Generation of 3-D Grid Multi-Scroll Chaotic Attractors Based on Sign Function and Sine Function
Abstract
:1. Introduction
2. A Novel Chaotic System for Generating 3-D Multi-Scroll Chaotic Attractors
3. Dynamics of the 3-D Multi-Scroll Chaotic Attractors
3.1. The Phase Diagrams of the System
3.2. The Distribution of Equilibrium Points
3.3. Bifurcation Diagram and Lyapunov Exponents Spectrum
3.4. Generation Mechanism Analysis of the Chaotic Attractors
4. Electronic Circuit Simulation on Multisim 10
4.1. The Circuits of Nonlinear Functions of
4.2. The Circuit of Nonlinear Functions of and
4.3. The Circuits of the System
4.4. The Experimental Verification of the System
4.5. Design Guidelines of the 3-D Grid Multi-Scroll Chaotic Attractors
- (a1) if is odd, the number of scrolls in the X-direction is odd.
- (a2) if is even, the scroll number in the X-direction is even.
- (b1) if , the chaotic system can generate odd number of scrolls in the Y-direction.
- (b2) if , even number of scrolls can be generated in the Y-direction.
- (c1) if , the scroll number generated in the Z-direction is odd.
- (c2) if , the scroll number generated in the Z-direction is even.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Zou, F.; Zhang, Y. New memritive chaotic system and the application in digital watermark. Optik 2018, 172, 873–878. [Google Scholar] [CrossRef]
- AlShoura, W.H.; Zainol, Z.; Teh, J.S.; Alawida, M. A New Chaotic Image Watermarking Scheme Based on SVD and IWT. IEEE Access 2020, 8, 43391–43406. [Google Scholar] [CrossRef]
- Lu, C.; Wu, S.; Jiang, C.; Hu, J. Weak harmonic signal detection method in chaotic interference based on extended Kalman filter. Digit. Commun. Netw. 2019, 5, 51–55. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Z.; Wang, W. An improved Liu chaotic circuit for weak signal detection. Eur. Phys. J. Plus 2019, 134, 201. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, F.; Li, H.; Hao, R. Human-autonomous devices for weak signal detection method based on multimedia chaos theory. J. Ambient. Intell. Humaniz. Comput. 2020. [Google Scholar] [CrossRef]
- Wang, X.; Su, Y. An Audio Encryption Algorithm Based on DNA Coding and Chaotic System. IEEE Access 2020, 8, 9260–9270. [Google Scholar] [CrossRef]
- Moafimadani, S.S.; Chen, Y.; Tang, C. A New Algorithm for Medical Color Images Encryption Using Chaotic Systems. Entropy 2019, 21, 577. [Google Scholar] [CrossRef] [Green Version]
- Xuejing, K.; Zihui, G. A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process. Image Commun. 2020, 80, 115670. [Google Scholar] [CrossRef]
- Yasser, I.; Khalifa, F.; Mohamed, M.A.; Samrah, A.S. A New Image Encryption Scheme Based on Hybrid Chaotic Maps. Complexity 2020, 2020, 9597619. [Google Scholar] [CrossRef]
- Allah, M.F.; Eid, M.M. Chaos based 3D color image encryption. Ain Shams Eng. J. 2020, 11, 67–75. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Shu, M.; Zhang, F.; Leng, S.; Sun, X. Secure Communication of Fractional Complex Chaotic Systems Based on Fractional Difference Function Synchronization. Complexity 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Zhang, Z.; Liu, L.; Shen, H.; Huang, Y.; Shi, C.; Cai, S.; Song, Y.; Du, S.; Xu, Q. Secure Communication Scheme Based on a New 5D Multistable Four-Wing Memristive Hyperchaotic System with Disturbance Inputs. Complexity 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chou, H.-G.; Wang, W.-J.; Tsai, S.-H.; Tanaka, K.; Wang, H.O.; Wang, K.-C. A polynomial-fuzzy-model-based synchronization methodology for the multi-scroll Chen chaotic secure communication system. Eng. Appl. Artif. Intell. 2020, 87, 103251. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Generation of N-double scrolls (N = 1, 2, 3, 4, …). IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 1993, 40, 861–867. [Google Scholar] [CrossRef]
- Tang, W.; Zhong, G.; Chen, G.; Man, K. Generation of n-scroll attractors via sine function. IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 2001, 48, 1369–1372. [Google Scholar] [CrossRef] [Green Version]
- Fa-Qiang, W.; Chong-Xin, L. A new multi-scroll chaotic generator. Chin. Phys. 2007, 16, 942–945. [Google Scholar] [CrossRef]
- Sánchez-López, C. Automatic synthesis of chaotic attractors. Appl. Math. Comput. 2011, 217, 4350–4358. [Google Scholar] [CrossRef]
- Chao-Xia, Z.; Si-Min, Y. Design and implementation of a novel multi-scroll chaotic system. Chin. Phys. B 2009, 18, 119–129. [Google Scholar] [CrossRef]
- Li, F.; Ma, J. Pattern Selection in Network of Coupled Multi-Scroll Attractors. PLoS ONE 2016, 11, e0154282. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Pacheco, J.M.; Guevara-Flores, D.K.; Félix-Beltrán, O.G.; Tlelo-Cuautle, E.; Barradas-Guevara, J.E.; Volos, C.K. Experimental Verification of Optimized Multiscroll Chaotic Oscillators Based on Irregular Saturated Functions. Complexity 2018, 2018, 3151840. [Google Scholar] [CrossRef] [Green Version]
- Echenausía-Monroy, J.; García-López, J.; Jaimes-Reátegui, R.; Huerta-Cuellar, G. Electronic implementation dataset to monoparametric control the number of scrolls generated. Data Brief 2020, 31, 105992. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Feng, X. Generation of Multi-Scroll Chaotic Attractors from a Jerk Circuit with a Special Form of a Sine Function. Electronics 2020, 9, 842. [Google Scholar] [CrossRef]
- Gunay, E.; Altun, K. Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function. Electronics 2018, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Chao-Xia, Z.; Si-Min, Y. Generation of grid multi-scroll Chua’s chaotic attractors with combination of hysteresis and step series. Acta Phys. Sin. 2009, 58, 120–130. [Google Scholar]
- Gotthans, T.; Hruboš, Z. Multi Grid Chaotic Attractors with Discrete Jumps. J. Electr. Eng. 2013, 64, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Pano-Azucena, A.D.; Rangel-Magdaleno, J.D.J.; Tlelo-Cuautle, E.; Quintas-Valles, A.D.J. Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dyn. 2016, 87, 2203–2217. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G.; Yu, X.; Leung, H. Design and Analysis of Multiscroll Chaotic Attractors from Saturated Function Series. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 2476–2490. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.; Yu, S.; Leung, H.; Chen, G. Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 149–165. [Google Scholar]
- Zhang, X.; Wang, C. A Novel Multi-Attractor Period Multi-Scroll Chaotic Integrated Circuit Based on CMOS Wide Adjustable CCCII. IEEE Access 2019, 7, 16336–16350. [Google Scholar] [CrossRef]
- Lü, J.; Chen, G. Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications. Int. J. Bifurc. Chaos 2006, 16, 775–858. [Google Scholar] [CrossRef]
- Deng, W.H.; Lü, J.H. Design of multi-directional multi-scroll chaotic attractors based on fractional differential systems via switching control. Chaos 2007, 16, 043120. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, C.; Bao, H.; Chen, M.; Bao, B. Generating Multi-Scroll Chua’s Attractors via Simplified Piecewise-Linear Chua’s Diode. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4767–4779. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.M.; Jiang, H.G.; Li, W.J. Generation and application of novel Chua multi-scroll chaotic attractors. Acta Phys. Sin. 2019, 68, 130503. [Google Scholar]
- Echenausía-Monroy, J.; Huerta-Cuellar, G.; Jaimes-Reátegui, R.; García-López, J.H.; Aboites, V.; Cassal-Quiroga, B.B.; Gilardi-Velázquez, H.E. Multistability Emergence through Fractional-Order-Derivatives in a PWL Multi-Scroll System. Electronics 2020, 9, 880. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, B.; Wang, K.; Zhao, M.; Zhao, L.; Yu, J. Physical Layer Encryption in DMT based on Digital Multi-Scroll Chaotic System. IEEE Photonics Technol. Lett. 2020, 32, 1303–1306. [Google Scholar] [CrossRef]
- Yu, S.; Lü, J.; Leung, H.; Chen, G. Design and implementation of n-scroll chaotic attractors from a general jerk circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 1459–1476. [Google Scholar]
- Hu, X.; Liu, C.; Liu, L.; Ni, J.; Li, S. Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 2016, 86, 1725–1734. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C.; Liu, L.; Yao, Y.; Zheng, G. Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system. Chin. Phys. B 2017, 26, 110502. [Google Scholar] [CrossRef]
- Li, F.; Yao, C. The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 2016, 84, 2305–2315. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, X.; Fang, J.; Wang, Y. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 2018, 94, 2879–2887. [Google Scholar] [CrossRef]
- Lai, Q.; Chen, C.-Y.; Zhao, X.-W.; Kengne, J.; Volos, C. Constructing Chaotic System with Multiple Coexisting Attractors. IEEE Access 2019, 7, 24051–24056. [Google Scholar] [CrossRef]
- Wu, H.; Bao, H.; Xu, Q.; Chen, M. Abundant Coexisting Multiple Attractors’ Behaviors in Three-Dimensional Sine Chaotic System. Complexity 2019, 2019, 3687635. [Google Scholar] [CrossRef]
- Cafagna, D.; Grassi, G. New 3D-scroll attractors in hyperchaotic chua’s circuits forming a ring. Int. J. Bifurc. Chaos 2003, 13, 2889–2903. [Google Scholar] [CrossRef]
- Yalçin, M.E.; Suykens, J.A.K.; Vandewalle, J.; Özoğuz, S. Families of scroll grid attractors. Int. J. Bifurc. Chaos 2002, 12, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Yalçin, M.E. Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos Solitons Fractals 2007, 34, 1659–1666. [Google Scholar] [CrossRef]
- Ma, J.; Wu, X.; Chu, R.; Zhang, L. Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 2014, 76, 1951–1962. [Google Scholar] [CrossRef]
- Xiao-Hua, L. Circuitry implementation of a novel nonautonomous hyperchaotic Liu system based on sine input. Chin. Phys. B 2009, 18, 3304–3308. [Google Scholar] [CrossRef]
- Hadef, S.; Boukabou, A. Control of multi-scroll Chen system. J. Frankl. Inst. 2014, 351, 2728–2741. [Google Scholar] [CrossRef]
- Wang, C.; Luo, X.; Wan, Z. Generation and circuit implementation of multi-block multidirectional grid multi-scroll chaotic attractors. Optik 2014, 125, 6716–6721. [Google Scholar] [CrossRef]
- Zuo, T.; Sun, K.H.; Ai, X.X.; Wang, H.H. Grid multi-scroll chaotic circuit based on the second generation current conveyers. Acta Phys. Sin. 2014, 63, 080501. [Google Scholar]
- He, S.; Sun, K.; Wang, H.; Ai, X.; Xu, Y. Design of N-dimensional multi-scroll jerk chaotic system and its performances. J. Appl. Anal. Comput. 2016, 6, 1180–1194. [Google Scholar]
Equilibrium Points | Corresponding Characteristic Root | Index Type of Saddle Point |
---|---|---|
index 1 | ||
index 2 | ||
index 2 | ||
index 2 | ||
index 2 | ||
index 1 | ||
index 1 | ||
index 2 |
Refs | Attractor Type | ||||
---|---|---|---|---|---|
[27]-1 | (2n) × (2m) × (2p) | 6(n + m) + 4p − 6 | 0 | 10(n + m) + 8p −1 | 2(n + m + p) − 3 |
(2n + 1) × (2m + 1) × (2p + 1) | 6(n + m) + 4p + 9 | 0 | 10(n + m) + 8p + 13 | 2(n + m + p) | |
[27]-2 | (2n) × (2m) × (2p) | 2(n + m + p) − 1 | 0 | 6n + 8(m + p) − 9 | 2(n + m + p) − 3 |
(2n + 1) × (2m + 1) × (2p + 1) | 2(n + m + p) + 2 | 0 | 6n + 8(m + p) + 2 | 2(n + m + p) + 2 | |
[44] | (2n) × (2m) × (2p) | 5 | 2n + 2m + 2p − 3 | 2n + 2m + 2p + 1 | 2n + 2m + 2p − 3 |
(2n + 1) × (2m + 1) × (2p + 1) | 5 | 2n + 2m + 2p + 4 | 2n + 2m + 2p + 4 | 2n + 2m + 2p + 4 | |
[49] | (2n) × (2m) × (2p) | 2(n + m + p) + 10 | 0 | 2(n + m + p) + 22 | 2(n + m + p) − 3 |
(2n + 1) × (2m + 1) × (2p + 1) | 2(n + m + p) + 13 | 0 | 2(n + m + p) + 25 | 2(n + m + p) | |
[50] | (2n) × (2m) × (2p) | 2(n + m + p) + 1 | 0 | 6(n + m + p) − 2 | 2(n + m + p) − 3 |
(2n + 1) × (2m + 1) × (2p + 1) | 2(n + m + p) + 4 | 0 | 6(n + m + p) + 7 | 2(n + m + p) | |
[51] | (2n) × (2m) × (2p) | 2(n + m + p) + 6 | 0 | 2(n + m + p) + 15 | 2(n + m + p) − 3 |
(2n + 1) × (2m + 1) × (2p + 1) | 2(n + m + p) + 9 | 0 | 2(n + m + p) + 18 | 2(n + m + p) | |
This work | (2n) × (2m) × (2p) | 2(m + p) + 14 | 0 | 2(m + p) + 27 | 2(m + p) |
(2n + 1) × (2m + 1) × (2p + 1) | 2(m + p) + 16 | 0 | 2(m + p) + 29 | 2(m + p) + 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, P.; Feng, X.; Fa, L. Generation of 3-D Grid Multi-Scroll Chaotic Attractors Based on Sign Function and Sine Function. Electronics 2020, 9, 2145. https://doi.org/10.3390/electronics9122145
Ding P, Feng X, Fa L. Generation of 3-D Grid Multi-Scroll Chaotic Attractors Based on Sign Function and Sine Function. Electronics. 2020; 9(12):2145. https://doi.org/10.3390/electronics9122145
Chicago/Turabian StyleDing, Pengfei, Xiaoyi Feng, and Lin Fa. 2020. "Generation of 3-D Grid Multi-Scroll Chaotic Attractors Based on Sign Function and Sine Function" Electronics 9, no. 12: 2145. https://doi.org/10.3390/electronics9122145
APA StyleDing, P., Feng, X., & Fa, L. (2020). Generation of 3-D Grid Multi-Scroll Chaotic Attractors Based on Sign Function and Sine Function. Electronics, 9(12), 2145. https://doi.org/10.3390/electronics9122145