]
- Lovat, G.; Burghignoli, P.; Celozzi, S. Shielding Properties of a Wire-Medium Screen. IEEE Trans. Electromagn. Compat. 2008, 50, 80–88. [Google Scholar] [CrossRef]
- Honcharenko, W.; Bertoni, H.L. Transmission and reflection characteristics at concrete block walls in the UHF bands proposed for future PCS. IEEE Trans. Antennas Propag. 1994, 42, 232–239. [Google Scholar] [CrossRef]
- Orfanidis, S.J. Electromagnetic Waves and Antennas; Rutgers University: New Brunswick, NJ, USA, 2010; Available online: www.ece.rutgers.edu/~orfanidi/ewa (accessed on 15 August 2020).
- Chari, M.V.K.; Salon, S.J. Numerical Methods in Electromagnetism; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Elsherbeni, A.Z.; Demir, V. The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, 2nd ed.; SciTech Publishing: Raleigh, NC, USA, 2015. [Google Scholar]
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
Geometric Size of Holes (s) Inside the Brick (m), Changed along the Ox Axis (Figure 1) | Relative Volume of Clay in the Brick (V%mc) (%) | |
---|---|---|
Model of the Brick B18 | Model of the Brick B30 | |
0.005 | 90.40 | 87.50 |
0.007 | 86.56 | 82.50 * |
0.009 | 82.72 * | 77.50 |
0.011 | 78.88 # | 72.50 |
0.013 | 75.04 | 67.50 * |
0.015 | 71.20 | 62.50 # |
0.017 | 67.36 * | 57.50 |
0.019 | 63.52 | 52.50 |
No. | f (GHz) | εr’ | εr2 | σ (S/m) | Literature | Comments |
---|---|---|---|---|---|---|
1. | 0.9 | 4.6 | - | 0.0175 | [29] | - |
2. | 1.7 ÷ 2.6 | 4.44 | - | 0.01 | [30] | - |
3. | 1.7 ÷ 18.0 | 4.62 ÷ 4.11 | - | 0.0174 ÷ 0.0364 | [31] | - |
4. | 2.0 | 4.44 | - | - | [31] | - |
5. | 3.0; 9.0; 24.0 | 3.7 ÷ 4.0 | 0.12 | - | [31,32] | - |
6. | 3.0; 9.0; 24.0 | 3.7 ÷ 19 | 0.12 ÷ 3.7 | - | [32,33] | - |
7. | 5.0 | 4.12 | 0.16 | 0.0445 | [34] | brick with holes |
8. | 5.0 | 3.3 | 0.01 | 0.00278 | [34] | full brick |
9. | 5.0 | 3.56 | 0.34 | 0.0946 | [34] | - |
10. | 5.3 | 4.1 | 0.15 | - | [35] | - |
11. | 5.8 | 3.58 | - | 0.11 | [36] | measurements with 1.8% water volume |
12. | 5.8 | 3 | - | 0.12 | [36] | measurements with 1.8% water volume |
13. | 24.0 | 3.7 ÷ 4.0 | 0.6 | - | [32] | - |
14. | 60.0 | 3.95 | 0.073 | 0.244 | [34] | brick with holes |
15. | 60.0 | 2.82 | 0.44 | 0 | [28] | full brick |
Model of the Wall | Electric Parameters of Brick Adopted in Numerical Analysis (FDTD) | Calculated Effective Parameters of the Material | Relative Error δA (%) | ||
---|---|---|---|---|---|
εr’,FDTD | σFDTD (S/m) | εr’,opt | σopt (S/m) | ||
B18 (1w) | 4.44 | 0.01 | 3.63 | 0.005 | 0.13 |
0.02 | 3.27 | 0.009 | 0.80 | ||
0.03 | 3.52 | 0.015 | 0.25 | ||
0.04 | 3.15 | 0.022 | 0.42 | ||
B30 (1w) | 4.44 | 0.01 | 2.91 | 0.002 | 0.22 |
0.02 | 2.99 | 0.005 | 0.19 | ||
0.03 | 3.41 | 0.014 | 0.03 | ||
0.04 | 3.22 | 0.013 | 0.46 |
Model of the Brick | Electric Parameters of Brick Adopted in Numerical Analysis (FDTD) | Calculated Effective Parameters of the Material | Relative Error δA (%) | ||
---|---|---|---|---|---|
εr’,FDTD | σFDTD (S/m) | εr’,opt | σopt (S/m) | ||
B18 (2w) | 4.44 | 0.01 | 4.82 | 0.016 | 0.29 |
0.02 | 3.95 | 0.024 | 0.27 | ||
0.03 | 2.24 | 0.026 | 1.26 | ||
0.04 | 2.45 | 0.033 | 2.33 | ||
B30 (2w) | 4.44 | 0.01 | 2.74 | 0.006 | 0.42 |
0.02 | 3.48 | 0.014 | 0.19 | ||
0.03 | 2.75 | 0.019 | 0.16 | ||
0.04 | 4.31 | 0.031 | 0.04 |
Model of the Wall | Electric Parameters of Brick Adopted in Numerical Analysis (FDTD) | Calculated the Equivalent Electric Parameters for the Material | Relative Error δA (%) | ||
---|---|---|---|---|---|
εr’,FDTD | σFDTD (S/m) | εr’,opt | σopt (S/m) | ||
1w_B18 | 4.44 | 0.04 | 3.02 | 0.002 | 0.005 |
0.1 | 3.37 | 0.043 | 0.02 | ||
1w_B30 | 4.44 | 0.04 | 3.66 | 0.027 | 0.09 |
0.1 | 4.18 | 0.079 | 0.43 | ||
2w_B18 | 4.44 | 0.04 | 2.98 | 0.017 | 0.85 |
0.1 | 3.12 | 0.068 | 0.55 | ||
2w_B30 | 4.44 | 0.04 | 4.16 | 0.018 | 0.29 |
0.1 | 4.27 | 0.096 | 0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choroszucho, A.; Butrylo, B.; Steckiewicz, A.; Stankiewicz, J.M. Determination of the Effective Electromagnetic Parameters of Complex Building Materials for Numerical Analysis of Wireless Transmission Networks. Electronics 2020, 9, 1569. https://doi.org/10.3390/electronics9101569
Choroszucho A, Butrylo B, Steckiewicz A, Stankiewicz JM. Determination of the Effective Electromagnetic Parameters of Complex Building Materials for Numerical Analysis of Wireless Transmission Networks. Electronics. 2020; 9(10):1569. https://doi.org/10.3390/electronics9101569
Chicago/Turabian StyleChoroszucho, Agnieszka, Boguslaw Butrylo, Adam Steckiewicz, and Jacek Maciej Stankiewicz. 2020. "Determination of the Effective Electromagnetic Parameters of Complex Building Materials for Numerical Analysis of Wireless Transmission Networks" Electronics 9, no. 10: 1569. https://doi.org/10.3390/electronics9101569
APA StyleChoroszucho, A., Butrylo, B., Steckiewicz, A., & Stankiewicz, J. M. (2020). Determination of the Effective Electromagnetic Parameters of Complex Building Materials for Numerical Analysis of Wireless Transmission Networks. Electronics, 9(10), 1569. https://doi.org/10.3390/electronics9101569