Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue
Abstract
:1. The Asparagus Crop
2. Asparagus Biochemistry
2.1. Steroidal Saponins
2.2. Vitamins
2.3. Minerals
2.4. Flavonoids and Other Phenols
2.5. Volatile Sulphur Compounds and Their Precursors
3. Cultivation, Harvesting, and Storage Influences on Asparagus Quality
4. Asparagus and Health
5. Asparagus Flavour
6. Asparagus and the Smelly Urinary Story—A Catalogue of Misconceptions
7. The Potential of Asparagus Metabolomics
8. General Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Winter, R. A Consumer’s Dictionary of Cosmetic Ingredients. 7th Edition: Complete Information About the Harmful and Desirable Ingredients Found in Cosmetics and Cosmeceuticals; Three Rivers Press: New York, NY, USA, 2009. [Google Scholar]
- Chase, M.W.; Christenhusz, M.; Fay, M.; Byng, J.; Judd, W.S.; Soltis, D.; Mabberley, D.; Sennikov, A.; Soltis, P.S.; Stevens, P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Asparagus officinalis L. Plants of the World Online. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:531229-1 (accessed on 15 May 2012).
- Huyskens-Keil, S.; Kadau, R.; Herppich, W. Textural properties and cell wall metabolism of white asparagus spears (Asparagus officinalis L.) during postharvest. In Proceedings of the 5th International Postharvest Symposium, Verona, Italy, 6–11 June 2004; pp. 461–468. [Google Scholar]
- Song, L.; Zeng, W.; Wu, A.; Picard, K.; Lampugnani, E.R.; Cheetamun, R.; Beahan, C.; Cassin, A.; Lonsdale, A.; Doblin, M.S.; et al. Asparagus spears as a model to study heteroxylan biosynthesis during secondary wall development. PLoS ONE 2015, 10, e0123878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herppich, W.; Huyskens-Keil, S. Cell wall biochemistry and biomechanics of harvested white asparagus shoots as affected by temperature. Ann. Appl. Biol. 2008, 152, 377–388. [Google Scholar] [CrossRef]
- Asparagus Production in the World. Available online: https://knoema.com/search?query=asparagus+production&pageIndex=&scope=&term=&correct=&source=Header (accessed on 7 October 2019).
- Top 20 Fruits and Vegetables Sold in the U.S. Available online: https://www.pma.com/Content/Articles/2017/05/Top-20-Fruits-and-Vegetables-Sold-in-the-US (accessed on 7 October 2019).
- Areaal Asperges per Gemeente in 2018. Available online: https://www.cbs.nl/nl-nl/maatwerk/2019/19/areaal-asperges-per-gemeente-in-2018 (accessed on 22 September 2019).
- Asparagus Production. Available online: https://www.statista.com/search/?q=asparagusproduction{&}qKat=search (accessed on 5 October 2019).
- Global Asparagus Market Estimated to be Worth $37Bn by 2027. Available online: https://www.freshplaza.com/article/178054/Global-asparagus-market-estimated-to-be-worth-37Bn-by-2027/ (accessed on 24 September 2019).
- An Incisive, In-depth Analysis on the Asparagus Market. Available online: https://www.futuremarketinsights.com/reports/asparagus-market (accessed on 7 October 2019).
- Al-Snafi, A.E. The pharmacological importance of Asparagus officinalis-A review. Pharm. Biol. 2015, 5, 93–98. [Google Scholar]
- Takacs-Hajos, M.; Kiss, Z.P.; Borbely Varga, M.; Zsombik, L. Evolution of bio-active substances in asparagus as affected by different harvest times. Eur. Chem. Bull. 2012, 2, 72–75. [Google Scholar]
- López, G.; Ros, G.; Rincón, F.; Ortuno, J.; Periago, M.; Martinez, M. Amino acids and in vitro protein digestibility changes in green asparagus (Asparagus officinalis, L.) during growth and processing. Food Res. Int. 1996, 29, 617–625. [Google Scholar] [CrossRef]
- Słupski, J.; Korus, A.; Lisiewska, Z.; Kmiecik, W. Content of amino acids and the quality of protein in as-eaten green asparagus (Asparagus officinalis L.) products. Int. J. Food Sci. Technol. 2010, 45, 733–739. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.M.; Rodríguez-Gutiérrez, G.; Jaramillo-Carmona, S.; Espejo-Calvo, J.; Rodríguez-Arcos, R.; Fernández-Bolaños, J.; Guillén-Bejarano, R.; Jiménez-Araujo, A. Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chem. 2009, 113, 665–671. [Google Scholar] [CrossRef]
- Hamdi, A.; Jiménez-Araujo, A.; Rodríguez Arcos, R.; Jaramillo Carmona, S.; Lachaal, M.; Bouraoui, N.K.; Guillén-Bejarano, R. Asparagus Saponins: Chemical Characterization, Bioavailability and Intervention in Human Health. Nutri. Food Sci. Int. J. 2018, 7, 555704. [Google Scholar]
- Link, R. The 14 Healthiest Vegetables on Earth. 2017. Available online: https://www.healthline.com/nutrition/14-healthiest-vegetables-on-earth#section15 (accessed on 26 September 2019).
- Asparagus, Raw USDA. Available online: https://fdc.nal.usda.gov/fdc-app.html{#}/food-details/168389/nutrients (accessed on 25 September 2019).
- Nutritional Facts—Asparagus, Raw. Available online: https://www.nutritionvalue.org/Asparagus{%}2C{_}raw{_}nutritional{_}value.html (accessed on 24 September 2019).
- Asparagus, Cooked, Boiled, Drained USDA. Available online: https://fdc.nal.usda.gov/fdc-app.html{#}/food-details/168390/nutrients (accessed on 25 September 2019).
- Negi, J.; Singh, P.; Joshi, G.; Rawat, M.; Bisht, V. Chemical constituents of Asparagus. Pharmacogn. Rev. 2010, 4, 215. [Google Scholar]
- Gaur, R. Flora of the District Garhwal, North West Himalaya: With Ethnobotanical Notes; TransMedia: Srinagar, India, 1999. [Google Scholar]
- Peter, K. Underutilized and Underexploited Horticultural Crops; Number v. 2 in Underutilized and Underexploited Horticultural Crops; New India Publishing Agency: New Delhi, India, 2007. [Google Scholar]
- Visavadiya, N.P.; Narasimhacharya, A. Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats. Evid.-Based Complement. Altern. Med. 2009, 6, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirtikar, K.; Basu, B.D. Indian Medicinal Plants: By K.R. Kirtikar, B.D. Basu, and An I.C.S. In 4 Volumes; Number v. 4; Lalit Mohan Basu: Allahabad, India, 1935. [Google Scholar]
- Jashni, H.K.; Jahromi, H.K.; Ranjbary, A.G.; Jahromi, Z.K.; Kherameh, Z.K. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats. Int. J. Reprod. Biomed. 2016, 14, 75. [Google Scholar]
- Zhang, H.; Birch, J.; Pei, J.; Ma, Z.F.; Bekhit, A.E.D. Phytochemical compounds and biological activity in Asparagus roots: A review. Int. J. Food Sci. Technol. 2019, 54, 966–977. [Google Scholar] [CrossRef]
- Hostettmann, K.; Marston, A. Saponins; Chemistry and Pharmacology of Natural Products; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Kräutler, B.; Kinghorn, A.; Sahu, N. Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 2009. [Google Scholar]
- Shao, Y.; Poobrasert, O.; Kennelly, E.J.; Chin, C.; Ho, C.; Huang, M.; Garrison, S.A.; Cordell, G.A. Cytotoxic activity of steroidal saponins from Asparagus officinalis. In Proceedings of the IX International Asparagus Symposium 479, Pasco, WA, USA, 15–17 July 1997; pp. 277–282. [Google Scholar]
- Shimoyamada, M.; Suzuki, M.; Sonta, H.; Maruyama, M.; Okubo, K. Antifungal activity of the saponin fraction obtained from Asparagus officinalis L. and its active principle. Agric. Biol. Chem. 1990, 54, 2553–2557. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Huang, X.F.; Qi, Q.; Dai, Q.S.; Yang, L.; Nie, F.F.; Lu, N.; Gong, D.D.; Kong, L.Y.; Guo, Q.L. Asparanin A induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochem. Biophys. Res. Commun. 2009, 381, 700–705. [Google Scholar] [CrossRef]
- Lee, E.J.; Yoo, K.S.; Patil, B.S. Development of a rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. J. Food Sci. 2010, 75, 703–709. [Google Scholar] [CrossRef]
- Wang, M.; Tadmor, Y.; Wu, Q.L.; Chin, C.K.; Garrison, S.A.; Simon, J.E. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric. Food Chem. 2003, 51, 6132–6136. [Google Scholar] [CrossRef]
- Vázquez-Castilla, S.; Jaramillo-Carmona, S.; Fuentes-Alventosa, J.M.; Jiménez-Araujo, A.; Rodriguez-Arcos, R.; Cermeño-Sacristán, P.; Espejo-Calvo, J.A.; Guillén-Bejarano, R. Optimization of a method for the profiling and quantification of saponins in different green asparagus genotypes. J. Agric. Food Chem. 2013, 61, 6250–6258. [Google Scholar] [CrossRef]
- Huang, X.; Kong, L. Steroidal saponins from roots of Asparagus officinalis. Steroids 2006, 71, 171–176. [Google Scholar] [CrossRef]
- Huang, X.F.; Lin, Y.Y.; Kong, L.Y. Steroids from the roots of Asparagus officinalis and their cytotoxic activity. J. Integr. Plant Biol. 2008, 50, 717–722. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, X.; Kong, L. A new steroidal saponin from the dried stems of Asparagus officinalis L. Fitoterapia 2010, 81, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Carmona, S.; Rodriguez-Arcos, R.; Jiménez-Araujo, A.; López, S.; Gil, J.; Moreno, R.; Guillén-Bejarano, R. Saponin profile of wild asparagus species. J. Food Sci. 2017, 82, 638–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.; De la Puerta, R.; Sáenz, M.; Marquez-Martín, A.; Fernández-Arche, M. Hypocholesterolemic and hepatoprotective effects of “Triguero” Asparagus from Andalusia in rats fed a high cholesterol diet. Evid.-Based Complement. Alternat. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Castilla, S.; De la Puerta, R.; Garcia-Gimenez, M.; Fernández-Arche, M.; Guillén-Bejarano, R. Bioactive constituents from “Triguero” asparagus improve the plasma lipid profile and liver antioxidant status in hypercholesterolemic rats. Int. J. Mol. Sci. 2013, 14, 21227–21239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Ji, C.; Yue, L.; Xu, H. Saponins isolated from Asparagus induce apoptosis in human hepatoma cell line HepG2 through a mitochondrial-mediated pathway. Curr. Oncol. 2012, 19, eS1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Chin, C.K.; Ho, C.T.; Ma, W.; Garrison, S.A.; Huang, M.T. Anti-tumor activity of the crude saponins obtained from asparagus. Cancer Lett. 1996, 104, 31–36. [Google Scholar] [CrossRef]
- Jaramillo, S.; Muriana, F.J.; Guillen, R.; Jimenez-Araujo, A.; Rodriguez-Arcos, R.; Lopez, S. Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. J. Funct. Foods 2016, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, Y.; Zhao, J.; Zhang, W.; Pang, X. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway. J. Sci. Food Agric. 2013, 93, 1492–1498. [Google Scholar] [CrossRef]
- Shimoyamada, M.; Suzuki, M.; Maruyama, M.; Watanabe, K. An antifungal saponin from white asparagus (Asparagus officinalis L.) bottoms. J. Sci. Food Agric. 1996, 72, 430–434. [Google Scholar] [CrossRef]
- Dawid, C.; Hofmann, T. Quantitation and bitter taste contribution of saponins in fresh and cooked white asparagus (Asparagus officinalis L.). Food Chem. 2014, 145, 427–436. [Google Scholar] [CrossRef]
- Dawid, C.; Hofmann, T. Identification of sensory-active phytochemicals in asparagus (Asparagus officinalis L.). J. Agric. Food Chem. 2012, 60, 11877–11888. [Google Scholar] [CrossRef] [PubMed]
- Kawano, K.; Sakai, K.; Sato, H.; Sakamura, S. A bitter principle of asparagus: Isolation and structure of furostanol saponin in asparagus storage root. Agric. Biol. Chem. 1975, 39, 1999–2002. [Google Scholar]
- Kawano, K.; Sato, H.; Sakamura, S. Isolation and structure of furostanol saponin in asparagus edible shoots. Agric. Biol. Chem. 1977, 41, 1–8. [Google Scholar] [CrossRef]
- Tucker, K.L.; Olson, B.; Bakun, P.; Dallal, G.E.; Selhub, J.; Rosenberg, I.H. Breakfast cereal fortified with folic acid, vitamin B-6, and vitamin B-12 increases vitamin concentrations and reduces homocysteine concentrations: A randomized trial. Am. J. Clin. Nutr. 2004, 79, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Ross, A. Modern Nutrition in Health and Disease; M-Medicine Series; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Pitkin, R.M. Folate and neural tube defects. Am. J. Clin. Nutr. 2007, 85, 285S–288S. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Stronati, M.; Lanari, M. Mediterranean diet, folic acid, and neural tube defects. Ital. J. Pediatr. 2017, 43, 74. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-containing plant food sources for vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Lopez, M.; Zurera-Cosano, G.; Moreno-Rojas, R. Trends and nutritional significance of mineral content in fresh white asparagus spears. Int. J. Food Sci. Nutr. 1998, 49, 353–363. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plant Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Rodríguez-Pérez, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comprehensive, untargeted, and qualitative RP-HPLC-ESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis). J. Food Compos. Anal. 2016, 46, 78–87. [Google Scholar] [CrossRef]
- Fanasca, S.; Rouphael, Y.; Venneria, E.; Azzini, E.; Durazzo, A.; Maiani, G. Antioxidant properties of raw and cooked spears of green asparagus cultivars. Int. J. Food Sci. Technol. 2009, 44, 1017–1023. [Google Scholar] [CrossRef]
- Fan, R.; Yuan, F.; Wang, N.; Gao, Y.; Huang, Y. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. J. Food Sci. Technol. 2015, 52, 2690–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes-Alventosa, J.; Jaramillo, S.; Rodriguez-Gutierrez, G.; Cermeño, P.; Espejo, J.; Jiménez-Araujo, A.; Guillén-Bejarano, R.; Fernández-Bolaños, J.; Rodríguez-Arcos, R. Flavonoid profile of green asparagus genotypes. J. Agric. Food Chem. 2008, 56, 6977–6984. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.G.; Kang, D.H.; Lee, C.K.; Lee, S.Y.; Ryu, C.S.; Kim, D.E.; Polovka, M.; Namieśnik, J.; Gorinstein, S. Influence of different cultivation systems on bioactivity of asparagus. Food Chem. 2018, 244, 349–358. [Google Scholar] [CrossRef]
- Rodríguez-Arcos, R.C.; Smith, A.C.; Waldron, K.W. Ferulic acid crosslinks in asparagus cell walls in relation to texture. J. Agric. Food Chem. 2004, 52, 4740–4750. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Schnug, E. Significance of sulfur compounds in the protection of plants against pests and diseases. J. Plant Nutr. 2005, 28, 763–784. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Saito, K. Ultrahigh resolution metabolomics for S-containing metabolites. Curr. Opin. Biotechnol. 2017, 43, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Di Gioia, F.; Ntatsi, G. Vegetable organosulfur compounds and their health promoting effects. Curr. Pharm. Des. 2017, 23, 2850–2875. [Google Scholar] [CrossRef]
- McGorrin, R.J. The significance of volatile sulfur compounds in food flavors: An overview. In Volatile Sulfur Compounds in Food; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; pp. 3–31. [Google Scholar]
- Mitchell, S.C.; Waring, R.H. Asparagusic acid. Phytochemistry 2014, 97, 5–10. [Google Scholar] [CrossRef]
- Tressl, R.; Holzer, M.; Apetz, M. Formation of flavor components in asparagus. 1. Biosynthesis of sulfur-containing acids in asparagus. J. Agric. Food Chem. 1977, 25, 455–459. [Google Scholar] [CrossRef]
- Jang, D.S.; Cuendet, M.; Fong, H.H.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J. Agric. Food Chem. 2004, 52, 2218–2222. [Google Scholar] [CrossRef]
- Tressl, R.; Bahri, D.; Holzer, M.; Kossa, T. Formation of flavor components in asparagus. 2. Formation of flavor components in cooked asparagus. J. Agric. Food Chem. 1977, 25, 459–463. [Google Scholar] [CrossRef]
- Ulrich, D.; Hoberg, E.; Bittner, T.; Engewald, W.; Meilchen, K. Contribution of volatile compounds to the flavor of cooked asparagus. Eur. Food Res. Technol. 2001, 213, 200–204. [Google Scholar] [CrossRef]
- Scherb, J.; Kreissl, J.; Haupt, S.; Schieberle, P. Quantitation of S-methylmethionine in raw vegetables and green malt by a stable isotope dilution assay using LC-MS/MS: Comparison with dimethyl sulfide formation after heat treatment. J. Agric. Food Chem. 2009, 57, 9091–9096. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Yang, Z.; Nishizawa, T.; Mori, T.; Saito, K. Top-down targeted metabolomics reveals a sulfur-containing metabolite with inhibitory activity against angiotensin-converting enzyme in Asparagus officinalis. J. Nat. Prod. 2015, 78, 1179–1183. [Google Scholar] [CrossRef]
- Mitchell, S. Food idiosyncrasies: Beetroot and asparagus. Drug Metab. Dispos. 2001, 29, 539–543. [Google Scholar]
- Akers, H.A.; Venkatasubramanian, S. Stalking the asparagus trail. Food Foodways 1997, 7, 131–136. [Google Scholar] [CrossRef]
- Borrego-Benjumea, A.; Basallote-Ureba, M.J.; Melero-Vara, J.M.; Abbasi, P.A. Characterization of Fusarium isolates from asparagus fields in southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot. Phytopathology 2014, 104, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Fiume, F.; Fiume, G. Field response of some Asparagus variaties to rust, Fusarium crown root rot, and violet root rot. Commun. Agric. Appl. Biol. Sci. 2003, 68, 659–672. [Google Scholar]
- Blok, W.; Bollen, G. Fungi on roots and stem bases of asparagus in the Netherlands: Species and pathogenicity. Eur. J. Plant Pathol. 1995, 101, 15–24. [Google Scholar] [CrossRef]
- Pests and Diseases in the Cultivation of Asparagus. Available online: https://www.limgroup.eu/applications/limgroup-productsite/assets/books/en/files/limboekENGnet1.pdf (accessed on 11 June 2019).
- Bracale, M.; Caporali, E.; Galli, M.; Longo, C.; Marziani-Longo, G.; Rossi, G.; Spada, A.; Soave, C.; Falavigna, A.; Raffaldi, F.; et al. Sex determination and differentiation in Asparagus officinalis L. Plant Sci. 1991, 80, 67–77. [Google Scholar] [CrossRef]
- Uragami, A.; Ueno, R.; Yamasaki, A.; Matsuo, K.; Yamaguchi, T.; Tokiwa, H.; Takizawa, T.; Sakai, H.; Ikeuchi, T.; Watanabe, S.I.; et al. Productive differences between male and female plants in white asparagus production using the rootstock-planting forcing culture technique. Horticult. J. 2016, 85, 322–330. [Google Scholar] [CrossRef]
- Shiobara, Y.; Yoshino, M.; Uragami, A.; Widiastuti, A.; Omori, A.; Kuba, K.; Saito, H.; Hirata, Y.; Sonoda, T.; Koizumi, T.; et al. Sex distinction of asparagus by loop-mediated isothermal amplification and observation of seedling phenotypes. Euphytica 2011, 177, 91–97. [Google Scholar] [CrossRef]
- Ii, Y.; Uragami, A.; Uno, Y.; Kanechi, M.; Inagaki, N. RAPD-based analysis of differences between male and female genotypes of Asparagus officinalis. Hort. Sci. 2012, 39, 33–37. [Google Scholar]
- Gao, W.; Li, R.; Li, S.F.; Deng, C.L.; Li, S. Identification of two markers linked to the sex locus in dioecious Asparagus officinalis plants. Russ. J. Plant Physl. 2007, 54, 816–821. [Google Scholar] [CrossRef]
- Gebler, P.; Wolko, Ł.; Knaflewski, M. Identification of molecular markers for selection of supermale (YY) asparagus plants. J. Appl. Genet. 2007, 48, 129–131. [Google Scholar] [CrossRef]
- Loptien, H. Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z. Pflanzenzuchtg. 1979, 82, 162–175. [Google Scholar]
- Li, S.F.; Gao, W.J.; Zhao, X.P.; Dong, T.Y.; Deng, C.L.; Lu, L.D. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data. PLoS ONE 2014, 9, e97189. [Google Scholar] [CrossRef]
- Moreno, R.; Castro, P.; Vrána, J.; Kubaláková, M.; Cápal, P.; García Pérez, V.; Gil, J.; Millán, T.; Doležel, J. Integration of Genetic and Cytogenetic Maps and Identification of Sex Chromosome in Garden Asparagus (Asparagus officinalis L.). Front. Plant Sci. 2018, 9, 1068. [Google Scholar] [CrossRef]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef]
- Slatnar, A.; Petkovsek, M.M.; Stampar, F.; Veberic, R.; Horvat, J.; Jakse, M.; Sircelj, H. Game of Tones: Sugars, organic acids, and phenolics in green and purple asparagus (Asparagus officinalis L.) cultivars. Turk. J. Agric. For. 2018, 42, 55–66. [Google Scholar] [CrossRef]
- Morrison , W.R., III; Ingrao, A.; Ali, J.; Szendrei, Z. Identification of plant semiochemicals and evaluation of their interactions with early spring insect pests of asparagus. J. Plant Interact. 2016, 11, 11–19. [Google Scholar] [CrossRef]
- Kmitiene, L.; Zebrauskiene, A.; Kmitas, A. Comparison of biological characteristics and productivity of introduced cultivars of asparagus (Asparagus officinalis L.). Agron. Res. 2009, 7, 11–20. [Google Scholar]
- Papoulias, E.; Siomos, A.; Koukounaras, A.; Gerasopoulos, D.; Kazakis, E. Effects of genetic, pre-and post-harvest factors on phenolic content and antioxidant capacity of white asparagus spears. Int. J. Mol. Sci. 2009, 10, 5370–5380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoberg, E.; Ulrich, D.; Wonneberger, C. Proposal for a flavour standard-Sensory profiles of European White Asparagus officinalis L. cultivars. In Proceedings of the XI International Asparagus Symposium 776, Horst, The Netherlands, 16–19 June 2005; pp. 239–246. [Google Scholar]
- Hoberg, E.; Ulrich, D.; Gottwald, J.; Rosen, A. Environmental Influences on the Sensory Quality of Asparagus officinalis L. In Proceedings of the International Conference on Quality in Chains, An Integrated View on Fruit and Vegetable Quality 604, Wageningen, The Netherlands, 6–9 July 2003; pp. 395–401. [Google Scholar]
- Hoberg, E.; Ulrich, D.; Standhardt, D.; Kecke, S. Evaluation of Asparagus officinalis L. flavour quality for breeding purposes. In Proceedings of the IX International Asparagus Symposium 479, Pasco, Washington, DC, USA, 15 July 1997; pp. 135–142. [Google Scholar]
- Cuppett, S.; Deleon, A.; Parkhurst, A.; Hodges, L. Factors Affecting Asparagus Sensory Evaluation 1. J. Food Qual. 1997, 20, 127–144. [Google Scholar] [CrossRef]
- Matsui, K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 2006, 9, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, S.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. J. Sci. Food Agric. 2007, 87, 286–296. [Google Scholar] [CrossRef]
- Jaramillo-Carmona, S.; Fuentes-Alventosa, J.; Rodríguez-Gutiérrez, G.; Waldron, K.; Smith, A.; Guillén-Bejarano, R.; Fernández-Bolaños, J.; Jiménez-Araujo, A.; Rodríguez-Arcos, R. Characterization of asparagus lignin by HPLC. J. Food Sci. 2008, 73, 526–532. [Google Scholar] [CrossRef]
- Siomos, A.S.; Sfakiotakis, E.M.; Dogras, C.C. Modified atmosphere packaging of white asparagus spears: Composition, color and textural quality responses to temperature and light. Sci. Hortic. 2000, 84, 1–13. [Google Scholar] [CrossRef]
- Siomos, A.S. The quality of asparagus as affected by preharvest factors. Sci. Hortic. 2018, 233, 510–519. [Google Scholar] [CrossRef]
- World Health Organization. Promoting Fruit and Vegetable Consumption Around the World. Available online: https://www.who.int/dietphysicalactivity/fruit/en/ (accessed on 19 October 2019).
- Staruschenko, A. Beneficial effects of high potassium: Contribution of renal basolateral K+ channels. Hypertension 2018, 71, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Abourashed, E.A. Leung’s Encyclopedia of Common Natural Ingredients: Used in Food, Drugs and Cosmetics, 3rd ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 52–53. [Google Scholar]
- Debuigne, G.; Couplan, F. Petit Larousse Des Plantes Medicinales; Larousse Editions: Paris, France, 2009; pp. 123–124. [Google Scholar]
- Gebczynski, P. Content of selected antioxidative compounds in green asparagus depending on processing before freezing and on the period and conditions of storage. Pol. J. Food Nutr. Sci. 2007, 57, 209–214. [Google Scholar]
- Hafizur, R.M.; Kabir, N.; Chishti, S. Asparagus officinalis extract controls blood glucose by improving insulin secretion and β-cell function in streptozotocin-induced type 2 diabetic rats. Br. J. Nutr. 2012, 108, 1586–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Butelli, E.; Petroni, K.; Tonelli, C. How can research on plants contribute to promoting human health? Plant Cell 2011, 23, 1685–1699. [Google Scholar] [CrossRef] [Green Version]
- Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 2002, 7, 22–44. [Google Scholar]
- Le Bon, A.M.; Siess, M.H. Organosulfur compounds from Allium and the chemoprevention of cancer. Drug Metabol. Drug Interact. 2000, 17, 51–80. [Google Scholar] [CrossRef]
- Sanae, M.; Yasuo, A. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats. J. Agric. Food Chem. 2013, 61, 5520–5525. [Google Scholar] [CrossRef]
- Aroma of the Week: Wine Aroma Kit: Asparagus. Available online: https://www.aroma-academy.co.uk/blogs/news/aroma-of-the-week-wine-aroma-kit-asparagus (accessed on 11 July 2019).
- Seal, L. Tasting Notes Decoded: Orange, Charcoal, Almond, Asparagus. 2017. Available online: https://www.decanterchina.com/en/knowledge/trivia/tasting-notes-decoded-orange-charcoal-almond-asparagus (accessed on 11 July 2019).
- Perry, D.; Hayes, J. Effects of matrix composition on detection threshold estimates for methyl anthranilate and 2-aminoacetophenone. Foods 2016, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Tournier, C.; Sulmont-Rossé, C.; Guichard, E. Flavour perception: Aroma, taste and texture interactions. Food 2007, 1, 246–257. [Google Scholar]
- McEwan, J.A.; Hunter, E.A.; van Gemert, L.J.; Lea, P. Proficiency testing for sensory profile panels: Measuring panel performance. Food Qual. Prefer. 2002, 13, 181–190. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 2019, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahad, T.; Nissar, J. Metabolomic and its approach in food science. Pharma Innov. J. 2017, 6, 745–756. [Google Scholar]
- Sun, R.; Wang, Y.; Chin, C.K.; Garrison, S. Volatile Compounds in Asparagus officinalis L. In Proceedings of the X International Asparagus Symposium 589, Niigata, Japan, 30 August–2 September 2001; pp. 257–266. [Google Scholar]
- Ulrich, D.; Hoberg, E. Flavor analysis in asparagus breeding. In Proceedings of the X International Asparagus Symposium 589, Niigata, Japan, 30 August–2 September 2001; pp. 281–287. [Google Scholar]
- Chen, X.; Qin, W.; Ma, L.; Xu, F.; Jin, P.; Zheng, Y. Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT Food Sci. Technol. 2015, 62, 927–933. [Google Scholar] [CrossRef]
- Associates, L. Odor & Flavor Detection Thresholds in Water (in Parts per Billion). Available online: https://www.leffingwell.com/odorthre.htm (accessed on 24 September 2012).
- Vilgis, T.; Vierich, T. Aroma Gemüse: Der Weg zum Perfekten Geschmack; Stiftung Warentest: Berlin, Germany, 2017. [Google Scholar]
- Harris, N.D.; Karahadian, C.; Lindsay, R.C. Musty aroma compounds produced by selected molds and actinomycetes on agar and whole wheat bread. J. Food Prot. 1986, 49, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Lemery, L. A Treatise of All Sorts of Foods, [microform] Both Animal and Vegetable: Also of Drinkables: ... Written Originally in French. By ... M. L. Lemery, ... Translated by D. Hay; T. Osborne: London, UK, 1745. [Google Scholar]
- Arbuthnot, J. An Essay Concerning the Nature of Aliments, and the Choice of Them, According to the Different Constitutions of Human Bodies: In which the Different Effects, Advantages, and Disadvantages of Animal and Vegetable Diet, are Explain’d; printed by S. Powell, for George Risk, George Ewing and William Smith: Dublin, Ireland, 1731. [Google Scholar]
- Franklin, B. Letter to Royal Academy Brussels Early Americas Digital Archive. 1770. Available online: http://eada.lib.umd.edu/text-entries/letter-to-the-royal-academy-of-brussels/{#}colophon (accessed on 26 September 2012).
- Proust, M.; Davis, L.; Prendergast, C. Swann’s Way; Search of Lost Time Series; Grasset and Gallimard: Paris, France, 1913–1927. [Google Scholar]
- Waring, R.; Mitchell, S.; Fenwick, G. The chemical nature of the urinary odour produced by man after asparagus ingestion. Xenobiotica 1987, 17, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Nencki, M. Ueber das vorkommen von methylmercaptan im menschlichen harn nach spargelgenuss. Archiv für Experimentelle Pathologie und Pharmakologie 1891, 28, 206–209. [Google Scholar] [CrossRef]
- Allison, A.; McWhirter, K. Two unifactorial characters for which man is polymorphic. Nature 1956, 178, 748–749. [Google Scholar] [CrossRef]
- Allison, A.; McWhirter, K. Two New Human Genes. BMJ 1957, 1, 585. [Google Scholar] [CrossRef]
- White, R.H. Occurrence of S-methyl thioesters in urines of humans after they have eaten asparagus. Science 1975, 189, 810–811. [Google Scholar] [CrossRef]
- Lison, M.; Blondheim, S.; Melmed, R. A polymorphism of the ability to smell urinary metabolites of asparagus. BMJ 1980, 281, 1676–1678. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.; Waring, R.; Land, D.; Thorpe, W. Odorous urine following asparagus ingestion in man. Experientia 1987, 43, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Leitner, E. Identification of odorous compounds in urine after the consumption of asparagus. Recent Res. Dev. Agric. Food Chem. 2001, 5, 161–166. [Google Scholar]
- Eriksson, N.; Macpherson, J.M.; Tung, J.Y.; Hon, L.S.; Naughton, B.; Saxonov, S.; Avey, L.; Wojcicki, A.; Pe’er, I.; Mountain, J. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 2010, 6, e1000993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelchat, M.L.; Bykowski, C.; Duke, F.F.; Reed, D.R. Excretion and perception of a characteristic odor in urine after asparagus ingestion: A psychophysical and genetic study. Chem. Sens. 2011, 36, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markt, S.C.; Nuttall, E.; Turman, C.; Sinnott, J.; Rimm, E.B.; Ecsedy, E.; Unger, R.H.; Fall, K.; Finn, S.; Jensen, M.K.; et al. Sniffing out significant “Pee values”: Genome wide association study of asparagus anosmia. BMJ 2016, 355, i6071. [Google Scholar] [CrossRef] [Green Version]
- Gearhart, H.; Pierce, S.; Payne-Bose, D. Volatile organic components in human urine after ingestion of asparagus. Clin. Chem. 1977, 23, 1941. [Google Scholar]
- Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30–34. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263. [Google Scholar] [CrossRef]
- Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2006, 169, 453–468. [Google Scholar] [CrossRef]
- Bartels, B.; Svatoš, A. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. Front. Plant Sci. 2015, 6, 471. [Google Scholar] [CrossRef] [Green Version]
- Etalo, D.W.; Díez-Simón, C.; De Vos, R.C.; Hall, R.D. Laser ablation electrospray ionization-mass spectrometry imaging (LAESI-MS) for spatially resolved plant metabolomics. In Plant Metabolomics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 253–267. [Google Scholar]
- Nakabayashi, R.; Hashimoto, K.; Toyooka, K.; Saito, K. Keeping the shape of plant tissue for visualizing metabolite features in segmentation and correlation analysis of imaging mass spectrometry in Asparagus officinalis. Metabolomics 2019, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanifah, A.; Maharijaya, A.; Putri, S.; Laviña, W. Untargeted Metabolomics Analysis of Eggplant (Solanum melongena L.) Fruit and Its Correlation to Fruit Morphologies. Metabolites 2018, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vos, R.C.; Hall, R.D.; Moing, A. Metabolomics of a Model Fruit: Tomato. In Annual Plant Reviews Volume 43: Biology of Plant Metabolomics; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 109–155. [Google Scholar]
- Dobson, G.; Shepherd, T.; Verrall, S.R.; Griffiths, W.D.; Ramsay, G.; McNicol, J.W.; Davies, H.V.; Stewart, D. A metabolomics study of cultivated potato (Solanum tuberosum) groups andigena, phureja, stenotomum, and tuberosum using gas chromatography- mass spectrometry. J. Agric. Food Chem. 2009, 58, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Souard, F.; Delporte, C.; Stoffelen, P.; Thévenot, E.A.; Noret, N.; Dauvergne, B.; Kauffmann, J.M.; Van Antwerpen, P.; Stevigny, C. Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS. Food Chem. 2018, 245, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Asparagus FooDB. Available online: http://foodb.ca/foods/21 (accessed on 26 September 2019).
- Asparagus KnapSack. Available online: http://www.knapsackfamily.com/knapsack{_}jsp/result.jsp?sname=all{&}word=asparagus (accessed on 26 September 2019).
- Asparagus Dictionary of Natural Products. Available online: http://dnp.chemnetbase.com/faces/chemical/ChemicalSearchResults.xhtml (accessed on 26 September 2019).
- Miyoshi, K.; Enomoto, Y.; Fukusaki, E.; Shimma, S. Visualization of Asparaptine in Asparagus (Asparagus officinalis) using MALDI-IMS. Anal. Sci. 2018, 34, 997–1001. [Google Scholar] [CrossRef] [Green Version]
Nutrient | Value per 100 g Raw Asparagus [20,21] (10th in the List of Top-14 Healthiest Vegetables) | Value per 100 g Cooked Asparagus [22] | Value per 100 g Raw Spinach (1st in the Top-14 Healthiest Vegetables) | RDI based on a 2000 Kcal Diet |
---|---|---|---|---|
Overal Nutrition Facts | ||||
Calories | 20 kcal | 20 kcal | 23 kcal | 2000 kcal |
Dietary fibres | 2.1 g | 2 g | 2.2 g | 25 g |
Sugars | 1.9 g | 1.3 g | 0.4 g | 90 g |
Proteins | 2.2 g | 2.4 g | 2.9 g | 40–50 g |
Fat content | 0.12 g | 0.22 g | 0.4 g | 65 g |
Vitamins | ||||
Vitamin B1, thiamin | 0.143 mg | 0.162 mg | 0.078 mg | 1.4 mg |
Vitamin B2. riboflavin | 0.141 mg | 0.139 mg | 0.189 mg | 1.6 mg |
Vitamin B3, niacin | 0.978 mg | 1.1 mg | 0.724 mg | 15 mg |
Vitamin B9, folate | 52 g | 149 g | 194 g | 400 g |
Vitamin C, ascorbic acid | 5.6 mg | 7.7 mg | 28.1 mg | 75 mg |
Vitamin E, alpha-tocopherol | 1.13 mg | 1.5 mg | 2.03 mg | 10 mg |
Vitamin K | 41.6 g | 50.6 g | 482.9 g | 80 g |
Minerals | ||||
Calcium, Ca | 24 mg | 23 mg | 99 mg | 1000 mg |
Copper, Cu | 0.19 mg | 0.19 mg | 0.13 mg | 0.9 mg |
Iron, Fe | 2.14 mg | 0.91 mg | 2.71 mg | 15 mg |
Magnesium, Mg | 14 mg | 14 mg | 79 mg | 350 mg |
Manganese, Mn | 0.158 mg | 0.158 mg | 0.897 mg | 5 mg |
Potassium, K | 202 mg | 224 mg | 558 mg | 3500 mg |
Selenium, Se | 2.3 g | 10.8 g | 1 g | 35 g |
Sodium, Na | 2 mg | 14 mg | 79 mg | 1500 mg |
Zinc, Zn | 0.54 mg | 0.54 mg | 0.53 mg | 15 mg |
Volatile Compound, Molecular Formula (MW) | Reported Concentration in Asparagus (ppb) | Odour Threshold in Water (ppb) | Aroma Attribute | Reference |
---|---|---|---|---|
dimethyl sulphide, (62.14) | 3300 | 0.12 | Sulphurous, onion-like, asparagus | [73,74,123,127] |
2,3-butanedione, (86.09) | nq | 8.6 | Sweet, buttery, caramel | [73,74] |
3-methylthio-propionanal, (104.17) | nq | 0.2 | Sulphurous, cheesy, cooked egg, baked potato | [74,127] |
2,3-pentanedione, (100.12) | nq | 20 | Buttery, caramel, roasted, nutty | [73,74,127] |
trans-2-hexenal, (98.14) | 13 | 17 | Green, fresh, fruity | [73,74,123,127] |
hexanal, (100.16) | 100–260 | 4.5 | Green, fresh, grass, woody | [73,74,123,127] |
2,6-dimethyl pyrazine, (108.14) | 200 | 800–1800 | Earthy, rusty, nutty, woody, greasy | [73,74,127] |
2-ethyl-3,5-dimethyl pyrazine, (136.19) | nq | 1 | Nutty, roasted, coffee | [73,74,127] |
2-methoxy-3-isopropyl pyrazine, (152.19) | nq | 0.002–10 | Earthy | [73,74] |
2,3-octanedione, (142.2) | nq | nd | Cooked, buttery, dill-like, broccoli-like | [73,74,127] |
1-octen-3-ol, (128.21) | 42–300 | 1 | Earthy, mushroom-like | [73,74,98,123,127] |
2-isobutyl-3-methoxypyrazine, (162.22) | nq | 0.002–0.016 | Spicy, earthy, green, sprout-like | [74,127] |
2-pentylfuran, (138.21) | 2–165 | 6 | Buttery, earthy | [73,74] |
Year | Observation | Reference |
---|---|---|
Literature recognition | ||
1702 | Asparagus.... causes a powerful/filthy and disagreeable smell in the urine as everybody knows. | [129] |
1731 | “ ....Of the Stems of Plants, some contain a sine Aperient Salt, and are Diaretick and Saponaceous, as Asparagus which affects the Urine with a Fetid Smell (especially if cut when they are white)....” (- and later included in the definition of Asparagus in Samuel Johnstons First Dictionary of the English Language Vol 1 Edition 1 (1755)) | [130] |
1770 | “A few Stems of Asparagus eaten, shall give our Urine a disagreable Odour” | [131] |
1913 | "....but what fascinated me would be the asparagus, .... all night long after a dinner at which I had partaken of them, they played .... at transforming my humble chamber into a bower of aromatic perfume." | [132] |
Scientific | ||
1891 | Urine smell proposed to be related to S-compound first identified as methanethiol | [134] |
1956 | Polymorphism reported within 115 individuals—two genes assoc-iated with ability to produce/excrete the S-compound (methane-thiol) in urine after eating Asparagus; excretor gene is dominant | [135,136] |
1975 | Adding two S-compounds to urine resulted in the characteristic odour ‘likely through formation of methanethiol’ | [137] |
1980 | 328 Israelis divided into smellers/non-smellers but concluded that production was ‘universal’ and suggest also a genetically determined odour hypersensitivity in 10% of volunteers. | [138] |
1987 | 800 volunteers eat asparagus – just under half 43% are excreters. Family studies also confirmed genetic polymorphism/Autosomal dominant gene and phenotype not age or sex related | [139] |
2001 | 12 S-compounds identified (many with low odour thresholds) using SPME GC-MS and excretion dynamics followed 10 min–16 h | [140] |
2010 | First web-based GWAS survey of asparagus eaters. 63% smelled; But failed to recognise that there may be non-producers/smellers. Appears to stem from a single switched base-pair mutation in a cluster of 50 genes coding for olfactory receptors | [141] |
2011 | GWAs but solved issue limiting conclusions from Eriksson related to discriminating non-producers/smellers etc. Basis of inability to produce is still unknown but inability to smell is linked to an SNP in a 50 gene cluster on Chromosome 1. | [142] |
2016 | Confirmed results of Eriksson but again made the mistake of not discriminating non-producers from non-smellers. | [143] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.C.H.; Hall, R.D. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites 2020, 10, 17. https://doi.org/10.3390/metabo10010017
Pegiou E, Mumm R, Acharya P, de Vos RCH, Hall RD. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites. 2020; 10(1):17. https://doi.org/10.3390/metabo10010017
Chicago/Turabian StylePegiou, Eirini, Roland Mumm, Parag Acharya, Ric C. H. de Vos, and Robert D. Hall. 2020. "Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue" Metabolites 10, no. 1: 17. https://doi.org/10.3390/metabo10010017
APA StylePegiou, E., Mumm, R., Acharya, P., de Vos, R. C. H., & Hall, R. D. (2020). Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites, 10(1), 17. https://doi.org/10.3390/metabo10010017