Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Plant Material
2.3. Preliminary Solvent Selection
2.4. Preliminary Extraction Kinetics
2.5. Extraction According to the 2-Level Factorial Design
2.6. Extraction According to the Box–Behnken Design
2.7. Extraction Optimization
2.8. Spectrophotometric Determination of Total Phenolic Content
2.9. Spectrophotometric Determination of Total Phenolic Acid Content
2.10. Spectrophotometric Determination of Total Flavonoid Content
2.11. LC-MS Analysis
2.12. Elastase Inhibitory Activity
2.13. Collagenase Inhibitory Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. Extraction Optimization
3.2. LC-MS Analysis of the Extracts
No | Rt [min] | λ Max [nm] | Obs A | Diff [ppm] | Formula | m/z ESI- | Compound Name | Identification Type B |
---|---|---|---|---|---|---|---|---|
1 | 9.40 | 260, 292 | 153.02 | −2.14 | C7H6O4 | 109, 153 | Dihydroxybenzoic acid derivatives | [6], MS |
2 | 10.14 | 258, 290, 328 | 327.07 | −1.43 | C14H16O9 | 165, 327 | Hydroxyphtalide glucoside isomer | [6], MS |
3 | 11.24 | 244, 294 324 | 353.09 | −0.95 | C16H18O9 | 179, 191, 353 | 5-O-caffeoylquinic acid | ST, [6,68], MS |
4 | 14.83 | 244, 294, 324 | 353.09 | −2.03 | C16H18O9 | 191, 353 | 3-O-caffeoylquinic acid | ST, [6,56,68], MS |
5 | 16.06 | 246, 290, 324 | 179.03 | −4.59 | C9H8O4 | 179 | Caffeic acid | ST, [6,56], MS |
6 | 20.29 | 248, 282, 324 | 367.10 | −0.67 | C17H20O9 | 191, 367 | 5-O-feruloyloquinic acid | [6,68], MS |
7 | 20.53 | 278, 340, 385 | 479.08 | −0.89 | C21H20O13 | 477 | Myricetin 3-O-glucoside | [6], MS |
8 | 21.37 | 256, 282, 338 | 463.03 | −5.11 | C21H20O12 | 300, 463 | Quercetin O-hexoside isomer | [6], MS |
9 | 23.82 | 254, 330 | 521.09 | −7.41 | C23H22O14 | 521 | Isorhamnetin O-hexoside | [57], MS |
10 | 24.22 | 255, 287, 345 | 463.08 | −9.49 | C21H20O12 | 300, 463 | Quercetin O-hexoside isomer | [6], MS |
11 | 25.70 | 250, 295, 325 | 515.12 | −8.19 | C25H24O12 | 515, 353 | 3,4-O-Dicaffeoylquinic acid isomer | [57,68], MS |
12 | 26.49 | 250, 295, 325 | 515.11 | −9 | C25H24O12 | 191, 353, 515 | 3,5-O-Dicaffeoylquinic acid | ST, [6,57,68], MS |
13 | 26.96 | 250, 295, 328 | 695.12 | −8 | C33H28O17 | 209, 371, 515, 695 | Tricaffeoyl hexaric acid | [6], MS |
14 | 28,44 | 250, 295, 328 | 515.12 | −7.12 | C25H24O12 | 191, 353, 515 | 4,5-O-Dicaffeoylquinic acid isomer | [57,68], MS |
15 | 32.06 | 250, 295, 328 | 515.12 | −6.61 | C25H24O12 | 353, 515 | Dicaffeoylquinic acid isomer | MS |
16 | 32.48 | 255, 270, 315, 360 | 609.12 | −8.01 | C30H26O14 | 300, 463, 609 | Quercetin coumaroylglucoside isomer | [6], MS |
17 | 33.12 | 255, 290, 355 | 609.12 | −6.44 | C30H26O14 | 300, 463, 609 | Quercetin coumaroylglucoside isomer | [6], MS |
18 | 35.86 | 252, 296, 355 | 593.13 | −6.81 | C30H26O13 | 284, 593 | Tiliroside | ST, [6,56,57], MS |
19 | 36.04 | 252, 296, 325 | 677.15 | −5.41 | C34H30O15 | 515, 677 | Tricaffeoylquinic acid | [6], MS |
20 | 37.26 | 252, 276 | 629.15 | 2.47 | C37H26O10 | 629 | Quinic acid derivatives | MS |
21 | 55.22 | 250, 280 | 435.13 | 5.74 | C28H20O5 | 435 | Unknown | MS |
22 | 57.29 | 280 | 417.15 | 5.11 | C29H22O3 | 417 | Unknown | MS |
23 | 60.09 | 252, 292, 360 | 401,17 | −2 | C22H26O7 | 401 | Arzanol | [6], MS |
24 | 60.62 | 294, 360 | 415,18 | −0.52 | C23H28O7 | 415 | 3-Methylarzanol | [6], MS |
25 | 61.40 | 294, 350 | 429.20 | −2.64 | C17H34O12 | 429 | unknown | MS |
3.3. Anti-Elastase and Anti-Collagenase Activity of the Optimized Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antunes Viegas, D.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From Traditional Use to Scientific Data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Węglarz, Z.; Kosakowska, O.; Pióro-Jabrucka, E.; Przybył, J.L.; Gniewosz, M.; Kraśniewska, K.; Szyndel, M.S.; Costa, R.; Bączek, K.B. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals 2022, 15, 735. [Google Scholar] [CrossRef] [PubMed]
- Maksimovic, S.; Stankovic, M.; Roganovic, S.; Nesic, I.; Zvezdanovic, J.; Tadic, V.; Zizovic, I. Towards a Modern Approach to Traditional Use of Helichrysum italicum in Dermatological Conditions: In Vivo Testing Supercritical Extract on Artificially Irritated Skin. J. Ethnopharmacol. 2023, 301, 115779. [Google Scholar] [CrossRef] [PubMed]
- Andjić, M.; Draginić, N.; Kočović, A.; Jeremić, J.; Vučićević, K.; Jeremić, N.; Krstonošić, V.; Božin, B.; Kladar, N.; Čapo, I.; et al. Immortelle Essential Oil-Based Ointment Improves Wound Healing in a Diabetic Rat Model. Biomed. Pharmacother. 2022, 150, 112941. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Masullo, M.; Piacente, S. Metabolite Profiling of Helichrysum italicum Derived Food Supplements by 1H-NMR-Based Metabolomics. Molecules 2021, 26, 6619. [Google Scholar] [CrossRef]
- Kramberger, K.; Barlič-Maganja, D.; Bandelj, D.; Baruca Arbeiter, A.; Peeters, K.; Miklavčič Višnjevec, A.; Jenko Pražnikar, Z. HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Extracts from Two Helichrysum italicum Species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef]
- Kothavade, P.S.; Nagmoti, D.M.; Bulani, V.D.; Juvekar, A.R. Arzanol, a Potent MPGES-1 Inhibitor: Novel Anti-Inflammatory Agent. Sci. World J. 2013, 2013, 986429. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ascrizzi, R. In Vitro Anticollagenase and Antielastase Activities of Essential Oil of Helichrysum italicum subsp. italicum (Roth) G. Don. J. Med. Food 2019, 22, 1041–1046. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin Anti-Aging Strategies. Dermato-Endocrinology 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Shepelytskyi, Y.; Newman, C.J.; Grynko, V.; Seveney, L.E.; DeBoef, B.; Hane, F.T.; Albert, M.S. Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules 2020, 25, 5576. [Google Scholar] [CrossRef]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as Encapsulation Agents for Plant Bioactive Compounds. Carbohydr. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef]
- Kim, J.-S. Study of Flavonoid/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes by UV-Vis, FT-IR, DSC, and X-Ray Diffraction Analysis. Prev. Nutr. Food Sci. 2020, 25, 449–456. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium Pratensis L. Extract. Pharmaceutics 2021, 13, 620. [Google Scholar] [CrossRef]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-Based Dermatological Formulations: Dermopharmaceutical and Cosmetic Applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef]
- Cai, R.; Yuan, Y.; Cui, L.; Wang, Z.; Yue, T. Cyclodextrin-Assisted Extraction of Phenolic Compounds: Current Research and Future Prospects. Trends Food Sci. Technol. 2018, 79, 19–27. [Google Scholar] [CrossRef]
- Strawa, J.; Wajs-Bonikowska, A.; Jakimiuk, K.; Waluk, M.; Poslednik, M.; Nazaruk, J.; Tomczyk, M. Phytochemical Examination of Woolly Burdock Arctium tomentosum Leaves and Flower Heads. Chem. Nat. Compd. 2020, 56, 345–347. [Google Scholar] [CrossRef]
- Tomczyk, M. Secondary Metabolites from Potentilla recta L. and Drymocallis rupestris (L.) Soják (Syn. Potentilla rupestris L.) (Rosaceae). Biochem. Syst. Ecol. 2011, 39, 893–896. [Google Scholar] [CrossRef]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.-L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and Variation of Antioxidant Micronutrients in Lettuce (Lactuca sativa Folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Bose, B.; Choudhury, H.; Tandon, P.; Kumaria, S. Studies on Secondary Metabolite Profiling, Anti-Inflammatory Potential, in Vitro Photoprotective and Skin-Aging Related Enzyme Inhibitory Activities of Malaxis acuminata, a Threatened Orchid of Nutraceutical Importance. J. Photochem. Photobiol. B 2017, 173, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Neimkhum, W.; Anuchapreeda, S.; Lin, W.-C.; Lue, S.-C.; Lee, K.-H.; Chaiyana, W. Effects of Carissa carandas Linn. Fruit, Pulp, Leaf, and Seed on Oxidation, Inflammation, Tyrosinase, Matrix Metalloproteinase, Elastase, and Hyaluronidase Inhibition. Antioxidants 2021, 10, 1345. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Zhou, S.; Kang, L.; Li, C. A Straightforward Ninhydrin-Based Method for Collagenase Activity and Inhibitor Screening of Collagenase Using Spectrophotometry. Anal. Biochem. 2013, 437, 46–48. [Google Scholar] [CrossRef]
- Barla, F.; Higashijima, H.; Funai, S.; Sugimoto, K.; Harada, N.; Yamaji, R.; Fujita, T.; Nakano, Y.; Inui, H. Inhibitive Effects of Alkyl Gallates on Hyaluronidase and Collagenase. Biosci. Biotechnol. Biochem. 2009, 73, 2335–2337. [Google Scholar] [CrossRef]
- Nitthikan, N.; Leelapornpisid, P.; Naksuriya, O.; Intasai, N.; Kiattisin, K. Potential and Alternative Bioactive Compounds from Brown Agaricus bisporus Mushroom Extracts for Xerosis Treatment. Sci. Pharm. 2022, 90, 59. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Cheng, M.; He, J.; Wang, H.; Li, C.; Wu, G.; Zhu, K.; Chen, X.; Zhang, Y.; Tan, L. Comparison of Microwave, Ultrasound and Ultrasound-Microwave Assisted Solvent Extraction Methods on Phenolic Profile and Antioxidant Activity of Extracts from Jackfruit (Artocarpus heterophyllus Lam.) Pulp. LWT–Food Sci. Technol. 2023, 173, 114395. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, L.-N.; Liu, M.; Chen, A.; Feng, S.; Wang, B.; Sun, D. Effect of PH on the Complexation of Kaempferol-4′-Glucoside with Three β-Cyclodextrin Derivatives: Isothermal Titration Calorimetry and Spectroscopy Study. J. Agric. Food Chem. 2014, 62, 244–250. [Google Scholar] [CrossRef]
- Mercader-Ros, M.T.; Lucas-Abellán, C.; Gabaldón, J.A.; Fortea, M.I.; Martínez-Cachá, A.; Núñez-Delicado, E. Kaempferol Complexation in Cyclodextrins at Basic PH. J. Agric. Food Chem. 2010, 58, 4675–4680. [Google Scholar] [CrossRef]
- Limwachiranon, J.; Jiang, L.; Huang, H.; Sun, J.; Luo, Z. Improvement of Phenolic Compounds Extraction from High-Starch Lotus (Nelumbo nucifera G.) Seed Kernels Using Glycerol: New Insights to Amylose/Amylopectin—Phenolic Relationships. Food Chem. 2019, 274, 933–941. [Google Scholar] [CrossRef]
- Mehta, N.; S, J.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef]
- Yi, Z.; Su, Y.; Brynjolfsson, S.; Olafsdóttir, K.; Fu, W. Chapter 3—Bioactive Polysaccharides and Their Derivatives from Microalgae: Biosynthesis, Applications, and Challenges. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 71, pp. 67–85. [Google Scholar]
- González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S.G.; Villagrán, Z.; Acosta, J.L.; Montalvo-González, E.; Anaya-Esparza, L.M. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules 2022, 27, 3557. [Google Scholar] [CrossRef]
- Imeneo, V.; Romeo, R.; De Bruno, A.; Piscopo, A. Green-Sustainable Extraction Techniques for the Recovery of Antioxidant Compounds from “Citrus limon” by-Products. J. Environ. Sci. Health Part B 2022, 57, 220–232. [Google Scholar] [CrossRef]
- Mohd Syukri, M.S.; Rahman, R.A.; Mohamad, Z.; Md Illias, R.; Nik Mahmood, N.A.; Jaafar, N.R. Optimization Strategy for Laccase Immobilization on Polyethylene Terephthalate Grafted with Maleic Anhydride Electrospun Nanofiber Mat. Int. J. Biol. Macromol. 2021, 166, 876–883. [Google Scholar] [CrossRef]
- Talebpour, Z.; Ghassempour, A.; Abbaci, M.; Aboul-Enein, H.Y. Optimization of Microwave-Assisted Extraction for the Determination of Glycyrrhizin in Menthazin Herbal Drug by Experimental Design Methodology. Chromatographia 2009, 70, 191–197. [Google Scholar] [CrossRef]
- Cai, C.; Liu, M.; Yan, H.; Zhao, Y.; Shi, Y.; Guo, Q.; Pei, W.; Han, J.; Wang, Z. A Combined Calorimetric, Spectroscopic and Molecular Dynamic Simulation Study on the Inclusion Complexation of (E)-Piceatannol with Hydroxypropyl-β-Cyclodextrin in Various Alcohol + water Cosolvents. J. Chem. Thermodyn. 2019, 132, 341–351. [Google Scholar] [CrossRef]
- Jovanović, M.S.; Krgović, N.; Šavikin, K.; Živković, J. Ultrasound-Assisted Water Extraction of Gentiopicroside, Isogentisin, and Polyphenols from Willow Gentian “Dust” Supported by Hydroxypropyl-β-Cyclodextrin as Cage Molecules. Molecules 2022, 27, 7606. [Google Scholar] [CrossRef]
- Bodor, N.; Drustrup, J.; Wu, W. Effect of Cyclodextrins on the Solubility and Stability of a Novel Soft Corticosteroid, Loteprednol Etabonate. Pharmazie 2000, 55, 206–209. [Google Scholar]
- Hegge, A.B.; Másson, M.; Kristensen, S.; Tønnesen, H.H. Investigation of Curcumin-Cyclodextrin Inclusion Complexation in Aqueous Solutions Containing Various Alcoholic Co-Solvents and Alginates Using an UV-VIS Titration Method. Studies of Curcumin and Curcuminoides, XXXV. Pharmazie 2009, 64, 382–389. [Google Scholar] [PubMed]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a Green Solvent for High Product Yields and Selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef]
- Marijan, M.; Mitar, A.; Jakupović, L.; Prlić Kardum, J.; Zovko Končić, M. Optimization of Bioactive Phenolics Extraction and Cosmeceutical Activity of Eco-Friendly Polypropylene-Glycol–Lactic-Acid-Based Extracts of Olive Leaf. Molecules 2022, 27, 529. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-C.; Yang, J.-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23, 863. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F. Microwave-Assisted Extraction of Saponin, Phenolic and Flavonoid Compounds from Trigonella foenum-graecum Seed Based on Two Level Factorial Design. J. Appl. Res. Med. Aromat. Plants 2019, 14, 100212. [Google Scholar] [CrossRef]
- Jurasekova, Z.; Domingo, C.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Effect of PH on the Chemical Modification of Quercetin and Structurally Related Flavonoids Characterized by Optical (UV-Visible and Raman) Spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 12802–12811. [Google Scholar] [CrossRef]
- Chakroun, D.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Enhanced-Performance Extraction of Olive (Olea europaea) Leaf Polyphenols Using L-Lactic Acid/Ammonium Acetate Deep Eutectic Solvent Combined with β-Cyclodextrin: Screening, Optimisation, Temperature Effects and Stability. Biomass Convers. Biorefinery 2021, 11, 1125–1136. [Google Scholar] [CrossRef]
- Georgantzi, C.; Lioliou, A.-E.; Paterakis, N.; Makris, D.P. Combination of Lactic Acid-Based Deep Eutectic Solvents (DES) with β-Cyclodextrin: Performance Screening Using Ultrasound-Assisted Extraction of Polyphenols from Selected Native Greek Medicinal Plants. Agronomy 2017, 7, 54. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Ait Baddi, G.; Basaid, K.; Mir, Y. Response Surface Modeling and Optimization of the Extraction Conditions Using Lactic Acid-Based Deep Eutectic Solvents as Green Alternative Extraction Media for Mentha pulegium . Phytochem. Anal. 2022, 33, 906–914. [Google Scholar] [CrossRef]
- Razola-Díaz, M.D.C.; Aznar-Ramos, M.J.; Guerra-Hernández, E.J.; García-Villanova, B.; Gómez-Caravaca, A.M.; Verardo, V. Establishment of a Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Apple Pomace. Foods 2022, 11, 3809. [Google Scholar] [CrossRef]
- Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. [Google Scholar] [CrossRef]
- Razola-Díaz, M.D.C.; Gómez-Caravaca, A.M.; López de Andrés, J.; Voltes-Martínez, A.; Zamora, A.; Pérez-Molina, G.M.; Castro, D.J.; Marchal, J.A.; Verardo, V. Evaluation of Phenolic Compounds and Pigments Content in Yellow Bell Pepper Wastes. Antioxidants 2022, 11, 557. [Google Scholar] [CrossRef]
- Fumić, B.; Končić, M.Z.; Jug, M. Therapeutic Potential of Hydroxypropyl-β-Cyclodextrin-Based Extract of Medicago sativa in the Treatment of Mucopolysaccharidoses. Planta Med. 2017, 83, 40–50. [Google Scholar] [CrossRef]
- Fumić, B.; Končić, M.Z.; Jug, M. Development of Cyclodextrin-Based Extract of Lotus corniculatus as a Potential Substrate Reduction Therapy in Mucopolysaccharidoses Type III. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 369–379. [Google Scholar] [CrossRef]
- Mari, A.; Napolitano, A.; Masullo, M.; Pizza, C.; Piacente, S. Identification and Quantitative Determination of the Polar Constituents in Helichrysum italicum Flowers and Derived Food Supplements. J. Pharm. Biomed. Anal. 2014, 96, 249–255. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Neves, V.; Rodrigues, M.J.; Rivas, R.; Varela, J.; Custódio, L. Chemical Profiling of Infusions and Decoctions of Helichrysum Italicum Subsp. Picardii by UHPLC-PDA-MS and in Vitro Biological Activities Comparatively with Green Tea (Camellia sinensis) and Rooibos Tisane (Aspalathus linearis). J. Pharm. Biomed. Anal. 2017, 145, 593–603. [Google Scholar] [CrossRef]
- Pinho, E.; Soares, G.; Henriques, M. Evaluation of Antibacterial Activity of Caffeic Acid Encapsulated by β-Cyclodextrins. J. Microencapsul. 2015, 32, 804–810. [Google Scholar] [CrossRef]
- Yao, Y.; Xie, Y.; Hong, C.; Li, G.; Shen, H.; Ji, G. Development of a Myricetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Preparation, Characterization, and Evaluation. Carbohydr. Polym. 2014, 110, 329–337. [Google Scholar] [CrossRef]
- Başaran, E.; Öztürk, A.A.; Şenel, B.; Demirel, M.; Sarica, Ş. Quercetin, Rutin and Quercetin-Rutin Incorporated Hydroxypropyl β-Cyclodextrin Inclusion Complexes. Eur. J. Pharm. Sci. 2022, 172, 106153. [Google Scholar] [CrossRef]
- Nagula, R.L.; Wairkar, S. Recent Advances in Topical Delivery of Flavonoids: A Review. J. Control. Release 2019, 296, 190–201. [Google Scholar] [CrossRef]
- Mi, Y.; Zhong, L.; Lu, S.; Hu, P.; Pan, Y.; Ma, X.; Yan, B.; Wei, Z.; Yang, G. Quercetin Promotes Cutaneous Wound Healing in Mice through Wnt/β-Catenin Signaling Pathway. J. Ethnopharmacol. 2022, 290, 115066. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.J.; Lee, J.S.; Hong, S.; Lim, T.-G.; Byun, S. Quercetin Directly Targets JAK2 and PKCδ and Prevents UV-Induced Photoaging in Human Skin. Int. J. Mol. Sci. 2019, 20, 5262. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.-B.; Jang, Y.; Cho, E.; Park, D.; Kweon, D.-H.; Jung, E. Chlorogenic Acid Isomers Isolated from Artemisia lavandulaefolia Exhibit Anti-Rosacea Effects In Vitro. Biomedicines 2022, 10, 463. [Google Scholar] [CrossRef]
- Oh, J.H.; Karadeniz, F.; Kong, C.-S.; Seo, Y. Antiphotoaging Effect of 3,5-Dicaffeoyl-Epi-Quinic Acid against UVA-Induced Skin Damage by Protecting Human Dermal Fibroblasts In Vitro. Int. J. Mol. Sci. 2020, 21, 7756. [Google Scholar] [CrossRef]
- Bauer, J.; Koeberle, A.; Dehm, F.; Pollastro, F.; Appendino, G.; Northoff, H.; Rossi, A.; Sautebin, L.; Werz, O. Arzanol, a Prenylated Heterodimeric Phloroglucinyl Pyrone, Inhibits Eicosanoid Biosynthesis and Exhibits Anti-Inflammatory Efficacy in Vivo. Biochem. Pharmacol. 2011, 81, 259–268. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical Scheme for LC-MS Identification of Chlorogenic Acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Weihermann, A.C.; Lorencini, M.; Brohem, C.A.; de Carvalho, C.M. Elastin Structure and Its Involvement in Skin Photoageing. Int. J. Cosmetic Sci. 2017, 39, 241–247. [Google Scholar] [CrossRef]
- Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-Aging Potential and Anti-Tyrosinase Activity of Three Hypericum Species with Focus on Phytochemical Composition by LC–MS/MS. Ind. Crops Prod. 2019, 141, 111735. [Google Scholar] [CrossRef]
- Jabs, H.-U. Elastase—Ziel Einer Neuen Anti-Aging Strategie Bei Hautalterung, Elastizitätsverlust Und Faltenbildung. Ästhetische Dermatol. 2014, 2012, 2–4. [Google Scholar]
- Azmi, N.; Hashim, P.; Hashim, D.M.; Halimoon, N.; Majid, N.M.N. Anti–Elastase, Anti–Tyrosinase and Matrix Metalloproteinase–1 Inhibitory Activity of Earthworm Extracts as Potential New Anti–Aging Agent. Asian Pac. J. Trop. Biomed. 2014, 4, S348–S352. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Hwang, T.-L.; Yu, H.-P.; Fang, J.-Y.; Chong, K.Y.; Chang, Y.-W.; Chen, C.-Y.; Yang, H.-W.; Chang, W.-Y.; Hsieh, P.-W. Ilex Kaushue and Its Bioactive Component 3,5-Dicaffeoylquinic Acid Protected Mice from Lipopolysaccharide-Induced Acute Lung Injury. Sci. Rep. 2016, 6, 34243. [Google Scholar] [CrossRef] [Green Version]
- Ambarwati, N.S.S.; Armandari, M.O.; Widayat, W.; Desmiaty, Y.; Elya, B.; Arifianti, A.E.; Ahmad, I. In Vitro Studies on the Cytotoxicity, Elastase, and Tyrosinase Inhibitory Activities of Tomato (Solanum lycopersicum Mill.) Extract. J. Adv. Pharm. Technol. Res. 2022, 13, 182–186. [Google Scholar] [CrossRef]
- Parvizi, J.; Kim, G.K. Collagen. In High Yield Orthopaedics; Elsevier: Amsterdam, The Netherlands, 2010; pp. 107–109. ISBN 978-1-4160-0236-9. [Google Scholar]
- Aziz, J.; Shezali, H.; Radzi, Z.; Yahya, N.A.; Kassim, N.H.A.; Czernuszka, J.; Rahman, M.T. Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin. Skin Pharmacol. Physiol. 2016, 29, 190–203. [Google Scholar] [CrossRef]
- Uitto, J. Connective Tissue Biochemistry of the Aging Dermis: Age-Associated Alterations in Collagen and Elastin. Clin. Geriatr. Med. 1989, 5, 127–148. [Google Scholar] [CrossRef]
- Battie, C.; Jitsukawa, S.; Bernerd, F.; Del Bino, S.; Marionnet, C.; Verschoore, M. New Insights in Photoaging, UVA Induced Damage and Skin Types. Exp. Dermatol. 2014, 23 (Suppl. S1), 7–12. [Google Scholar] [CrossRef]
Extract | CD Type * | n (CD) (mmol) |
---|---|---|
α25 | α-CD | 0.025 |
α50 | α-CD | 0.050 |
α100 | α-CD | 0.100 |
α300 | α-CD | 0.300 |
α600 | α-CD | 0.600 |
HPβ25 | HP-β-CD | 0.025 |
HPβ50 | HP-β-CD | 0.050 |
HPβ100 | HP-β-CD | 0.100 |
HPβ300 | HP-β-CD | 0.300 |
HPβ600 | HP-β-CD | 0.600 |
HPβ800 | HP-β-CD | 0.800 |
HPβ1000 | HP-β-CD | 1.000 |
HPβ1200 | HP-β-CD | 1.200 |
HPγ25 | HP-γ-CD | 0.025 |
HPγ50 | HP-γ-CD | 0.050 |
HPγ100 | HP-γ-CD | 0.100 |
HPγ300 | HP-γ-CD | 0.300 |
HPγ600 | HP-γ-CD | 0.600 |
Extract | Co-solvent ** | Co-solvent concentration (%, w/w) |
EtOH25% | Ethanol | 25 |
EtOH50% | Ethanol | 50 |
EtOH75% | Ethanol | 75 |
EtOH100% | Ethanol | 100 |
H2O | - | 0 |
Standard | Run | X1 (W) | X2 (°C) | X3 (%, w/w) | X4 | X5 (%, w/w) | TP (mg/mL) | TPA (mg/mL) | TF (mg/mL) |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 144.00 | 30.0 | 0.00 | 0.03 | 5.00 | 0.883 ± 0.028 | 0.276 ± 0.010 | 0.246 ± 0.016 |
4 | 2 | 720.00 | 70.0 | 0.00 | 0.03 | 5.00 | 1.102 ± 0.035 | 0.532 ± 0.034 | 0.420 ± 0.014 |
8 | 3 | 720.00 | 70.0 | 2.00 | 0.03 | 0.00 | 1.237 ± 0.017 | 0.753 ± 0.035 | 0.134 ± 0.006 |
2 | 4 | 720.00 | 30.0 | 0.00 | 0.03 | 0.00 | 1.271 ± 0.017 | 0.683 ± 0.011 | 0.191 ± 0.008 |
14 | 5 | 720.00 | 30.0 | 2.00 | 0.06 | 0.00 | 2.864 ± 0.009 | 1.364 ± 0.039 | 0.282 ± 0.018 |
7 | 6 | 144.00 | 70.0 | 2.00 | 0.03 | 5.00 | 0.942 ± 0.016 | 0.262 ± 0.005 | 0.286 ± 0.014 |
13 | 7 | 144.00 | 30.0 | 2.00 | 0.06 | 5.00 | 1.441 ± 0.028 | 0.825 ± 0.016 | 0.245 ± 0.008 |
16 | 8 | 720.00 | 70.0 | 2.00 | 0.06 | 5.00 | 3.353 ± 0.134 | 1.313 ± 0.056 | 0.328 ± 0.009 |
9 | 9 | 144.00 | 30.0 | 0.00 | 0.06 | 0.00 | 1.334 ± 0.046 | 0.401 ± 0.004 | 0.301 ± 0.026 |
10 | 10 | 720.00 | 30.0 | 0.00 | 0.06 | 5.00 | 1.353 ± 0.017 | 0.756 ± 0.034 | 0.444 ± 0.018 |
15 | 11 | 144.00 | 70.0 | 2.00 | 0.06 | 0.00 | 1.530 ± 0.042 | 0.894 ± 0.007 | 0.230 ± 0.007 |
12 | 12 | 720.00 | 70.0 | 0.00 | 0.06 | 0.00 | 3.754 ± 0.108 | 1.557 ± 0.020 | 0.563 ± 0.004 |
5 | 13 | 144.00 | 30.0 | 2.00 | 0.03 | 0.00 | 1.184 ± 0.008 | 0.721 ± 0.002 | 0.215 ± 0.007 |
6 | 14 | 720.00 | 30.0 | 2.00 | 0.03 | 5.00 | 3.825 ± 0.081 | 1.426 ± 0.066 | 0.545 ± 0.021 |
3 | 15 | 144.00 | 70.0 | 0.00 | 0.03 | 0.00 | 1.233 ± 0.046 | 0.363 ± 0.004 | 0.354 ± 0.020 |
11 | 16 | 144.00 | 70.0 | 0.00 | 0.06 | 5.00 | 0.701 ± 0.021 | 0.310 ± 0.006 | 0.042 ± 0.003 |
Dependent Variable | R2 | R2P | R2A | Model p-Value |
---|---|---|---|---|
TP | 0.9526 | 0.9407 | 0.9157 | <0.0001 |
TPA | 0.9366 | 0.9050 | 0.8378 | <0.0001 |
TF | 0.9183 | 0.8886 | 0.8272 | <0.0001 |
Standard | Run | X6 | X7 | X8 | TP | TPA | TF |
---|---|---|---|---|---|---|---|
(°C) | (%, w/w) | (g) | (mg/mL) | (mg/mL) | (mg/mL) | ||
10 | 1 | 65.00 | 2.00 | 0.50 | 2.354 ± 0.013 | 1.559 ± 0.025 | 0.217 ± 0.003 |
1 | 2 | 50.00 | 0.00 | 0.70 | 3.083 ± 0.092 | 1.174 ± 0.016 | 0.478 ± 0.017 |
4 | 3 | 80.00 | 2.00 | 0.70 | 3.117 ± 0.064 | 1.758 ± 0.143 | 0.277 ± 0.002 |
15 | 4 | 65.00 | 1.00 | 0.70 | 3.277 ± 0.104 | 1.872 ± 0.062 | 0.347 ± 0.014 |
3 | 5 | 50.00 | 2.00 | 0.70 | 2.408 ± 0.110 | 1.555 ± 0.039 | 0.171 ± 0.012 |
6 | 6 | 80.00 | 1.00 | 0.50 | 2.435 ± 0.036 | 1.274 ± 0.037 | 0.260 ± 0.014 |
11 | 7 | 65.00 | 0.00 | 0.90 | 4.185 ± 0.049 | 1.892 ± 0.082 | 0.556 ± 0.006 |
8 | 8 | 80.00 | 1.00 | 0.90 | 4.052 ± 0.005 | 2.171 ± 0.117 | 0.408 ± 0.008 |
7 | 9 | 50.00 | 1.00 | 0.90 | 3.009 ± 0.161 | 1.962 ± 0.046 | 0.348 ± 0.013 |
14 | 10 | 65.00 | 1.00 | 0.70 | 2.960 ± 0.096 | 1.825 ± 0.042 | 0.310 ± 0.019 |
5 | 11 | 50.00 | 1.00 | 0.50 | 2.248 ± 0.013 | 1.287 ± 0.026 | 0.206 ± 0.002 |
9 | 12 | 65.00 | 0.00 | 0.50 | 2.563 ± 0.053 | 1.170 ± 0.041 | 0.357 ± 0.004 |
13 | 13 | 65.00 | 1.00 | 0.70 | 3.117 ± 0.111 | 1.655 ± 0.074 | 0.304 ± 0.001 |
16 | 14 | 65.00 | 1.00 | 0.70 | 3.121 ± 0.047 | 1.709 ± 0.005 | 0.299 ± 0.005 |
2 | 15 | 80.00 | 0.00 | 0.70 | 3.330 ± 0.017 | 1.975 ± 0.027 | 0.502 ± 0.013 |
12 | 16 | 65.00 | 2.00 | 0.90 | 3.380 ± 0.071 | 2.054 ± 0.202 | 0.288 ± 0.004 |
17 | 17 | 65.00 | 1.00 | 0.70 | 2.810 ± 0.053 | 1.252 ± 0.014 | 0.289 ± 0.013 |
TP | |||||
---|---|---|---|---|---|
R2 | R2 = 0.9519, R2P = 0.9230, R2A = 0.8632 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 4.53 | 6 | 0.76 | 32.97 | <0.0001 |
Lack of Fit | 0.10 | 6 | 0.017 | 0.54 | 0.7621 |
Pure Error | 0.13 | 4 | 0.032 | ||
TPA | |||||
R2 | R2 = 0.7168, R2P = 0.6514, R2A = 0.5444 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 1.22 | 3 | 0.41 | 10.97 | 0.0007 |
Lack of Fit | 0.24 | 9 | 0.027 | 0.44 | 0.8586 |
Pure Error | 0.24 | 4 | 0.060 | ||
TF | |||||
R2 | R2 = 0.9774, R2P = 0.9483, R2A = 0.8015 | ||||
Source | SS | DF | MS | F Value | p-value |
Model | 0.17 | 9 | 0.019 | 33.63 | <0.0001 |
Lack of Fit | 0.002 | 3 | 0.001 | 1.33 | 0.3812 |
Pure Error | 0.002 | 4 | 0.001 |
Extract Name | Optimized Response (mg/mL) | Response Aim | X6 (°C) | X7 (%, w/w) | X8 (g) | Predicted Response Value (mg/mL) | Observed Response Value (mg/mL) | RD (%) |
---|---|---|---|---|---|---|---|---|
OPT 1 | TPA | maximized | 80 | 1.95 | 0.89 | 2.23 | 2.11 ± 0.07 | −5.67 |
OPT 2 | TP and TF | minimized | 80 | 0 | 0.89 | 4.28 and 0.63 | 4.38 ± 0.04 and 0.60 ± 0.02 | 2.28 and −5.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marijan, M.; Tomić, D.; Strawa, J.W.; Jakupović, L.; Inić, S.; Jug, M.; Tomczyk, M.; Zovko Končić, M. Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties. Metabolites 2023, 13, 257. https://doi.org/10.3390/metabo13020257
Marijan M, Tomić D, Strawa JW, Jakupović L, Inić S, Jug M, Tomczyk M, Zovko Končić M. Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties. Metabolites. 2023; 13(2):257. https://doi.org/10.3390/metabo13020257
Chicago/Turabian StyleMarijan, Marijan, Dora Tomić, Jakub W. Strawa, Lejsa Jakupović, Suzana Inić, Mario Jug, Michał Tomczyk, and Marijana Zovko Končić. 2023. "Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties" Metabolites 13, no. 2: 257. https://doi.org/10.3390/metabo13020257
APA StyleMarijan, M., Tomić, D., Strawa, J. W., Jakupović, L., Inić, S., Jug, M., Tomczyk, M., & Zovko Končić, M. (2023). Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties. Metabolites, 13(2), 257. https://doi.org/10.3390/metabo13020257