Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Standardization of Meals Prior to Data Collection
2.4. Blood and Muscle Tissue Samples
2.5. Body Composition and Cardiorespiratory Assessments
2.6. Exercise Training Programs
2.7. Sample Preparation for Metabolomics Analysis
2.8. NMR-Based Metabolomics, Data Acquisition, and Metabolite Characterization
2.9. Statistical Analysis
3. Results
3.1. Participant Characteristics and Variability of Responses
3.2. Predictive Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- Gorny, A.W.; Yap, J.; Neo, J.W.; Chow, W.E.; Yeo, K.K.; Tan, C.S.; Müller-Riemenschneider, F. Cardiorespiratory Fitness, Body Mass Index, Cardiovascular Disease, and Mortality in Young Men: A Cohort Study. Front. Public Health 2023, 11, 1076065. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine (ACSM). ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed; Wolters Kluwer: Philadelphia, PA, USA, 2022. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Ross, R.; de Lannoy, L.; Stotz, P.J. Separate Effects of Intensity and Amount of Exercise on Interindividual Cardiorespiratory Fitness Response. Mayo Clin. Proc. 2015, 90, 1506–1514. [Google Scholar] [CrossRef]
- Ross, R.; Goodpaster, B.H.; Koch, L.G.; Sarzynski, M.A.; Kohrt, W.M.; Johannsen, N.M.; Skinner, J.S.; Castro, A.; Irving, B.A.; Noland, R.C.; et al. Precision Exercise Medicine: Understanding Exercise Response Variability. Br. J. Sports Med. 2019, 53, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.L.; Ruiz-Ramie, J.J.; Robbins, J.M.; Gerszten, R.E.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C.; Sarzynski, M.A. Regular Exercise and Patterns of Response across Multiple Cardiometabolic Traits: The HERITAGE Family Study. Br. J. Sports Med. 2022, 56, 95–100. [Google Scholar] [CrossRef]
- Bouchard, C.; Blair, S.N.; Church, T.S.; Earnest, C.P.; Hagberg, J.M.; Häkkinen, K.; Jenkins, N.T.; Karavirta, L.; Kraus, W.E.; Leon, A.S.; et al. Adverse Metabolic Response to Regular Exercise: Is It a Rare or Common Occurrence? PLoS ONE 2012, 7, e37887. [Google Scholar] [CrossRef]
- Bouchard, C.; Rankinen, T. Individual Differences in Response to Regular Physical Activity. Med. Sci. Sports Exerc. 2001, 33, S446–S451; discussion S452–S453. [Google Scholar] [CrossRef]
- Castro, A.; Duft, R.G.; Ferreira, M.L.V.; Andrade, A.L.L.D.; Gaspari, A.F.; Silva, L.D.M.; Oliveira-Nunes, S.G.D.; Cavaglieri, C.R.; Ghosh, S.; Bouchard, C.; et al. Association of Skeletal Muscle and Serum Metabolites with Maximum Power Output Gains in Response to Continuous Endurance or High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial. PLoS ONE 2019, 14, e0212115. [Google Scholar] [CrossRef]
- Williams, C.J.; Gurd, B.J.; Bonafiglia, J.T.; Voisin, S.; Li, Z.; Harvey, N.; Croci, I.; Taylor, J.L.; Gajanand, T.; Ramos, J.S.; et al. A Multi-Center Comparison of O(2peak) Trainability Between Interval Training and Moderate Intensity Continuous Training. Front. Physiol. 2019, 10, 19. [Google Scholar] [CrossRef]
- Williams, C.J.; Li, Z.; Harvey, N.; Lea, R.A.; Gurd, B.J.; Bonafiglia, J.T.; Papadimitriou, I.; Jacques, M.; Croci, I.; Stensvold, D.; et al. Genome Wide Association Study of Response to Interval and Continuous Exercise Training: The Predict-HIIT Study. J. Biomed. Sci. 2021, 28, 37. [Google Scholar] [CrossRef] [PubMed]
- Hota, M.; Barber, J.L.; Ruiz-Ramie, J.J.; Schwartz, C.S.; Lam, D.T.U.H.; Rao, P.; Mi, M.Y.; Katz, D.H.; Robbins, J.M.; Clish, C.B.; et al. Omics-Driven Investigation of the Biology Underlying Intrinsic Submaximal Working Capacity and Its Trainability. Physiol. Genom. 2023, 55, 517–543. [Google Scholar] [CrossRef] [PubMed]
- Sarzynski, M.A.; Ghosh, S.; Bouchard, C. Genomic and Transcriptomic Predictors of Response Levels to Endurance Exercise Training. J. Physiol. 2017, 595, 2931–2939. [Google Scholar] [CrossRef] [PubMed]
- Robbins, J.M.; Rao, P.; Deng, S.; Keyes, M.J.; Tahir, U.A.; Katz, D.H.; Beltran, P.M.J.; Marchildon, F.; Barber, J.L.; Peterson, B.; et al. Plasma Proteomic Changes in Response to Exercise Training Are Associated with Cardiorespiratory Fitness Adaptations. JCI Insight 2023, 8, e165867. [Google Scholar] [CrossRef]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic Predictors of the Maximal O₂ Uptake Response to Standardized Exercise Training Programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef]
- Timmons, J.A.; Knudsen, S.; Rankinen, T.; Koch, L.G.; Sarzynski, M.; Jensen, T.; Keller, P.; Scheele, C.; Vollaard, N.B.J.; Nielsen, S.; et al. Using Molecular Classification to Predict Gains in Maximal Aerobic Capacity Following Endurance Exercise Training in Humans. J. Appl. Physiol. 2010, 108, 1487–1496. [Google Scholar] [CrossRef]
- Robbins, J.M.; Peterson, B.; Schranner, D.; Tahir, U.A.; Rienmüller, T.; Deng, S.; Keyes, M.J.; Katz, D.H.; Beltran, P.M.J.; Barber, J.L.; et al. Human Plasma Proteomic Profiles Indicative of Cardiorespiratory Fitness. Nat. Metab. 2021, 3, 786–797. [Google Scholar] [CrossRef]
- Castro, A.; Duft, R.G.; de Oliveira-Nunes, S.G.; de Andrade, A.L.L.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Association Between Changes in Serum and Skeletal Muscle Metabolomics Profile With Maximum Power Output Gains in Response to Different Aerobic Training Programs: The Times Study. Front. Physiol. 2021, 12, 756618. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The Apogee of the Omics Trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Khoramipour, K.; Sandbakk, Ø.; Keshteli, A.H.; Gaeini, A.A.; Wishart, D.S.; Chamari, K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Med. 2022, 52, 547–583. [Google Scholar] [CrossRef] [PubMed]
- Jaguri, A.; Al Thani, A.A.; Elrayess, M.A. Exercise Metabolome: Insights for Health and Performance. Metabolites 2023, 13, 694. [Google Scholar] [CrossRef]
- Duft, R.G.; Castro, A.; Chacon-Mikahil, M.P.T.; Cavaglieri, C.R. Metabolomics and Exercise: Possibilities and Perspectives. Mot. Rev. Educ. Física 2017, 23, e101634. [Google Scholar] [CrossRef]
- Castro, A.; Duft, R.G.; Silva, L.M.; Ferreira, M.L.V.; Andrade, A.L.L.; Bernardes, C.F.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Understanding the Relationship between Intrinsic Cardiorespiratory Fitness and Serum and Skeletal Muscle Metabolomics Profile. J. Proteome Res. 2021, 20, 2397–2409. [Google Scholar] [CrossRef]
- Shrestha, A.; Müllner, E.; Poutanen, K.; Mykkänen, H.; Moazzami, A.A. Metabolic Changes in Serum Metabolome in Response to a Meal. Eur. J. Nutr. 2017, 56, 671–681. [Google Scholar] [CrossRef]
- Castro, A.; Duft, R.G.; Zeri, A.C.D.M.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Commentary: Metabolomics-Based Studies Assessing Exercise-Induced Alterations of the Human Metabolome: A Systematic Review. Front. Physiol. 2020, 11, 353. [Google Scholar] [CrossRef]
- Borg, G.; Linderholm, H. Perceived Exertion and Pulse Rate during Graded Exercise in Various Age Groups. Acta Med. Scand. 1967, 181, 194–206. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine Position Stand. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Senn, S. Mastering Variation: Variance Components and Personalised Medicine. Stat. Med. 2016, 35, 966–977. [Google Scholar] [CrossRef]
- Voisin, S.; Jacques, M.; Lucia, A.; Bishop, D.J.; Eynon, N. Statistical Considerations for Exercise Protocols Aimed at Measuring Trainability. Exerc. Sport Sci. Rev. 2019, 47, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Individual Responses Made Easy. J. Appl. Physiol. 2015, 118, 1444–1446. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women: A Meta-Analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Nes, B.M.; Vatten, L.J.; Nauman, J.; Janszky, I.; Wisløff, U. A Simple Nonexercise Model of Cardiorespiratory Fitness Predicts Long-Term Mortality. Med. Sci. Sports Exerc. 2014, 46, 1159–1165. [Google Scholar] [CrossRef]
- Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.E.; Evans, A.M. Carnitine and Acylcarnitines: Pharmacokinetic, Pharmacological and Clinical Aspects. Clin. Pharmacokinet. 2012, 51, 553–572. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Bishop, D.J.; Antunes, B.M.; Beck, W.R.; Malta, E.S.; de Poli, R.A.B.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T.; Castro, A. Impacts of High-Intensity Exercise on the Metabolomics Profile of Human Skeletal Muscle Tissue. Scand. J. Med. Sci. Sports 2022, 32, 402–413. [Google Scholar] [CrossRef]
- Puigarnau, S.; Fernàndez, A.; Obis, E.; Jové, M.; Castañer, M.; Pamplona, R.; Portero-Otin, M.; Camerino, O. Metabolomics Reveals That Fittest Trail Runners Show a Better Adaptation of Bioenergetic Pathways. J. Sci. Med. Sport 2022, 25, 425–431. [Google Scholar] [CrossRef]
- Kuehnbaum, N.L.; Gillen, J.B.; Kormendi, A.; Lam, K.P.; DiBattista, A.; Gibala, M.J.; Britz-McKibbin, P. Multiplexed Separations for Biomarker Discovery in Metabolomics: Elucidating Adaptive Responses to Exercise Training. Electrophoresis 2015, 36, 2226–2236. [Google Scholar] [CrossRef]
- Walker, J.B. Creatine: Biosynthesis, Regulation, and Function. Adv. Enzymol. Relat. Areas Mol. Biol. 1979, 50, 177–242. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and Creatinine Metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Kistner, S.; Rist, M.J.; Döring, M.; Dörr, C.; Neumann, R.; Härtel, S.; Bub, A. An NMR-Based Approach to Identify Urinary Metabolites Associated with Acute Physical Exercise and Cardiorespiratory Fitness in Healthy Humans-Results of the KarMeN Study. Metabolites 2020, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Carrard, J.; Guerini, C.; Appenzeller-Herzog, C.; Infanger, D.; Königstein, K.; Streese, L.; Hinrichs, T.; Hanssen, H.; Gallart-Ayala, H.; Ivanisevic, J.; et al. The Metabolic Signature of Cardiorespiratory Fitness: A Systematic Review. Sports Med. 2022, 52, 527–546. [Google Scholar] [CrossRef]
- Diago, C.A.A.; Señaris, J.A.A. Should We Pay More Attention to Low Creatinine Levels? Endocrinol. Diabetes Nutr. 2020, 67, 486–492. [Google Scholar] [CrossRef]
- Hernandez-Baixauli, J.; Abasolo, N.; Palacios-Jordan, H.; Foguet-Romero, E.; Suñol, D.; Galofré, M.; Caimari, A.; Baselga-Escudero, L.; Del Bas, J.M.; Mulero, M. Imbalances in TCA, Short Fatty Acids and One-Carbon Metabolisms as Important Features of Homeostatic Disruption Evidenced by a Multi-Omics Integrative Approach of LPS-Induced Chronic Inflammation in Male Wistar Rats. Int. J. Mol. Sci. 2022, 23, 2563. [Google Scholar] [CrossRef] [PubMed]
- Margaritelis, N.V.; Theodorou, A.A.; Paschalis, V.; Veskoukis, A.S.; Dipla, K.; Zafeiridis, A.; Panayiotou, G.; Vrabas, I.S.; Kyparos, A.; Nikolaidis, M.G. Adaptations to Endurance Training Depend on Exercise-Induced Oxidative Stress: Exploiting Redox Interindividual Variability. Acta Physiol. 2018, 222, e12898. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C. DNA Sequence Variations Contribute to Variability in Fitness and Trainability. Med. Sci. Sports Exerc. 2019, 51, 1781–1785. [Google Scholar] [CrossRef]
- Wallace, M.; Hashim, Y.Z.H.-Y.; Wingfield, M.; Culliton, M.; McAuliffe, F.; Gibney, M.J.; Brennan, L. Effects of Menstrual Cycle Phase on Metabolomic Profiles in Premenopausal Women. Hum. Reprod. 2010, 25, 949–956. [Google Scholar] [CrossRef]
- Ross, R.; Hudson, R.; Stotz, P.J.; Lam, M. Effects of Exercise Amount and Intensity on Abdominal Obesity and Glucose Tolerance in Obese Adults: A Randomized Trial. Ann. Intern. Med. 2015, 162, 325–334. [Google Scholar] [CrossRef]
- Montero, D.; Lundby, C. Refuting the Myth of Non-Response to Exercise Training: “non-Responders” Do Respond to Higher Dose of Training. J. Physiol. 2017, 595, 3377–3387. [Google Scholar] [CrossRef] [PubMed]
- Gurd, B.J.; Giles, M.D.; Bonafiglia, J.T.; Raleigh, J.P.; Boyd, J.C.; Ma, J.K.; Zelt, J.G.E.; Scribbans, T.D. Incidence of Nonresponse and Individual Patterns of Response Following Sprint Interval Training. Appl. Physiol. Nutr. Metab.=Physiol. Appl. Nutr. Metab. 2016, 41, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Weatherwax, R.M.; Harris, N.K.; Kilding, A.E.; Dalleck, L.C. Incidence of V˙ O2max Responders to Personalized versus Standardized Exercise Prescription. Med. Sci. Sports Exerc. 2019, 51, 681–691. [Google Scholar] [CrossRef] [PubMed]
Variables | ET (n = 30) | HIIT (n = 30) | CO (n = 10) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristics of the participants | ||||||||||
Age (years) | Pre | 23.3 | ± | 3.4 | 23.5 | ± | 2.6 | 23.6 | ± | 3.5 |
Height (m) | Pre | 1.7 | ± | 0.1 | 1.7 | ± | 0.1 | 1.7 | ± | 0 |
Body mass (kg) | Pre | 72.1 | ± | 12.1 | 72.1 | ± | 10.3 | 76.5 | ± | 8.4 |
Body fat percentage (%) | Pre | 20.3 | ± | 7.3 | 21.3 | ± | 7.6 | 21.6 | ± | 5.7 |
BMI (kg m2) | Pre | 23.9 | ± | 3.4 | 23.8 | ± | 2.7 | 25 | ± | 2.6 |
MPO (W) | Pre | 237.5 | ± | 38.4 | 237.6 | ± | 32.4 | 249.5 | ± | 28.7 |
Changes Pre to Post intervention | ||||||||||
HRMAX (beats min−1) | Pre | 192 | ± | 9 | 192 | ± | 8 | 195 | ± | 9 |
Post | 192 | ± | 7 | 191 | ± | 7 | 195 | ± | 12 | |
CRF (MET) a | Pre | 12.3 | ± | 1.9 | 12.3 | ± | 1.8 | 12.1 | ± | 1.1 |
Post | 14.4 | ± | 1.9 *† | 14.9 | ± | 2.0 *† | 11.7 | ± | 1.0 |
Models | Predictive Variables | B | p-Value | OR (95% CI) | |||
---|---|---|---|---|---|---|---|
Model 1 (n = 59) | O-acetylcarnitine (serum) | 1.55 | 0.012 | 4.72 | (1.40 | to | 15.80) |
Constant | 2.15 | <0.001 | 8.60 | -------------- | |||
Model 2 (n = 57) | Creatinine (intramuscular) | 1.51 | 0.037 | 4.53 | (1.09 | to | 18.70) |
Constant | 1.99 | <0.001 | 7.35 | -------------- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, A.; Ferreira, A.G.; Catai, A.M.; Amaral, M.A.B.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial. Metabolites 2024, 14, 512. https://doi.org/10.3390/metabo14090512
Castro A, Ferreira AG, Catai AM, Amaral MAB, Cavaglieri CR, Chacon-Mikahil MPT. Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial. Metabolites. 2024; 14(9):512. https://doi.org/10.3390/metabo14090512
Chicago/Turabian StyleCastro, Alex, Antonio Gilberto Ferreira, Aparecida Maria Catai, Matheus Alejandro Bolina Amaral, Claudia Regina Cavaglieri, and Mara Patrícia Traina Chacon-Mikahil. 2024. "Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial" Metabolites 14, no. 9: 512. https://doi.org/10.3390/metabo14090512
APA StyleCastro, A., Ferreira, A. G., Catai, A. M., Amaral, M. A. B., Cavaglieri, C. R., & Chacon-Mikahil, M. P. T. (2024). Metabolic Predictors of Cardiorespiratory Fitness Responsiveness to Continuous Endurance and High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial. Metabolites, 14(9), 512. https://doi.org/10.3390/metabo14090512