Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Analysis of Forage, Rumen Content, and Serum Indices
2.3. Pretreatment and Identification of Serum Metabolites by GC-TOF/MS
2.4. Bioinformatic Analysis of Untargeted Serum Metabolome
2.5. Statistical Analysis
3. Results
3.1. Nutritional Value of Forages, Yaks’ Liveweight, and Ruminal N Metabolism
3.2. Serum Biochemical Indices and Mineral Elements of Yaks
3.3. Serum Metabolome of Yaks
4. Discussion
4.1. Effects of Dietary Deficiencies on the Blood Metabolic Profiles of Grazing Yaks between October and March during the Cold Season
4.2. Effects of Cold Stress on the Blood Metabolic Profiles of Grazing Yaks between October and December during the Cold Season
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Miao, F.; Guo, Z.; Xue, R.; Wang, X.; Shen, Y. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and yak performance in an alpine meadow on the Qinghai–Tibetan Plateau. PLoS ONE 2015, 10, e0127275. [Google Scholar] [CrossRef]
- Guo, N.; Wu, Q.; Shi, F.; Niu, J.; Zhang, T.; Degen, A.A.; Fang, Q.; Ding, L.; Shang, Z.; Zhang, Z. Seasonal dynamics of diet–gut microbiota interaction in adaptation of yaks to life at high altitude. npj Biofilms Microbiomes 2021, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Apori, S.; Castro, F.; Ørskov, E. Feed value of native forages of the Tibetan Plateau of China. Anim. Feed Sci. Technol. 1999, 80, 101–113. [Google Scholar] [CrossRef]
- Nazifi, S.; Saeb, M.; Rowghani, E.; Kaveh, K. The influences of thermal stress on serum biochemical parameters of Iranian fat-tailed sheep and their correlation with triiodothyronine (T3), thyroxine (T4) and cortisol concentrations. Comp. Clin. Pathol. 2003, 12, 135–139. [Google Scholar] [CrossRef]
- Young, B. Ruminant cold stress: Effect on production. J. Anim. Sci. 1983, 57, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Zhao, X.Q.; Zhang, Y.S. Seasonal changes in weight and body composition of yak grazing on alpine-meadow grassland in the Qinghai-Tibetan plateau of China. J. Anim. Sci. 2005, 83, 1908–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, D.; Wang, L.; Hao, J.; Wang, J.; Zhou, X.; Wang, W.; Qiu, Q.; Huang, X.; Zhou, J. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr. Biol. 2016, 26, 1873–1879. [Google Scholar] [CrossRef]
- Wu, D.; Vinitchaikul, P.; Deng, M.; Zhang, G.; Sun, L.; Wang, H.; Gou, X.; Mao, H.; Yang, S. Exploration of the effects of altitude change on bacteria and fungi in the rumen of yak (Bos grunniens). Arch. Microbiol. 2021, 203, 835–846. [Google Scholar] [CrossRef]
- Ma, L.; Xu, S.; Liu, H.; Xu, T.; Hu, L.; Zhao, N.; Han, X.; Zhang, X. Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet Plateau. PeerJ 2019, 7, e7645. [Google Scholar] [CrossRef]
- Shi, F.; Guo, N.; Degen, A.; Niu, J.; Wei, H.; Jing, X.; Ding, L.; Shang, Z.; Long, R. Effects of level of feed intake and season on digestibility of dietary components, efficiency of microbial protein synthesis, rumen fermentation and ruminal microbiota in yaks. Anim. Feed Sci. Technol. 2020, 259, 114359. [Google Scholar] [CrossRef]
- Dai, X.; Zhu, Y.; Luo, Y.; Song, L.; Liu, D.; Liu, L.; Chen, F.; Wang, M.; Li, J.; Zeng, X. Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE 2012, 7, e40430. [Google Scholar] [CrossRef]
- Jing, X.; Ding, L.; Zhou, J.; Huang, X.; Degen, A.; Long, R. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Das, P.; Ranjan, R.; Paul, S. A comparative histological study on the sweat gland of cattle (B. indicus) and yak (P. poephagus). Explor. Anim. Med. Res. 2014, 4, 183–187. [Google Scholar]
- Long, R.; Dong, S.; Wei, X.; Pu, X. The effect of supplementary feeds on the bodyweight of yaks in cold season. Livest. Prod. Sci. 2005, 93, 197–204. [Google Scholar] [CrossRef]
- Fiore, E.; Giambelluca, S.; Morgante, M.; Piccione, G.; Vazzana, I.; Contiero, B.; Orefice, T.; Arfuso, F.; Gianesella, M. Changes in thyroid hormones levels and metabolism in dairy cows around calving. Acta Vet. 2017, 67, 318–330. [Google Scholar] [CrossRef]
- Arfuso, F.; Fazio, F.; Levanti, M.; Rizzo, M.; Di Pietro, S.; Giudice, E.; Piccione, G. Lipid and lipoprotein profile changes in dairy cows in response to late pregnancy and the early postpartum period. Arch. Anim. Breed. 2016, 59, 429–434. [Google Scholar] [CrossRef]
- Arfuso, F.; Rizzo, M.; Giannetto, C.; Giudice, E.; Fazio, F.; Piccione, G. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats. J. Therm. Biol. 2016, 59, 47–51. [Google Scholar] [CrossRef]
- Arfuso, F.; Fazio, F.; Rizzo, M.; Marafioti, S.; Zanghì, E.; Piccione, G. Factors affecting the hematological parameters in different goat breeds from Italy. Ann. Anim. Sci. 2016, 16, 743–757. [Google Scholar] [CrossRef]
- Fiore, E.; Arfuso, F.; Gianesella, M.; Vecchio, D.; Morgante, M.; Mazzotta, E.; Badon, T.; Rossi, P.; Bedin, S.; Piccione, G. Metabolic and hormonal adaptation in Bubalus bubalis around calving and early lactation. PLoS ONE 2018, 13, e0193803. [Google Scholar] [CrossRef]
- Carcangiu, V.; Arfuso, F.; Luridiana, S.; Giannetto, C.; Rizzo, M.; Bini, P.P.; Piccione, G. Relationship between different livestock managements and stress response in dairy ewes. Arch. Anim. Breed. 2018, 61, 37–41. [Google Scholar] [CrossRef]
- Arfuso, F.; Zumbo, A.; Castronovo, C.; Giudice, E.; Piccione, G.; Monteverde, V.; Giannetto, C. The housing system influences daily total locomotor activity (TLA) in dairy cows. Biol. Rhythm Res. 2022, in press. [Google Scholar] [CrossRef]
- Perillo, L.; Arfuso, F.; Piccione, G.; Dara, S.; Tropia, E.; Cascone, G.; Licitra, F.; Monteverde, V. Quantification of some heavy metals in hair of dairy cows housed in different areas from Sicily as a bioindicator of environmental exposure—A preliminary study. Animals 2021, 11, 2268. [Google Scholar] [CrossRef]
- Arfuso, F.; Fazio, F.; Chikhi, L.; Aymond, G.; Piccione, G.; Giannetto, C. Acute stress response of sheep to shearing procedures: Dynamic change of cortisol concentration and protein electrophoretic pattern. Animals 2022, 12, 862. [Google Scholar] [CrossRef]
- Arfuso, F.; Acri, G.; Piccione, G.; Sansotta, C.; Fazio, F.; Giudice, E.; Giannetto, C. Eye surface infrared thermography usefulness as a noninvasive method of measuring stress response in sheep during shearing: Correlations with serum cortisol and rectal temperature values. Physiol. Behav. 2022, 250, 113781. [Google Scholar] [CrossRef]
- Zaitsev, S.Y.; Bogolyubova, N.V.; Zhang, X.; Brenig, B. Biochemical parameters, dynamic tensiometry and circulating nucleic acids for cattle blood analysis: A review. PeerJ 2020, 8, e8997. [Google Scholar] [CrossRef]
- Puppel, K.; Kuczyńska, B. Metabolic profiles of cow’s blood; a review. J. Sci. Food Agric. 2016, 96, 4321–4328. [Google Scholar] [CrossRef]
- Zou, H.; Hu, R.; Wang, Z.; Shah, A.M.; Zeng, S.; Peng, Q.; Xue, B.; Wang, L.; Zhang, X.; Wang, X. Effects of nutritional deprivation and re-alimentation on the feed efficiency, blood biochemistry, and rumen microflora in yaks (Bos grunniens). Animals 2019, 9, 807. [Google Scholar] [CrossRef]
- Hu, R.; Zou, H.; Wang, H.; Wang, Z.; Wang, X.; Ma, J.; Shah, A.M.; Peng, Q.; Xue, B.; Wang, L. Dietary energy levels affect rumen bacterial populations that influence the intramuscular fat fatty acids of fattening yaks (Bos grunniens). Animals 2020, 10, 1474. [Google Scholar] [CrossRef]
- Law, R.; Young, F.; Patterson, D.; Kilpatrick, D.; Wylie, A.; Mayne, C. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci. 2009, 92, 1001–1012. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, J.; Wang, Z.; Wang, L.; Peng, Q.; Da, L.; Bao, S.; Kong, X.; Xue, B. Metabolism response of grazing yak to dietary concentrate supplementation in warm season. Animal 2021, 15, 100175. [Google Scholar] [CrossRef]
- Zhou, J.; Yue, S.; Peng, Q.; Wang, L.; Wang, Z.; Xue, B. Metabonomic responses of grazing yak to different concentrate supplementations in cold season. Animals 2020, 10, 1595. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Makkar, H.; Sharma, O.; Dawra, R.; Negi, S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Harrington, J.M.; Young, D.J.; Essader, A.S.; Sumner, S.J.; Levine, K.E. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: Development of a mineralomics method. Biol. Trace Elem. Res. 2014, 160, 132–142. [Google Scholar] [CrossRef]
- Sun, H.Z.; Wang, D.M.; Wang, B.; Wang, J.K.; Liu, H.Y.; Guan, L.L.; Liu, J.X. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality. J. Proteome Res. 2015, 14, 1287–1298. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Long, R.; Ding, L.; Shang, Z.; Guo, X. The yak grazing system on the Qinghai-Tibetan plateau and its status. Rangel. J. 2008, 30, 241–246. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Z.; Shen, Z.; Tian, Y.; Shen, H. Dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Front. Microbiol. 2019, 10, 847. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, H.; Wang, F.; Cao, Z.; Li, S. Effects of energy density in close-up diets and postpartum supplementation of extruded full-fat soybean on lactation performance and metabolic and hormonal status of dairy cows. J. Dairy Sci. 2015, 98, 7115–7130. [Google Scholar] [CrossRef]
- Ding, X.; Guo, X.; Yan, P.; Liang, C.; Bao, P.; Chu, M. Seasonal and nutrients intake regulation of lipoprotein lipase (LPL) activity in grazing yak (Bos grunniens) in the Alpine Regions around Qinghai Lake. Livest. Sci. 2012, 143, 29–34. [Google Scholar] [CrossRef]
- Kumagai, H.; Nakajima, M.; Anzai, H.; Sakai, T.; Oishi, K.; Hirooka, H.; Shah, M.K. Health and mineral nutrition status of yaks in southern Mustang, Nepal. Anim. Sci. J. 2017, 88, 1156–1161. [Google Scholar] [CrossRef]
- Zheng, J.; Du, M.; Zhang, J.B.; Yi, L.Z.; Ahmad, A.A.; Shen, J.; Hosseini Salekdeh, G.; Ding, X. Transcriptomic and metabolomic analyses reveals inhibition of hepatic adipogenesis and fat catabolism in yak for adaptation to forage shortage during cold season. Front. Cell Dev. Biol. 2022, 9, 759521. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, L.; Liu, S. Milk yield and milk mineral element contents of grazing yaks in different phenological periods in alpine pastures in the source area of three rivers. Chin. J. Anim. Nutr. 2020, 32, 3742–3749. (In Chinese) [Google Scholar] [CrossRef]
- Rezzi, S.; Martin, F.-P.J.; Shanmuganayagam, D.; Colman, R.J.; Nicholson, J.K.; Weindruch, R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp. Gerontol. 2009, 44, 356–362. [Google Scholar] [CrossRef]
- Zeng, M.; Xiao, Y.; Liang, Y.; Wang, B.; Chen, X.; Cao, D.; Li, H.; Wang, M.; Zhou, Z. Metabolic alterations of impaired fasting glucose by GC/MS based plasma metabolic profiling combined with chemometrics. Metabolomics 2010, 6, 303–311. [Google Scholar] [CrossRef]
- Nelson, G.J.; Schmidt, P.C.; Bartolini, G.; Kelley, D.S.; Phinney, S.D.; Kyle, D.; Silbermann, S.; Schaefer, E.J. The effect of dietary arachidonic acid on plasma lipoprotein distributions, apoproteins, blood lipid levels, and tissue fatty acid composition in humans. Lipids 1997, 32, 427–433. [Google Scholar] [CrossRef]
- Matthews, D.; Conway, J.; Young, V.; Bier, D. Glycine nitrogen metabolism in man. Metabolism 1981, 30, 886–893. [Google Scholar] [CrossRef]
- Gheller, B.J.; Blum, J.E.; Lim, E.W.; Handzlik, M.K.; Fong, E.H.H.; Ko, A.C.; Khanna, S.; Gheller, M.E.; Bender, E.L.; Alexander, M.S. Extracellular serine and glycine are required for mouse and human skeletal muscle stem and progenitor cell function. Mol. Metab. 2021, 43, 101106. [Google Scholar] [CrossRef]
- Xu, W.; Vervoort, J.; Saccenti, E.; Kemp, B.; van Hoeij, R.J.; van Knegsel, A.T. Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation. J. Dairy Sci. 2020, 103, 4795–4805. [Google Scholar] [CrossRef]
- Kennedy, P.; Milligan, L. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. Br. J. Nutr. 1978, 39, 105–117. [Google Scholar] [CrossRef]
- Sakowski, T.; Kuczyńska, B.; Puppel, K.; Metera, E.; Słoniewski, K.; Barszczewski, J. Relationships between physiological indicators in blood, and their yield, as well as chemical composition of milk obtained from organic dairy cows. J. Sci. Food Agric. 2012, 92, 2905–2912. [Google Scholar] [CrossRef]
- Wolfenson, D.; Sklan, D.; Graber, Y.; Kedar, O.; Bengal, I.; Hurwitz, S. Absorption of protein, fatty acids and minerals in young turkeys under heat and cold stress. Br. Poult. Sci. 1987, 28, 739–742. [Google Scholar] [CrossRef]
- Talas, Z.S.; Yurekli, M. The effects of enalapril maleate and cold stress exposure on tyrosine hydroxylase activity in some rat tissues. Cell Biochem. Funct. 2006, 24, 537–540. [Google Scholar] [CrossRef]
- Lang, J.A.; Krajek, A.C.; Schwartz, K.S.; Rand, J.E. Oral L-tyrosine supplementation improves core temperature maintenance in older adults. Med. Sci. Sports Exerc. 2020, 52, 928–934. [Google Scholar] [CrossRef]
Item (% of Dry Matter) | Oct | Dec | Mar | p-Value |
---|---|---|---|---|
Organic matter | 97.75 ± 0.24 | 97.73 ± 0.19 | 97.93 ± 0.04 | 0.554 |
Non-fiber carbohydrate * | 25.59 ± 0.78 ab | 23.65 ± 1.34 b | 26.33 ± 0.73 a | 0.011 |
Crude protein | 4.48 ± 0.40 a | 3.80 ± 0.26 b | 4.17 ± 0.28 ab | 0.010 |
Ether extract | 2.24 ± 0.19 a | 2.42 ± 0.11 a | 1.32 ± 0.21 b | 0.002 |
Neutral detergent fiber | 65.44 ± 1.66 | 67.86 ± 3.96 | 66.11 ± 2.74 | 0.609 |
Acid detergent fiber | 36.63 ± 0.58 | 37.18 ± 1.13 | 37.01 ± 0.61 | 0.707 |
Calcium | 0.376 ± 0.047 a | 0.817 ± 0.022 b | 0.862 ± 0.038 b | <0.001 |
Phosphorus | 0.026 ± 0.001 a | 0.017 ± 0.001 b | 0.024 ± 0.006 a | 0.035 |
Items | Oct | Dec | Mar | SEM | p-Value |
---|---|---|---|---|---|
Protein metabolism | |||||
Total Protein (g/L) | 78.4 a | 69.8 b | 64.8 b | 1.82 | <0.001 |
Albumin (g/L) | 32.9 ab | 34.2 a | 30.5 b | 0.96 | 0.044 |
Globulin (g/L) | 45.5 a | 35.6 b | 34.3 b | 1.86 | 0.001 |
Albumin/Globulin | 0.735 b | 0.972 a | 0.895 ab | 0.049 | 0.012 |
Urea nitrogen (mmol/L) | 7.06 a | 6.04 a | 3.56 b | 0.553 | 0.002 |
Energy metabolism | |||||
Glucose (mmol/L) | 4.58 | 4.53 | 3.96 | 0.223 | 0.130 |
Total cholesterol (mmol/L) | 1.94 b | 2.53 a | 2.79 a | 0.111 | <0.001 |
Triglyceride (mmol/L) | 0.247 | 0.350 | 0.363 | 0.055 | 0.291 |
Metabolic enzymes | |||||
Alanine transaminase (μkat/L) | 0.488 | 0.653 | 0.528 | 0.053 | 0.104 |
Aspartate aminotransferase (μkat/L) | 1.40 a | 1.07 b | 1.10 b | 0.068 | 0.007 |
Alkaline phosphatase (μkat/L) | 2.34 | 1.84 | 1.38 | 0.256 | 0.057 |
Lactate dehydrogenase (μkat/L) | 16.8 a | 14.4 ab | 12.4 b | 0.65 | 0.001 |
Minerals utilization | |||||
Potassium (mmol/L) | 5.06 a | 5.24 a | 4.50 b | 0.098 | <0.001 |
Sodium (mmol/L) | 142.3 a | 138.7 b | 140.0 ab | 0.91 | 0.038 |
Calcium (mmol/L) | 2.48 | 2.41 | 2.26 | 0.065 | 0.088 |
Magnesium (mmol/L) | 0.987 a | 0.770 b | 0.745 b | 0.047 | 0.005 |
Iron (μmol/L) | 26.2 | 20.8 | 21.6 | 2.09 | 0.182 |
Phosphorus (mmol/L) | 2.88 | 2.02 | 2.09 | 0.227 | 0.053 |
Metabolite Name | Retention Time (min) | Mass | Similarity | VIP a | Fold Change b | FDR c |
---|---|---|---|---|---|---|
Oct vs. Dec | ||||||
Lyxose | 10.76 | 217 | 631.8 | 1.94 | 1.358 | 0.019 |
Threonic acid | 10.19 | 292 | 888.6 | 1.97 | 0.652 | 0.019 |
Threitol | 9.87 | 217 | 873.6 | 1.91 | 1.527 | 0.027 |
Tyrosine | 12.39 | 218 | 950.9 | 1.97 | 1.523 | 0.027 |
Leucrose | 16.80 | 73 | 506.8 | 1.91 | 2.197 | 0.035 |
Oct vs. Mar | ||||||
Monostearin | 16.57 | 57 | 581.8 | 2.21 | 0.265 | <0.001 |
1-Monopalmitin | 15.40 | 57 | 751.8 | 2.13 | 0.363 | <0.001 |
Threonic acid | 10.19 | 292 | 888.6 | 2.11 | 0.522 | <0.001 |
D-(glycerol 1-phosphate) | 11.39 | 299 | 793.4 | 2.06 | 0.385 | 0.001 |
Threitol | 9.87 | 217 | 873.6 | 2.02 | 1.596 | 0.003 |
Arachidonic acid | 14.42 | 91 | 737.3 | 1.98 | 0.332 | 0.004 |
Glycine | 7.23 | 102 | 819.3 | 1.86 | 0.261 | 0.027 |
Gluconic acid | 12.66 | 292 | 602.4 | 1.83 | 0.406 | 0.033 |
Lactic acid | 6.77 | 59 | 806.5 | 1.79 | 1.473 | 0.048 |
Dec vs. Mar | ||||||
Monostearin | 16.57 | 57 | 581.8 | 2.37 | 0.278 | <0.001 |
1-Monopalmitin | 15.40 | 57 | 751.8 | 2.30 | 0.487 | <0.001 |
D-(glycerol 1-phosphate) | 11.39 | 299 | 793.4 | 2.34 | 0.339 | <0.001 |
Arachidonic acid | 14.42 | 91 | 737.3 | 2.31 | 0.421 | <0.001 |
α-Ketoglutaric acid | 10.33 | 198 | 845.4 | 2.08 | 0.514 | 0.011 |
Gluconic acid | 12.66 | 292 | 602.4 | 2.08 | 0.346 | 0.012 |
Serine | 8.93 | 204 | 934.1 | 2.10 | 0.525 | 0.015 |
Glycine | 7.23 | 102 | 819.3 | 2.02 | 0.488 | 0.019 |
Phosphate | 8.33 | 158 | 818.8 | 1.98 | 0.591 | 0.023 |
3-Hydroxybenzoic acid | 10.35 | 120 | 546.4 | 1.95 | 0.843 | 0.033 |
Glucuronic acid | 12.43 | 333 | 479.6 | 1.92 | 0.865 | 0.034 |
Threonic acid | 10.19 | 292 | 888.6 | 1.90 | 0.800 | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Yang, D.; Sun, Z.; Niu, J.; Bao, Y.; Liu, S.; Tan, Z.; Hao, L.; Cheng, Y.; Liu, S. Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China. Metabolites 2022, 12, 738. https://doi.org/10.3390/metabo12080738
Gao J, Yang D, Sun Z, Niu J, Bao Y, Liu S, Tan Z, Hao L, Cheng Y, Liu S. Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China. Metabolites. 2022; 12(8):738. https://doi.org/10.3390/metabo12080738
Chicago/Turabian StyleGao, Jian, Deyu Yang, Zhanying Sun, Jianzhang Niu, Yuhong Bao, Suozhu Liu, Zhankun Tan, Lizhuang Hao, Yanfen Cheng, and Shujie Liu. 2022. "Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China" Metabolites 12, no. 8: 738. https://doi.org/10.3390/metabo12080738
APA StyleGao, J., Yang, D., Sun, Z., Niu, J., Bao, Y., Liu, S., Tan, Z., Hao, L., Cheng, Y., & Liu, S. (2022). Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China. Metabolites, 12(8), 738. https://doi.org/10.3390/metabo12080738