Time-Domain Electromagnetic Scattering by Buried Dielectric Objects with the Cylindrical-Wave Approach for GPR Modelling
Abstract
:1. Introduction
2. Theoretical Approach
- : fields scattered by the cylinders in Medium 1;
- : scattered-reflected field in Medium 1;
- : scattered-transmitted field in Medium 0;
- : scattered field transmitted inside the p-th cylinder.
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Daniels, D.J. Surface Penetrating Radar, 2nd ed.; IEE: London, UK, 2004. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Godman, D.; Piro, S. GPR Remote Sensing in Archeology; Understanding GPR Via Simulator; Springer: Berlin, Germany, 2013. [Google Scholar]
- Amin, M.G. Through-the-Wall Radar Imaging; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zhou, X.; Chen, H.; Hao, T. Efficient detection of buried plastic pipes by combining GPR and electric field methods. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3967–3979. [Google Scholar] [CrossRef]
- Estatico, C.; Fedeli, A.; Pastorino, M.; Randazzo, A. A multifrequency inexact-Newton method in L p Banach spaces for buried objects detection. IEEE Trans. Antennas Propag. 2015, 63, 4198–4204. [Google Scholar] [CrossRef]
- Salucci, M.; Oliveri, G.; Massa, A. GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6573–6592. [Google Scholar] [CrossRef]
- Brancaccio, A.; Leone, G. Multimonostatic shape reconstruction of dielectric cylinders by a linear inversion approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3152–3161. [Google Scholar] [CrossRef]
- Soldovieri, F.; Solimene, R. Through-wall imaging via a linear inverse scattering algorithm. IEEE Geosci. Remote Sens. Lett. 2007, 4, 513–517. [Google Scholar] [CrossRef]
- Nounouh, S.; Eyraud, C.; Litman, A.; Tortel, H. Multistatic ground-penetrating radar experiments. Near Surf. Geoph. 2015, 13, 211–218. [Google Scholar] [CrossRef]
- Counts, T.; Gurbuz, A.C.; Scott, W.R.; McClellan, J.H.; Kim, K. Near-subsurface imaging in an absorbing embedding medium with a multistatic/single frequency scanner. IEEE Trans. Geosc. Remote Sens. 2007, 45, 2544–2553. [Google Scholar] [CrossRef]
- Yarovoy, T.G.; Savelyev, P.J.; Aubry, P.; Lys, E.; Ligthart, L.P. UWB array-based sensor for near-field imaging. IEEE Trans. Microw. Theory Tech. 2007, 55, 1288–1295. [Google Scholar] [CrossRef]
- Howard, Q. The electromagnetic fields of a subterranean cylindrical inhomogeneity excited by a line source. Geophysics 1972, 37, 975–984. [Google Scholar] [CrossRef]
- Ogunade, S.O. Electromagnetic response of an embedded cylinder for line current excitation. Geophysics 1981, 46, 45–52. [Google Scholar] [CrossRef]
- Mahmoud, S.F.; Ali, S.M.; Wait, J.R. Electromagnetic scattering from a buried cylindrical inhomogeneity inside a lossy earth. Radio Sci. 1981, 16, 1285–1298. [Google Scholar] [CrossRef]
- Hongo, K.; Hamamura, A. Asymptotic solutions for the scattered field of plane wave by a cylindrical obstacle buried in a dielectric half-space. IEEE Trans. Antennas Propag. 1986, 34, 1306–1312. [Google Scholar] [CrossRef]
- Kuo, H.; Moghaddam, M. Electromagnetic scattering from a buried cylinder in layered media with rough interfaces. IEEE Trans. Antennas Propag. 2002, 50, 2392–2401. [Google Scholar] [CrossRef]
- Lawrence, E.; Sarabandi, K. Electromagnetic scattering from a dielectric cylinder beneath a slightly rough surface. IEEE Trans. Antennas Propag. 2002, 50, 1368–1376. [Google Scholar] [CrossRef]
- Vico, M.D.; Frezza, F.; Pajewski, L.; Schettini, G. Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: A spectral-domain solution. IEEE Trans. Antennas Propag. 2005, 53, 719–727. [Google Scholar] [CrossRef]
- Altuncu, Y.; Yapar, A.; Akduman, I. On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface. IEEE Trans. Geosci. Remote Sens. 2006, 44, 6573–6592. [Google Scholar] [CrossRef]
- Crocco, L.; D’Urso, M.; Isernia, T. The contrast source-extended born model for 2D subsurface scattering problems. Progr. Electr. Res. B 2009, 17, 343–359. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-C. Scattering by a radially stratified infinite cylinder buried in an absorbing half-space. J. Opt. Soc. Am. Opt. Image Sci. 2013, 30, 565–572. [Google Scholar] [CrossRef]
- Bourlier, C.; Pinel, N.; Kubick, G. Method of Moments for 2D Scattering Problems: Basic Concepts and Applications; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Nasr, M.A.; Eshrah, I.A.; Hashish, E.A. Electromagnetic scattering from a buried cylinder using a multiple reflection approach: TM case. IEEE Trans. Antennas Propag. 2014, 62, 2702–2707. [Google Scholar] [CrossRef]
- Negm, S.; Eshrah, I.A.; Badr, R.M. Electromagnetic scattering from a buried cylinder using T-matrix and signal-flow-graph approach. In Proceedings of the EuCAP, Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
- Kunz, K.; Luebbers, L.J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press: London, UK, 1993. [Google Scholar]
- Dogaru, T.; Carin, L. Time-domain sensing of targets buried under a rough air-ground interface. IEEE Trans. Antennas Propag. 1998, 46, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Moss, C.D.; Teixeira, F.L.; Yang, Y.E.; Kong, J.A. Finite-difference time-domain simulation of scattering from objects in continuous random media. IEEE Trans. Geosci. Remote Sens. 2002, 40, 178–186. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. GprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Kim, J.; Lee, J.; Kang, M.-S.; An, Y.-K. Underground object classification for urban roads using instantaneous phase analysis of ground-penetrating radar (GPR) data. Remote Sens. 2018, 10, 1417. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.Y.; Hao, T.; Chang, Y.; Zhao, Y.H. Time-frequency analysis of enhanced GPR detection of RF tagged buried plastic pipes. NDT E Int. 2017, 92, 88–96. [Google Scholar] [CrossRef]
- Vitebskiy, S.; Sturgess, K.; Carin, L. Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution. IEEE Trans. Antennas Propag. 1996, 44, 143–151. [Google Scholar] [CrossRef]
- Losada, V.; Boix, R.R.; Medina, F. Short-pulse electromagnetic scattering from conducting circular plates. IEEE Trans. Geosci. Remote Sens. 2003, 41, 988–997. [Google Scholar] [CrossRef]
- Wang, Y.; Longstaff, I.D.; Leat, C.J.; Shauley, N.V. Complex natural resonances of conducting planar objects buried in a dielectric half-space. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1183–1189. [Google Scholar] [CrossRef]
- Lu, T.; Cai, W.; Zhang, P. Discontinuous Galerkin time-domain method for GPR simulation in dispersive media. IEEE Trans. Geosci. Remote Sens. 2005, 43, 72–80. [Google Scholar]
- Lou, Z.; Petersson, L.E.R.; Jin, J.-M.; Riley, D.J. Total- and scattered-field decomposition technique for the finite-element time-domain modeling of buried scatterers. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 133–137. [Google Scholar]
- Di Vico, M.; Frezza, F.; Pajewski, L.; Schettini, G. Scattering by buried dielectric cylindrical structures. Radio Sci. 2005, 40. [Google Scholar] [CrossRef]
- Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G.; Tedeschi, N. Electromagnetic scattering by a metallic cylinder buried in a lossy medium with the cylindrical-wave approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 179–183. [Google Scholar] [CrossRef]
- Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G. Scattering by perfectly conducting circular cylinders buried in a dielectric slab through the cylindrical wave approach. IEEE Trans. Antennas Propag. 2009, 57, 1208–1217. [Google Scholar] [CrossRef]
- Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G. Line source scattering by buried perfectly conducting circular cylinders. Int. J. Antennas Propag. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ponti, C.; Vellucci, S. Scattering by conducting cylinders below a dielectric layer with a fast noniterative approach. IEEE Trans. Microw. Theory Techn. 2015, 63, 30–39. [Google Scholar] [CrossRef]
- Fiaz, M.A.; Frezza, F.; Pajewski, L.; Ponti, C.; Schettini, G. Scattering by a circular cylinder buried under a slightly rough surface: The cylindrical-wave approach. IEEE Trans. Antennas Propag. 2012, 60, 2834–2842. [Google Scholar] [CrossRef]
- Fiaz, M.A.; Frezza, F.; Ponti, C.; Schettini, G. Electromagnetic scattering by a circular cylinder buried below a slightly rough Gaussian surface. J. Opt. Soc. Am. Opt. Image Sci. 2014, 31, 26–34. [Google Scholar] [CrossRef]
- Cincotti, G.; Gori, F.; Santarsiero, M.; Frezza, F.; Furnó, F.; Schettini, G. Plane wave expansion of cylindrical functions. Opt. Commun. 1993, 95, 192–198. [Google Scholar] [CrossRef]
- Frezza, F.; Martinelli, P.; Pajewski, L.; Schettini, G. Short-pulse electromagnetic scattering by buried perfectly conducting cylinders. IEEE Geosci. Remote Sens. Lett. 2007, 4, 611–615. [Google Scholar] [CrossRef]
- Ponti, C.; Santarsiero, M.; Schettini, G. Electromagnetic scattering of a pulsed signal by conducting cylindrical targets embedded in a half-space medium. IEEE Trans. Antennas Propag. 2017, 65, 1208–1217. [Google Scholar] [CrossRef]
- Ponti, C.; Santarsiero, M.; Schettini, G. Full-wave analysis of the scattering of a pulsed light beam by dielectric cylinders embedded in a homogeneous medium. J. Opt. 2019, 21. [Google Scholar] [CrossRef] [Green Version]
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Sneddon, N. Mixed Boundary-Value Problems in Potential Theory; North-Holland: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Ghavami, M.; Michael, L.B.; Kohno, R. Ultra-Wideband Signal and Systems in Communication Engineering; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Brigham, E.O. The Fast Fourier Transform and Its Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Loewer, M.; Igel, J. FDTD simulation of GPR with a realistic multi-pole Debye description of lossy and dispersive media. In Proceedings of the 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, China, 13–16 June 2016. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponti, C.; Santarsiero, M.; Schettini, G. Time-Domain Electromagnetic Scattering by Buried Dielectric Objects with the Cylindrical-Wave Approach for GPR Modelling. Electronics 2020, 9, 421. https://doi.org/10.3390/electronics9030421
Ponti C, Santarsiero M, Schettini G. Time-Domain Electromagnetic Scattering by Buried Dielectric Objects with the Cylindrical-Wave Approach for GPR Modelling. Electronics. 2020; 9(3):421. https://doi.org/10.3390/electronics9030421
Chicago/Turabian StylePonti, Cristina, Massimo Santarsiero, and Giuseppe Schettini. 2020. "Time-Domain Electromagnetic Scattering by Buried Dielectric Objects with the Cylindrical-Wave Approach for GPR Modelling" Electronics 9, no. 3: 421. https://doi.org/10.3390/electronics9030421
APA StylePonti, C., Santarsiero, M., & Schettini, G. (2020). Time-Domain Electromagnetic Scattering by Buried Dielectric Objects with the Cylindrical-Wave Approach for GPR Modelling. Electronics, 9(3), 421. https://doi.org/10.3390/electronics9030421