LAMA-1: A Cerebroside Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Purification of Compounds 1–4
2.2. Structural Elucidation of Compounds 1–4
2.3. Cytotoxic Activity of Isolated Compounds 1–4
3. Materials and Methods
3.1. Biological Materials
3.2. Fermentation and Extraction of Fungus Penicillium chrysogenum Strain S003
3.3. Isolation and Purification of Compounds 1–4
3.4. Cytotoxicity of Compounds 1–4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bugni, T.S.; Ireland, C.M. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 2004, 21, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Fenical, W. Chemical studies of marine bacteria: developing a new resource. Chem. Rev. 1993, 93, 1673–1683. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.; Alahdal, A.M. Cytotoxic and Antimicrobial Compounds from the Marine-Derived Fungus, Penicillium Species. Molecules 2018, 23, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaala, L.A.; Youssef, D.T. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murshid, S.S.; Badr, J.M.; Youssef, D.T. Penicillosides A and B: New cerebrosides from the marine-derived fungus Penicillium species. Rev. Bras. Farmacogn. 2016, 26, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Mourshid, S.S.; Badr, J.M.; Risinger, A.L.; Mooberry, S.L.; Youssef, D.T. Penicilloitins A and B, new antimicrobial fatty acid esters from a marine endophytic Penicillium species. Z. Naturforsch. C 2016, 71, 387–392. [Google Scholar] [CrossRef]
- Asiri, I.A.; Badr, J.M.; Youssef, D.T. Penicillivinacine, antimigratory diketopiperazine alkaloid from the marine-derived fungus Penicillium vinaceum. Phytochem. Lett. 2015, 13, 53–58. [Google Scholar] [CrossRef]
- Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290–344. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Xue, Y.R.; Liu, C.H. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi. Mar. Drugs 2015, 13, 4594–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imhoff, J.F. Natural products from marine fungi—Still an underrepresented resource. Mar. Drugs 2016, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Trincone, A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar. Drugs 2016, 14, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, S.-H.; Xu, Y.; Xiong, H.-R.; Qian, P.-Y.; Zhang, S. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J. Microbiol. Biotechnol. 2009, 25, 399. [Google Scholar] [CrossRef]
- Devi, P.; Rodrigues, C.; Naik, C.; D’souza, L. Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, Penicillium chrysogenum MTCC 5108. Indian J. Microbiol. 2012, 52, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Abo-Kadoum, M.; Abo-Dahab, N.; Awad, M.; Abdel-Hadi, A. Marine-derived fungus, Penicillium aurantiogriseum AUMC 9757: A producer of bioactive secondary metabolites. J. Basic Appl. Mycol. 2013, 4, 77–83. [Google Scholar]
- Subramani, R.; Kumar, R.; Prasad, P.; Aalbersberg, W. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pac. Trop. Biomed. 2013, 3, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-N.; Tian, L.; Hua, H.-M.; Lu, X.; Sun, S.; Wu, H.-H.; Pei, Y.-H. Two new compounds from the broth of the marine fungus Penicillium griseofulvum Y19-07. J. Asian Nat. Prod. Res. 2009, 11, 912–917. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Tao, H.; Peng, X.; Liu, P.; Zhu, W. Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J. Nat. Prod. 2009, 72, 1695–1698. [Google Scholar] [CrossRef]
- Sun, Y.; Takada, K.; Takemoto, Y.; Yoshida, M.; Nogi, Y.; Okada, S.; Matsunaga, S. Gliotoxin Analogues from a Marine-Derived Fungus, Penicillium sp., and Their Cytotoxic and Histone Methyltransferase Inhibitory Activities. J. Nat. Prod. 2012, 75, 111–114. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, L.; Li, D.; Gu, Q.; Zhu, T.J. New Cytotoxic Metabolites from the Marine-Derived Fungus Penicillium sp. ZLN29. Helv. Chim. Acta 2013, 96, 514–519. [Google Scholar] [CrossRef]
- Elhady, S.S.; El-Halawany, A.M.; Alahdal, A.M.; Hassanean, H.A.; Ahmed, S.A. A New Bioactive Metabolite Isolated from the Red Sea Marine Sponge Hyrtios erectus. Molecules 2016, 21, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhady, S.S.; Al-Abd, A.M.; El-Halawany, A.M.; Alahdal, A.M.; Hassanean, H.A.; Ahmed, S.A. Antiproliferative Scalarane-Based Metabolites from the Red Sea Sponge Hyrtios erectus. Mar. Drugs 2016, 14, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahdal, A.M.; Shaala, L.A.; Noor, A.O.; Elfaky, M.A.; Elhady, S.S.; Almohammadi, A.; Bagalagel, A.; Lashkar, M.O.; Almasri, D.M.; Youssef, D. Evaluation of the antiproliferative and cytotoxic activities of marine invertebrates-derived fungi. Pak. J. Pharm. Sci. 2017, 30, 1001–1006. [Google Scholar]
- Bagalagel, A.A.; Bogari, H.A.; Ahmed, S.A.; Diri, R.M.; Elhady, S.S. New Bromoindole Alkaloid Isolated from the Marine Sponge Hyrtios erectus. Heterocycles 2018, 96, 749–756. [Google Scholar]
- Asfour, H.Z.; Awan, Z.A.; Bagalagel, A.A.; Elfaky, M.A.; Abdelhameed, R.F.A.; Elhady, S.S. Large-Scale Production of Bioactive Terrein by Aspergillus terreus Strain S020 Isolated from the Saudi Coast of the Red Sea. Biomolecules 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, R.F.; Elhady, S.S.; Noor, A.O.; Almasri, D.M.; Bagalagel, A.A.; Maatooq, G.T.; Khedr, A.I.; Yamada, K. Production of a New Cyclic Depsipeptide by the Culture Broth of Staphylococcus sp. Isolated from Corallina officinalis L. Metabolites 2019, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Adler, J.H.; Young, M.; Nes, W.R. Determination of the absolute configuration at C-20 and C-24 of ergosterol in ascomycetes and basidiomycetes by proton magnetic resonance spectroscopy. Lipids 1977, 12, 364–366. [Google Scholar] [CrossRef]
- Smith, W.B. The carbon-13 spectra of steroids on the way to ecdysone. Magn. Reson. Chem. 1977, 9, 644–648. [Google Scholar] [CrossRef]
- Shang, Z.; Li, X.; Meng, L.; Li, C.; Gao, S.; Huang, C.; Wang, B. Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chin. J. Oceanol. Limnol. 2012, 30, 305–314. [Google Scholar] [CrossRef]
- Yue, J.-M.; Chen, S.-N.; Lin, Z.-W.; Sun, H.-D. Sterols from the fungus Lactarium volemus. Phytochemistry 2001, 56, 801–806. [Google Scholar] [CrossRef]
- Saito, K. Über die Säurebildung bei Aspergillus Oryzae. Bot. Mag. 1907, 21, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jeong, J.H.; Lee, K.T.; Rho, J.R.; Choi, H.D.; Kang, J.S.; Son, B.W. γ-Pyrone derivatives, kojic acid methyl ethers from a marine-derived fungus altenaria sp. Arch. Pharmacal Res. 2003, 26, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Terabayashi, Y.; Sano, M.; Yamane, N.; Marui, J.; Tamano, K.; Sagara, J.; Dohmoto, M.; Oda, K.; Ohshima, E.; Tachibana, K.; et al. Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet. Biol. 2010, 47, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Teng, Z.; Parkin, K.L.; Wang, Q.; Zhang, Q.; Luo, W.; Ma, D.; Zhao, M. Identification of bioactive metabolites dihydrocanadensolide, kojic acid, and vanillic acid in soy sauce using GC-MS, NMR spectroscopy, and single-crystal X-ray diffraction. J. Agric. Food Chem. 2014, 62, 8392–8401. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Sandjo, L.; Yun, K.; Leutou, A.S.; Kim, G.-D.; Choi, H.D.; Kang, J.S.; Hong, J.; Son, B.W. Flavusides A and B, antibacterial cerebrosides from the marine-derived fungus Aspergillus flavus. Chem. Pharm. Bull. 2011, 59, 1174–1177. [Google Scholar] [CrossRef] [Green Version]
- Yoder, B.J.; Cao, S.; Norris, A.; Miller, J.S.; Ratovoson, F.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G. Tambouranolide, a new cytotoxic hydroxybutanolide from a Tambourissa sp. (Monimiaceae). Nat. Prod. Res. 2007, 21, 37–41. [Google Scholar] [CrossRef]
- Li, Y.Y.; Liu, P.; Tang, Y.; Li, H.M.; Tang, Y.L.; Liang, X.H.; Tang, Y.J. Novel cerebrosides isolated from the fermentation mycelia of Tuber indicum. Helv. Chim. Acta 2013, 96, 702–709. [Google Scholar] [CrossRef]
- Chiu, C.-P.; Liu, S.-C.; Tang, C.-H.; Chan, Y.; El-Shazly, M.; Lee, C.-L.; Du, Y.-C.; Wu, T.-Y.; Chang, F.-R.; Wu, Y.-C. Anti-inflammatory cerebrosides from cultivated Cordyceps militaris. J. Agric. Food Chem. 2016, 64, 1540–1548. [Google Scholar] [CrossRef]
- Jin, W.; Rinehart, K.L.; Jares-Erijman, E.A. Ophidiacerebrosides: cytotoxic glycosphingolipids containing a novel sphingosine from a sea star. J. Org. Chem. 1994, 59, 144–147. [Google Scholar] [CrossRef]
- Hitchcock, C.; Morris, L.; James, A. The Stereochemistry of α-Oxidation of Fatty Acids in Plants: The Configuration of Biosynthetic Long-Chain 2-Hydroxyacids. Eur. J. Biochem. 1968, 3, 473–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitrin, R.D.; Chan, G.; Dingerdissen, J.; Debrosse, C.; Mehta, R.; Roberts, G.; Rottschaefer, S.; Staiger, D.; Valenta, J.; Snader, K.M.; et al. Isolation and structure determination of Pachybasium cerebrosides which potentiate the antifungal activity of aculeacin. J. Antibiot. 1988, 41, 469–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 2007, 55, 899–901. [Google Scholar] [CrossRef] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Al-Abd, A.M.; Lightfoot, D.A.; El-Shemy, H.A. Anti-cancer characteristics of mevinolin against three different solid tumor cell lines was not solely p53-dependent. J. Enzyme Inhib. Med. Chem. 2012, 27, 673–679. [Google Scholar] [CrossRef]
- Alahdal, A.; Asfour, H.; Ahmed, S.; Noor, A.; Al-Abd, A.; Elfaky, M.; Elhady, S. Anti-helicobacter, antitubercular and cytotoxic activities of scalaranes from the red sea sponge Hyrtios erectus. Molecules 2018, 23, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Position | δC | δH (m, J in Hz) | HMBC (H→C) a |
---|---|---|---|
1 | 70.0, CH2 | 4.24 (dd, 10.4, 3.6) 4.75 (m) | C-1″ |
2 | 54.7, CH | 4.77 (m) | C-1 |
3 | 72.2, CH | 4.77 (m) | C-2 |
4 | 131.8, CH | 5.99 (dd, 15.5, 5.2) | C-3, C-6 |
5 | 132.2, CH | 5.96 (m), (dd, 15.5,5.5) | C-3, C-6 |
6 | 33.0, CH2 | 2.14 (m) | |
7 | 32.1, CH2 | 2.14 (m) | |
8 | 124.1, CH | 5.25 (br t 7.8) | C-9 |
9 | 135.9, CH | ||
10 | 40.0, CH2 | 2.00 (t, 7.7) | C-9, C-9CH3 |
1′ | 173.8, C | ||
2′ | 73.4, CH | 5.09 (dd, 4.9, 0.76) | C-1′, C-3′, C-4′ |
3′ | 130.0, CH | 6.11 (dd, 15.3, 5.1) | C-1′ |
4′ | 132.2, CH | 6.18 (dt, 15.3, 6.4) | |
1″ | 105.6, CH | 4.91 (d, 7.8 ) | |
2″ | 75.1, CH | 4.02 (t, 6.6 ) | |
3″ | 78.4, CH | 4.22 (m) | |
4″ | 71.5, CH | 4.22 (m) | |
5″ | 78.5, CH | 3.90 (m) | |
6″ | 62.6, CH2 | 4.35 (dd, 11.8, 5.4) 4.51 (dd, 11.9, 2.5) | |
CH3 | 14.2, CH3 | 0.85 (t, 7) | |
9CH3 | 16.1, CH3 | 1.61 (s) | C-8, C-9 |
NH | 8.33 (d, 8.5) | C-1′ |
Cell Type | Cell Line | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Lung cancer | A-549 | >100 | 21.26 ± 0.18 | 19.30 ± 0.27 | >100 |
Cervical cancer | HeLa | >100 | >100 | >100 | >100 |
Prostate cancer | DU-145 | >100 | 1.5 ± 0.03 | 6.1 ± 0.18 | >100 |
Hepatocellular carcinoma | HepG2 | >100 | 2.89 ± 0.23 | 3.07 ± 0.97 | >100 |
Breast adenocarcinoma | MCF-7 | >100 | 16.95 ± 0.53 | 13.6 ± 0.38 | >100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, S.O.; Malatani, R.T.; Bogari, H.A.; Noor, A.O.; Ibrahim, A.K.; Elhady, S.S.; Abdelhameed, R.F.A. LAMA-1: A Cerebroside Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum. Metabolites 2020, 10, 75. https://doi.org/10.3390/metabo10020075
Alshehri SO, Malatani RT, Bogari HA, Noor AO, Ibrahim AK, Elhady SS, Abdelhameed RFA. LAMA-1: A Cerebroside Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum. Metabolites. 2020; 10(2):75. https://doi.org/10.3390/metabo10020075
Chicago/Turabian StyleAlshehri, Samah O., Rania T. Malatani, Hanin A. Bogari, Ahmad O. Noor, Amany K. Ibrahim, Sameh S. Elhady, and Reda F. A. Abdelhameed. 2020. "LAMA-1: A Cerebroside Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum" Metabolites 10, no. 2: 75. https://doi.org/10.3390/metabo10020075
APA StyleAlshehri, S. O., Malatani, R. T., Bogari, H. A., Noor, A. O., Ibrahim, A. K., Elhady, S. S., & Abdelhameed, R. F. A. (2020). LAMA-1: A Cerebroside Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum. Metabolites, 10(2), 75. https://doi.org/10.3390/metabo10020075