Exercise Regulates the Metabolic Homeostasis of Methamphetamine Dependence
Abstract
:1. Introduction
2. Results
2.1. Alterations in Metabolic Profiles Driven by METH
2.2. Changes in the Metabolite Profiles of METH Abusers after Exercise Intervention
2.3. Comparative Changes Induced by METH and Exercise
3. Discussion
4. Methods
4.1. Study Design
4.2. Metabolite Profiling
4.3. Statistical Analysis
4.4. Reagents Setup
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001, 2, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-F.; Li, J.-X. Drug addiction: A curable mental disorder? Acta Pharmacol. Sin. 2018, 39, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Larson, D.F.; Watson, R.R. Heart disease, methamphetamine and AIDS. Life Sci. 2003, 73, 129–140. [Google Scholar] [CrossRef]
- Pateria, P.; De Boer, B.; MacQuillan, G. Liver abnormalities in drug and substance abusers. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 577–596. [Google Scholar] [CrossRef]
- Ghanbari, R.; Sumner, S. Using Metabolomics to Investigate Biomarkers of Drug Addiction. Trends Mol. Med. 2018, 24, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Courtwright, D.T. The prepared mind: Marie Nyswander, methadone maintenance, and the metabolic theory of addiction. Addiction 1997, 92, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Turowski, P.; Kenny, B.A. The blood-brain barrier and methamphetamine: Open sesame? Front. Neurosci. 2015, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Nordahl, T.E.; Salo, R.; Leamon, M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J. Neuropsychiatry Clin. Neurosci. 2003, 15, 317–325. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Stein, D.J.; Howells, F.M. The neurobiology of methamphetamine induced psychosis. Front. Hum. Neurosci. 2014, 8, 537. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.-J.; Dang, D.-K.; Tran, H.-Q.; Jeong, J.H.; Nah, S.-Y.; Jang, C.-G.; Yamada, K.; Nabeshima, T.; Kim, H.-C. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch. Pharmacal Res. 2017, 40, 403–428. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, L.; Shi, J.; Yu, X.; Xiao, W.; Sun, R.; Zhou, Y.; Aa, J.; Wang, G. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse. Mol. Biosyst. 2014, 10, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.L.; Telving, R.; Andreasen, M.F.; Hasselstrøm, J.B.; Johannsen, M. A metabolomics study of retrospective forensic data from whole blood samples of humans exposed to 3, 4-methylenedioxymethamphetamine: A new approach for identifying drug metabolites and changes in metabolism related to drug consumption. J. Proteome Res. 2016, 15, 619–627. [Google Scholar] [CrossRef]
- Stefani, L.; Galanti, G. Physical exercise prescription in metabolic chronic disease. Transl. Inform. Smart Healthc. 2017, 1005, 123–141. [Google Scholar]
- Sobieraj, J.C.; Kim, A.; Fannon, M.J.; Mandyam, C.D. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct. Funct. 2016, 221, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Bu, L.; Wu, Y.; Yan, Q.; Tang, L.; Liu, X.; Diao, C.; Li, K.; Dong, G. Effects of physical training on brain functional connectivity of methamphetamine dependencies as assessed using functional near-infrared spectroscopy. Neurosci. Lett. 2020, 715, 134605. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev. 2013, 37, 1622–1644. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, X.; Li, M.; Wan, H. Effect of Tai Chi on Physical and Psychological Intervention of ATS Dependents of Different Genders: A Meta-analysis. China Sport Sci. Technol. 2021, 57, 53–66. [Google Scholar] [CrossRef]
- Peterson, M.; Johnstone, B.M. The Atwood Hall health promotion program, Federal Medical Center, Lexington, KY: Effects on drug-involved federal offenders. J. Subst. Abus. Treat. 1995, 12, 43–48. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, C.; Liu, T. Inhibition effect and its potential neurobiological mechanism of physical exercise on psychological craving and relapse behaviors among patients with drug addiction—Based on the regulation of neurotransmitters, hormones, and peptide through physical exercise. China Sport Sci. 2018, 38, 33–41. [Google Scholar]
- Wang, D.; Zhou, C.; Chang, Y.-K. Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: An ERP study. Physiol. Behav. 2015, 147, 38–46. [Google Scholar] [CrossRef]
- O’dell, S.J.; Galvez, B.A.; Ball, A.J.; Marshall, J.F. Running wheel exercise ameliorates methamphetamine-induced damage to dopamine and serotonin terminals. Synapse 2012, 66, 71–80. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, T.-F. Exercise and substance abuse. Int. Rev. Neurobiol. 2019, 147, 269–280. [Google Scholar] [PubMed]
- Zaitsu, K.; Hayashi, Y.; Kusano, M.; Tsuchihashi, H.; Ishii, A. Application of metabolomics to toxicology of drugs of abuse: A mini review of metabolomics approach to acute and chronic toxicity studies. Drug Metab. Pharmacokinet. 2016, 31, 21–26. [Google Scholar] [CrossRef]
- Moral, A.R.; Cankayali, I.; Sergin, D.; Boyacilar, O. Neuromuscular Functions on Experimental Acute Methanol Intoxication. Turk. J. Anaesthesiol. Reanim. 2015, 43, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.; Carmo, H.; Costa, V.M.; Capela, J.P.; Pontes, H.; Remião, F.; Carvalho, F.; Bastos Mde, L. Toxicity of amphetamines: An update. Arch. Toxicol. 2012, 86, 1167–1231. [Google Scholar] [CrossRef] [PubMed]
- Halpin, L.E.; Collins, S.A.; Yamamoto, B.K. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci. 2014, 97, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaitsu, K.; Miyawaki, I.; Bando, K.; Horie, H.; Shima, N.; Katagi, M.; Tatsuno, M.; Bamba, T.; Sato, T.; Ishii, A. Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. Anal. Bioanal. Chem. 2014, 406, 1339–1354. [Google Scholar] [CrossRef]
- McClay, J.L.; Adkins, D.E.; Vunck, S.A.; Batman, A.M.; Vann, R.E.; Clark, S.L.; Beardsley, P.M.; van den Oord, E.J. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics 2013, 9, 392–402. [Google Scholar] [CrossRef]
- Shima, N.; Miyawaki, I.; Bando, K.; Horie, H.; Zaitsu, K.; Katagi, M.; Bamba, T.; Tsuchihashi, H.; Fukusaki, E. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 2011, 287, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, D.J.; Capela, J.P.; Feio-Azevedo, R.; Teixeira-Gomes, A.; Bastos Mde, L.; Carvalho, F. Mitochondria: Key players in the neurotoxic effects of amphetamines. Arch. Toxicol. 2015, 89, 1695–1725. [Google Scholar] [CrossRef]
- Metodiev, M.D.; Gerber, S.; Hubert, L.; Delahodde, A.; Chretien, D.; Gérard, X.; Amati-Bonneau, P.; Giacomotto, M.-C.; Boddaert, N.; Kaminska, A.; et al. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J. Med. Genet. 2014, 51, 834–838. [Google Scholar] [CrossRef]
- Spiegel, R.; Pines, O.; Ta-Shma, A.; Burak, E.; Shaag, A.; Halvardson, J.; Edvardson, S.; Mahajna, M.; Zenvirt, S.; Saada, A.; et al. Infantile Cerebellar-Retinal Degeneration Associated with a Mutation in Mitochondrial Aconitase, ACO2. Am. J. Hum. Genet. 2012, 90, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzeri, G.; Biagioni, F.; Fulceri, F.; Busceti, C.L.; Scavuzzo, M.C.; Ippolito, C.; Salvetti, A.; Lenzi, P.; Fornai, F. mTOR Modulates Methamphetamine-Induced Toxicity through Cell Clearing Systems. Oxidative Med. Cell. Longev. 2018, 2018, 6124745. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, M.; Biagioni, F.; Busceti, C.L.; Vidoni, C.; Castino, R.; Isidoro, C.; Ryskalin, L.; Frati, A.; Puglisi-Allegra, S.; Fornai, F. Inhibition of Autophagy In Vivo Extends Methamphetamine Toxicity to Mesencephalic Cell Bodies. Pharmaceuticals 2021, 14, 1003. [Google Scholar] [CrossRef] [PubMed]
- Selemon, L.D.; Begović, A.; Goldman-Rakic, P.S.; Castner, S.A. Amphetamine sensitization alters dendritic morphology in prefrontal cortical pyramidal neurons in the non-human primate. Neuropsychopharmacology 2007, 32, 919–931. [Google Scholar] [CrossRef]
- Nasca, C.; Bigio, B.; Lee, F.S.; Young, S.P.; Kautz, M.M.; Albright, A.; Beasley, J.; Millington, D.S.; Mathé, A.A.; Kocsis, J.H. Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc. Natl. Acad. Sci. USA 2018, 115, 8627–8632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, G.C.; McKenna, M.C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 2017, 42, 1661–1675. [Google Scholar] [CrossRef]
- Kesby, J.P.; Chang, A.; Markou, A.; Semenova, S. Modeling human methamphetamine use patterns in mice: Chronic and binge methamphetamine exposure, reward function and neurochemistry. Addict. Biol. 2018, 23, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Duft, R.G.; de Oliveira-Nunes, S.G.; de Andrade, A.L.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Association Between Changes in Serum and Skeletal Muscle Metabolomics Profile With Maximum Power Output Gains in Response to Different Aerobic Training Programs: The Times Study. Front. Physiol. 2021, 12, 756618. [Google Scholar] [CrossRef]
- Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Arch.-Eur. J. Physiol. 2010, 460, 525–542. [Google Scholar] [CrossRef]
- Maldonado, C.; Vázquez, M.; Fagiolino, P. Potential therapeutic role of carnitine and acetylcarnitine in neurological disorders. Curr. Pharm. Des. 2020, 26, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013; Volume 5. [Google Scholar]
NO. | Metabolite | p Value | VIP | Fold Change | Variations versus Controls |
---|---|---|---|---|---|
1 | Caproic acid | 1.58 × 10−14 | 1.987 | 7.320 | ↑ |
2 | cis-Aconitic acid | 1.58 × 10−14 | 1.961 | 2.547 | ↑ |
3 | Isovaleric acid | 1.58 × 10−14 | 1.945 | 18.099 | ↑ |
4 | Formic acid | 1.58 × 10−14 | 1.913 | 3.164 | ↑ |
5 | Pyruvic acid | 1.41 × 10−9 | 1.911 | 0.044 | ↓ |
6 | Isocitric acid | 1.58 × 10−14 | 1.901 | 4.029 | ↑ |
7 | Citric acid | 2.04 × 10−17 | 1.897 | 2.191 | ↑ |
8 | Malonic acid | 1.58 × 10−14 | 1.873 | 3.192 | ↑ |
9 | Glucaric acid | 1.4 × 10−9 | 1.858 | 2.383 | ↑ |
10 | Glutamic acid | 3.16 × 10−14 | 1.854 | 2.192 | ↑ |
11 | Pyroglutamic acid | 3.16 × 10−14 | 1.847 | 2.436 | ↑ |
12 | alpha-Ketoisovaleric acid | 6.33 × 10−14 | 1.833 | 0.210 | ↓ |
13 | Glycolic acid | 1.58 × 10−14 | 1.832 | 3.018 | ↑ |
14 | Phenylpyruvic acid | 1.92 × 10−15 | 1.805 | 0.432 | ↓ |
15 | Hydroxypropionic acid | 1.58 × 10−14 | 1.779 | 3.491 | ↑ |
16 | Oxalic acid | 3.01 × 10−13 | 1.757 | 4.567 | ↑ |
17 | Oxoglutaric acid | 1.58 × 10−14 | 1.753 | 0.037 | ↓ |
18 | Succinic acid | 1.06 × 10−12 | 1.744 | 1.807 | ↑ |
19 | Methionine | 1.22 × 10−13 | 1.740 | 0.575 | ↓ |
20 | Ketoleucine | 4.3 × 10−12 | 1.724 | 0.499 | ↓ |
21 | Butyric acid | 8.38 × 10−12 | 1.714 | 1.975 | ↑ |
22 | Xylose | 1.58 × 10−14 | 1.699 | 0.185 | ↓ |
23 | Citramalic acid | 1.27 × 10−9 | 1.692 | 86.760 | ↑ |
24 | Glutamine | 8.42 × 10−12 | 1.668 | 0.643 | ↓ |
25 | Methylmalonic acid | 9.12 × 10−11 | 1.662 | 1.676 | ↑ |
26 | Docosapentaenoic acid (DPAn-6) | 7.12 × 10−13 | 1.659 | 0.301 | ↓ |
27 | Methylcysteine | 2.78 × 10−9 | 1.644 | 2.691 | ↑ |
28 | Heptanoic acid | 7.49 × 10−11 | 1.632 | 1.696 | ↑ |
29 | 3-Methyl-2-oxopentanoic acid | 8.5 × 10−10 | 1.600 | 0.637 | ↓ |
30 | Nonanoic acid | 1.76 × 10−6 | 1.591 | 13.591 | ↑ |
31 | Glucose | 2.92 × 10−10 | 1.579 | 1.287 | ↑ |
32 | Glyceric acid | 8.77 × 10−7 | 1.541 | 2.145 | ↑ |
33 | Aspartic acid | 1.86 × 10−10 | 1.523 | 0.634 | ↓ |
34 | 4-Hydroxyphenylpyruvic acid | 3.35 × 10−9 | 1.517 | 0.383 | ↓ |
35 | Isocaproic acid | 7.55 × 10−9 | 1.487 | 1.557 | ↑ |
36 | Oxoadipic acid | 1.43 × 10−8 | 1.470 | 0.708 | ↓ |
37 | Malic acid | 8.12 × 10−8 | 1.433 | 0.615 | ↓ |
38 | Asparagine | 5.12 × 10−8 | 1.431 | 0.609 | ↓ |
39 | Ricinelaidic acid | 9.44 × 10−8 | 1.390 | 0.369 | ↓ |
40 | Methylsuccinic acid | 1.27 × 10−7 | 1.377 | 1.656 | ↑ |
41 | Docosahexaenoic acid (DHA) | 5.81 × 10−9 | 1.373 | 0.511 | ↓ |
42 | Threonine | 5.68 × 10−7 | 1.365 | 0.769 | ↓ |
43 | 10Z-Nonadecenoic acid | 3.44 × 10−7 | 1.363 | 0.328 | ↓ |
44 | Serine | 1.87 × 10−6 | 1.360 | 0.735 | ↓ |
45 | Adrenic acid | 8.12 × 10−8 | 1.357 | 0.565 | ↓ |
46 | Glutaric acid | 3.18 × 10−8 | 1.345 | 1.520 | ↑ |
47 | Glycine | 8.57 × 10−6 | 1.304 | 0.716 | ↓ |
48 | Acetylcarnitine | 1.59 × 10−6 | 1.281 | 0.679 | ↓ |
49 | 10Z-Heptadecenoic acid | 3.68 × 10−6 | 1.260 | 0.523 | ↓ |
50 | Cystine | 1.83 × 10−5 | 1.255 | 0.647 | ↓ |
51 | Maltose/Lactose | 7.7 × 10−7 | 1.249 | 0.417 | ↓ |
52 | gamma-Linolenic acid | 5.98 × 10−8 | 1.223 | 0.543 | ↓ |
53 | Oleic acid | 5.6 × 10−6 | 1.222 | 0.613 | ↓ |
54 | Cinnamic acid | 2.5 × 10−5 | 1.215 | 0.904 | ↓ |
55 | Linoleylcarnitine | 7.7 × 10−7 | 1.213 | 0.657 | ↓ |
56 | Valine | 2.49 × 10−5 | 1.204 | 0.824 | ↓ |
57 | alpha-Aminobutyric acid | 4.14 × 10−5 | 1.204 | 0.770 | ↓ |
58 | Pentadecanoic acid | 1.8 × 10−5 | 1.194 | 0.538 | ↓ |
59 | Sebacic acid | 3.1 × 10−4 | 1.153 | 0.373 | ↓ |
60 | Xylulose | 5.04 × 10−5 | 1.113 | 0.667 | ↓ |
61 | Indole-3-propionic acid | 1.2 × 10−4 | 1.103 | 1.964 | ↑ |
62 | alpha-Linolenic acid | 5.98 × 10−5 | 1.096 | 0.632 | ↓ |
63 | 2-Methylpentanoic acid | 1.055 × 10−2 | 1.092 | 0.938 | ↓ |
64 | Tetradecanoylcarnitine | 1.5 × 10−4 | 1.089 | 2.280 | ↑ |
65 | Suberic acid | 5.86 × 10−3 | 1.075 | 0.459 | ↓ |
66 | N-Acetyaspartic acid | 9.57 × 10−3 | 1.075 | 1.383 | ↑ |
67 | Maleic acid | 3.7 × 10−4 | 1.055 | 0.703 | ↓ |
68 | Palmitic acid | 4.3 × 10−4 | 1.053 | 0.693 | ↓ |
69 | Mandelic acid | 2.6 × 10−4 | 1.033 | 1.884 | ↑ |
70 | N-Acetylneuraminic acid | 6.85 × 10−6 | 1.025 | 0.721 | ↓ |
71 | Propionylcarnitine | 1.7 × 10−4 | 1.023 | 0.778 | ↓ |
72 | Indoleacrylic acid | 3.8 × 10−4 | 1.022 | 1.965 | ↑ |
73 | Dodecanoylcarnitine | 1.86 × 10−3 | 0.989 | 1.355 | ↑ |
74 | Adipoylcarnitine | 4.7 × 10−4 | 0.981 | 1.192 | ↑ |
75 | Docosapentaenoic acid (DPA) | 1.86 × 10−3 | 0.981 | 0.704 | ↓ |
76 | Histidine | 8.49 × 10−3 | 0.979 | 0.941 | ↓ |
77 | Threonic acid | 1.88 × 10−3 | 0.915 | 1.410 | ↑ |
78 | 2-Hydroxybutyric acid | 7 × 10−4 | 0.913 | 0.730 | ↓ |
79 | Erythronic acid | 2.11 × 10−3 | 0.906 | 1.423 | ↑ |
80 | Adipic acid | 5.03 × 10−3 | 0.887 | 2.028 | ↑ |
81 | Pyrrole-2-carboxylic acid | 3.81 × 10−3 | 0.877 | 1.164 | ↑ |
82 | Decanoylcarnitine | 3.72 × 10−3 | 0.870 | 1.649 | ↑ |
83 | Creatine | 9.01 × 10−3 | 0.856 | 0.739 | ↓ |
84 | Lysine | 3.59 × 10−3 | 0.845 | 1.180 | ↑ |
85 | Phenylalanine | 1.282 × 10−2 | 0.826 | 0.760 | ↓ |
86 | Nicotinic acid | 1.5 × 10−3 | 0.826 | 1.375 | ↑ |
87 | Valeric acid | 1.71 × 10−3 | 0.825 | 2.099 | ↑ |
88 | Tyrosine | 8.22 × 10−3 | 0.810 | 0.890 | ↓ |
89 | Indole-3-methyl acetate | 4.1 × 10−4 | 0.781 | 10.018 | ↑ |
90 | Isovalerylcarnitine | 4.943 × 10−2 | 0.777 | 0.708 | ↓ |
91 | bHDCA | 1.142 × 10−2 | 0.751 | 0.627 | ↓ |
92 | Lithocholic acid (LCA) | 3.3 × 10−4 | 0.749 | 2.182 | ↑ |
93 | Acetylglycine | 8.49 × 10−3 | 0.738 | 1.116 | ↑ |
94 | Homocitrulline | 2 × 10−2 | 0.730 | 0.827 | ↓ |
95 | Dodecanoic acid | 1.231 × 10−2 | 0.727 | 0.635 | ↓ |
96 | Linoleic acid | 1.038 × 10−2 | 0.726 | 0.758 | ↓ |
97 | Glycohyodeoxycholic acid (GHDCA) | 2.58 × 10−3 | 0.724 | 0.904 | ↓ |
98 | Fructose | 3.06 × 10−5 | 0.711 | 0.604 | ↓ |
99 | Dihomo-gamma-linolenic acid | 3.25 × 10−3 | 0.694 | 0.716 | ↓ |
100 | Fumaric acid | 1.747 × 10−2 | 0.683 | 2.498 | ↑ |
101 | Glycylproline | 3.39 × 10−5 | 0.669 | 1.255 | ↑ |
102 | Gluconolactone | 2.226 × 10−2 | 0.662 | 1.211 | ↑ |
103 | Tricarboxylic acid (TCA) | 2.146 × 10−2 | 0.646 | 0.518 | ↓ |
104 | beta-Alanine | 2 × 10−3 | 0.636 | 0.701 | ↓ |
105 | Shikimic acid | 2.84 × 10−3 | 0.636 | 3.360 | ↑ |
106 | Myristic acid | 3.021 × 10−2 | 0.631 | 0.734 | ↓ |
107 | Carnitine | 3.477 × 10−2 | 0.591 | 1.142 | ↑ |
108 | 3-Hydroxylisovalerylcarnitine | 3.36 × 10−2 | 0.583 | 0.918 | ↓ |
109 | 9E-tetradecenoic acid | 1.436 × 10−2 | 0.568 | 1.299 | ↑ |
110 | 5-Aminolevulinic acid | 3.531 × 10−2 | 0.545 | 0.872 | ↓ |
111 | Ursodeoxycholic Acid (UDCA) | 1.07 × 10−3 | 0.509 | 1.983 | ↑ |
112 | 2-Phenylpropionate | 3.196 × 10−2 | 0.399 | 1.839 | ↑ |
113 | Hexanylcarnitine | 2.47 × 10−3 | 0.315 | 0.678 | ↓ |
114 | Ethylmethylacetic acid | 1.5 × 10−8 | 0.306 | 175.496 | ↑ |
115 | Indole-3-carboxylic acid | 1.641 × 10−2 | 0.097 | 401.533 | ↑ |
NO. | Metabolite | p-Value | VIP | Fold Change | Variations versus NE-METH |
---|---|---|---|---|---|
1 | Benzoic acid | 2.2 × 10−8 | 2.424 | 8.722 | ↓ |
2 | Linoleylcarnitine | 1.12 × 10−5 | 2.450 | 0.797 | ↑ |
3 | Ethylmethylacetic acid | 1.1 × 10−4 | 1.388 | 1.100 | ↓ |
4 | Hexanylcarnitine | 4.7 × 10−4 | 1.970 | 0.613 | ↑ |
5 | Glyceric acid | 7.6 × 10−4 | 1.574 | 1.184 | ↓ |
6 | Pentadecanoic acid | 8.1 × 10−4 | 1.682 | 1.722 | ↓ |
7 | Carnitine | 1.11 × 10−3 | 1.982 | 0.858 | ↑ |
8 | 3-Hydroxyisovaleric acid | 1.3 × 10−3 | 2.024 | 0.824 | ↑ |
9 | Octanoylcarnitine | 1.86 × 10−3 | 1.711 | 0.743 | ↑ |
10 | Isovaleric acid | 2.3 × 10−3 | 1.471 | 1.594 | ↓ |
11 | Sebacic acid | 2.65 × 10−3 | 1.152 | 0.703 | ↑ |
12 | Dodecanoylcarnitine | 2.65 × 10−3 | 1.962 | 0.731 | ↑ |
13 | DHA | 3.72 × 10−3 | 1.655 | 1.349 | ↓ |
14 | 3-Methyl-2-oxopentanoic acid | 3.97 × 10−3 | 1.712 | 1.267 | ↓ |
15 | Arachidonic acid | 4.21 × 10−3 | 1.648 | 1.536 | ↓ |
16 | Decanoylcarnitine | 4.24 × 10−3 | 1.994 | 0.820 | ↑ |
17 | Acetylcarnitine | 4.53 × 10−3 | 1.545 | 0.859 | ↑ |
18 | Glutarylcarnitine | 4.53 × 10−3 | 1.595 | 0.916 | ↑ |
19 | Adrenic acid | 5.05 × 10−3 | 1.576 | 1.437 | ↓ |
20 | Formic acid | 5.5 × 10−3 | 2.075 | 0.891 | ↑ |
21 | Isobutyric acid | 5.6 × 10−3 | 1.530 | 0.764 | ↑ |
22 | Phenylpyruvic acid | 7.51 × 10−3 | 1.632 | 1.134 | ↓ |
23 | Aspartic acid | 7.99 × 10−3 | 1.377 | 1.281 | ↓ |
24 | Suberic acid | 8.49 × 10−3 | 1.737 | 1.068 | ↓ |
25 | 2-Hydroxy-3-methylbutyric acid | 9.01 × 10−3 | 1.789 | 0.797 | ↑ |
26 | Erythronic acid | 9.57 × 10−3 | 1.426 | 1.470 | ↓ |
27 | alpha-Hydroxyisobutyric acid | 9.86 × 10−3 | 1.567 | 0.807 | ↑ |
28 | Maleic acid | 1.015 × 10−2 | 1.702 | 0.811 | ↑ |
29 | Palmitelaidic acid | 1.275 × 10−2 | 1.290 | 1.522 | ↓ |
30 | Stearylcarnitine | 1.357 × 10−2 | 1.074 | 1.270 | ↓ |
31 | DPAn-6 | 1.447 × 10−2 | 1.541 | 1.349 | ↓ |
32 | 1H-Indole-3-acetamide | 1.698 × 10−2 | 1.125 | 0.738 | ↑ |
33 | alpha-Ketoisovaleric acid | 1.698 × 10−2 | 1.303 | 1.182 | ↓ |
34 | Dodecanoic acid | 1.895 × 10−2 | 1.120 | 1.631 | ↓ |
35 | Methylcysteine | 1.945 × 10−2 | 1.512 | 0.800 | ↑ |
36 | Gamma-aminobutyric acid (GABA) | 2 × 10−2 | 1.425 | 0.908 | ↑ |
37 | 5-Aminolevulinic acid | 2 × 10−2 | 1.645 | 0.832 | ↑ |
38 | Sarcosine | 2.474 × 10−2 | 1.368 | 0.865 | ↑ |
39 | Glucaric acid | 2.606 × 10−2 | 1.475 | 0.911 | ↑ |
40 | Dihomo-gamma-linolenic acid | 3.203 × 10−2 | 1.256 | 1.224 | ↓ |
41 | Octanoic acid | 3.36 × 10−2 | 1.572 | 0.916 | ↑ |
42 | eicosapentaenoic acid (EPA) | 3.36 × 10−2 | 1.245 | 1.193 | ↓ |
43 | Acetylglycine | 3.408 × 10−2 | 1.514 | 0.864 | ↑ |
44 | Tyrosine | 3.569 × 10−2 | 1.195 | 1.090 | ↓ |
45 | Oleic acid | 3.652 × 10−2 | 1.210 | 1.338 | ↓ |
46 | DPA | 3.677 × 10−2 | 1.133 | 1.508 | ↓ |
47 | Glutamic acid | 3.709 × 10−2 | 1.394 | 1.078 | ↓ |
48 | Asparagine | 3.895 × 10−2 | 1.459 | 0.920 | ↑ |
49 | Tetradecanoylcarnitine | 4.289 × 10−2 | 1.600 | 0.877 | ↑ |
50 | Malic acid | 4.498 × 10−2 | 1.273 | 0.849 | ↑ |
51 | Threonic acid | 4.943 × 10−2 | 1.334 | 1.260 | ↓ |
52 | Phthalic acid | 4.289 × 10−2 | 0.935 | 0.871 | ↑ |
53 | N-Acetylneuraminic acid | 4.088 × 10−2 | 0.850 | 0.838 | ↑ |
54 | Isoleucine | 3.709 × 10−2 | 0.764 | 1.064 | ↓ |
55 | Ornithine | 1.698 × 10−2 | 0.755 | 0.895 | ↑ |
NO. | Metabolite | Variations with Exercise | Variations with METH |
---|---|---|---|
1 | Linoleylcarnitine | ↑ | ↓ |
2 | Hexanylcarnitine | ↑ | ↓ |
3 | Sebacic acid | ↑ | ↓ |
4 | Acetylcarnitine | ↑ | ↓ |
5 | Maleic acid | ↑ | ↓ |
6 | 5-Aminolevulinic acid | ↑ | ↓ |
7 | Asparagine | ↑ | ↓ |
8 | Malic acid | ↑ | ↓ |
9 | N-Acetylneuraminic acid | ↑ | ↓ |
10 | Ethylmethylacetic acid | ↓ | ↑ |
11 | Glyceric acid | ↓ | ↑ |
12 | Isovaleric acid | ↓ | ↑ |
13 | Erythronic acid | ↓ | ↑ |
14 | Glutamic acid | ↓ | ↑ |
15 | Threonic acid | ↓ | ↑ |
NO. | Metabolite | Variations with Exercise | Variations with METH |
---|---|---|---|
1 | Carnitine | ↑ | ↑ |
2 | Dodecanoylcarnitine | ↑ | ↑ |
3 | Decanoylcarnitine | ↑ | ↑ |
4 | Formic acid | ↑ | ↑ |
5 | Methylcysteine | ↑ | ↑ |
6 | Glucaric acid | ↑ | ↑ |
7 | Acetylglycine | ↑ | ↑ |
8 | Tetradecanoylcarnitine | ↑ | ↑ |
9 | Pentadecanoic acid | ↓ | ↓ |
10 | DHA | ↓ | ↓ |
11 | 3-Methyl-2-oxopentanoic acid | ↓ | ↓ |
12 | Adrenic acid | ↓ | ↓ |
13 | Phenylpyruvic acid | ↓ | ↓ |
14 | Aspartic acid | ↓ | ↓ |
15 | Suberic acid | ↓ | ↓ |
16 | DPAn-6 | ↓ | ↓ |
17 | alpha-Ketoisovaleric acid | ↓ | ↓ |
18 | Dodecanoic acid | ↓ | ↓ |
19 | Dihomo-gamma-linolenic acid | ↓ | ↓ |
20 | Tyrosine | ↓ | ↓ |
21 | Oleic acid | ↓ | ↓ |
22 | DPA | ↓ | ↓ |
NO. | Metabolite |
---|---|
1 | Formic acid |
2 | Tyrosine |
3 | Aspartic acid |
4 | Carnitine |
5 | Glutamic acid |
6 | Asparagine |
7 | Acetylcarnitine |
NO. | Pathway |
---|---|
1 | glyoxylate and dicarboxylate metabolism |
2 | alanine, aspartate and glutamate metabolism |
3 | TCA cycle |
4 | phenylalanine metabolism |
Characteristics | Control Group (n = 25) | NE-METH Group (n = 25) | E-METH Group (n = 25) |
---|---|---|---|
Age (years) | 29.20 ± 2.60 | 29.0 ± 4.93 | 28.7 ± 4.49 |
Height (cm) | 168.31 ± 6.19 | 168.85 ± 5.08 | 168.89 ± 4.85 |
Weight (kg) | 69.24 ± 8.43 | 69.07 ± 8.38 | 69.5 ± 7.31 |
Duration of continuous METH use (months) | / | 61.10 ± 9.10 | 62.56 ± 1.454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, K.; Zhu, Z.; Jin, Y.; Gao, Z.; Xu, J.; Zhang, L. Exercise Regulates the Metabolic Homeostasis of Methamphetamine Dependence. Metabolites 2022, 12, 606. https://doi.org/10.3390/metabo12070606
Li X, Li K, Zhu Z, Jin Y, Gao Z, Xu J, Zhang L. Exercise Regulates the Metabolic Homeostasis of Methamphetamine Dependence. Metabolites. 2022; 12(7):606. https://doi.org/10.3390/metabo12070606
Chicago/Turabian StyleLi, Xue, Kefeng Li, Zhicheng Zhu, Yu Jin, Zhanle Gao, Jisheng Xu, and Li Zhang. 2022. "Exercise Regulates the Metabolic Homeostasis of Methamphetamine Dependence" Metabolites 12, no. 7: 606. https://doi.org/10.3390/metabo12070606
APA StyleLi, X., Li, K., Zhu, Z., Jin, Y., Gao, Z., Xu, J., & Zhang, L. (2022). Exercise Regulates the Metabolic Homeostasis of Methamphetamine Dependence. Metabolites, 12(7), 606. https://doi.org/10.3390/metabo12070606