Integrated Metabolomics Assessment of Human Dried Blood Spots and Urine Strips
Abstract
:1. Introduction
2. Results
2.1. HILIC-LC-MS/MS and GC-MS Analyses of Different Blood Matrix Samples Highlight Differential Metabolite Detection from Different Sample Preparation Techniques
2.2. HILIC-LC-MS/MS and GC-MS Analyses of Different Urine Matrix Samples Demonstrate Differential Metabolite Detection Dependent on Sample Preparation Techniques
2.3. Temperature and Duration of Sample Storage Impacts Subsequent Metabolite Analysis in DBS and DUS
2.4. DBS/DUS Inter-Day Variation Study
2.5. DBS Intra-Day Variation Study
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Ethical Statement
4.3. Preparation of Dried Blood Spots
4.4. Preparation of Dried Urine Strips
4.5. HILIC-LC-MS/MS and GC-MS Analyses
4.6. DBS and DUS Sample Preparation and Analysis
4.7. Plasma and Urine Sample Preparation and Analysis
4.8. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Parker, S.P.; Cubitt, W.D. The use of the dried blood spot sample in epidemiological studies. J. Clin. Pathol. 1999, 52, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B.; Wiley, V. Newborn screening. Pathology 2008, 40, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu. Rev. Genom. Hum. Genet. 2002, 3, 17–45. [Google Scholar] [CrossRef] [PubMed]
- Demirev, P.A. Dried blood spots: Analysis and applications. Anal. Chem. 2013, 85, 779–789. [Google Scholar] [CrossRef] [PubMed]
- McDade, T.W.; Williams, S.; Snodgrass, J.J. What a drop can do: Dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography 2007, 44, 899–925. [Google Scholar] [CrossRef] [PubMed]
- Lauer, E.; Widmer, C.; Versace, F.; Staub, C.; Mangin, P.; Sabatasso, S.; Augsburger, M.; Deglon, J. Body fluid and tissue analysis using filter paper sampling support prior to LC-MS/MS: Application to fatal overdose with colchicine. Drug Test. Anal. 2013, 5, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tse, F.L. Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed. Chromatogr. 2010, 24, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Deglon, J.; Thomas, A.; Mangin, P.; Staub, C. Direct analysis of dried blood spots coupled with mass spectrometry: Concepts and biomedical applications. Anal. Bioanal. Chem. 2012, 402, 2485–2498. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Delaby, C.; Vialaret, J.; Ducos, J.; Hirtz, C. Current and future use of “dried blood“ spot analyses in clinical chemistry. Clin. Chem. Lab. Med. 2013, 51, 1897–1909. [Google Scholar] [CrossRef] [PubMed]
- Rahavendran, S.V.; Vekich, S.; Skor, H.; Batugo, M.; Nguyen, L.; Shetty, B.; Shen, Z. Discovery pharmacokinetic studies in mice using serial microsampling, dried blood spots and microbore LC-MS/MS. Bioanalysis 2012, 4, 1077–1095. [Google Scholar] [CrossRef] [PubMed]
- Tarini, B.A.; Goldenberg, A.J. Ethical issues with newborn screening in the genomics era. Annu. Rev. Genom. Hum. Genet. 2012, 13, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.G.; Percy, A.J.; Yang, J.; Borchers, C.H. Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol. Cell. Proteom. 2015, 14, 3094–3104. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.L.; Griffiths, P.; Bunch, J.; Cooper, H.J. Top-down proteomics and direct surface sampling of neonatal dried blood spots: Diagnosis of unknown hemoglobin variants. J. Am. Soc. Mass Spectrom. 2012, 23, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; McDaniel, J.; Chen, E.Y.; Rockwell, H.E.; Drolet, J.; Vishnudas, V.K.; Tolstikov, V.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A. Dynamic and temporal assessment of human dried blood spot MS/MS all shot gun lipidomics analysis. Nutr. Metab. 2017, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Aristizabal Henao, J.J.; Metherel, A.H.; Smith, R.W.; Stark, K.D. Tailored extraction procedure is required to ensure recovery of the main lipid classes in whole blood when profiling the lipidome of dried blood spots. Anal. Chem. 2016, 88, 9391–9396. [Google Scholar] [CrossRef] [PubMed]
- Acharjee, A.; Prentice, P.; Acerini, C.; Smith, J.; Hughes, I.A.; Ong, K.; Griffin, J.L.; Dunger, D.; Koulman, A. The translation of lipid profiles to nutritional biomarkers in the study of infant metabolism. Metabolomics 2017, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I. Global metabolic profiling (metabonomics/metabolomics) using dried blood spots: Advantages and pitfalls. Bioanalysis 2011, 3, 2255–2257. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, R.; Allen, K.J.; Koplin, J.J.; Roche, P.; Greaves, R.F. Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC 2016, 27, 288–317. [Google Scholar] [PubMed]
- Kong, S.T.; Lin, H.S.; Ching, J.; Ho, P.C. Evaluation of dried blood spots as sample matrix for gas chromatography/mass spectrometry based metabolomic profiling. Anal. Chem. 2011, 83, 4314–4318. [Google Scholar] [CrossRef] [PubMed]
- Zukunft, S.; Sorgenfrei, M.; Prehn, C.; Möller, G.; Adamski, J. Targeted metabolomics of dried blood spot extracts. Chromatographia 2013, 76, 1295–1305. [Google Scholar] [CrossRef]
- Jing, Y.; Wu, X.; Gao, P.; Fang, Z.; Wu, J.; Wang, Q.; Li, C.; Zhu, Z.; Cao, Y. Rapid differentiating colorectal cancer and colorectal polyp using dried blood spot mass spectrometry metabolomic approach. IUBMB Life 2017, 69, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, T.; Cao, Y.; Gao, P.; Dong, J.; Fang, Y.; Fang, Z.; Sun, X.; Zhu, Z. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. OncoTarget. Ther. 2016, 9, 1389–1398. [Google Scholar]
- Breier, M.; Wahl, S.; Prehn, C.; Fugmann, M.; Ferrari, U.; Weise, M.; Banning, F.; Seissler, J.; Grallert, H.; Adamski, J.; et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Petrick, L.; Edmands, W.; Schiffman, C.; Grigoryan, H.; Perttula, K.; Yano, Y.; Dudoit, S.; Whitehead, T.; Metayer, C.; Rappaport, S. An untargeted metabolomics method for archived newborn dried blood spots in epidemiologic studies. Metabolomics 2017, 13. [Google Scholar] [CrossRef]
- Zava, T.T.; Kapur, S.; Zava, D.T. Iodine and creatinine testing in urine dried on filter paper. Anal. Chim. Acta 2013, 764, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Carreno Balcazar, J.S.; Meesters, R.J. Bioanalytical comparison between dried urine spots and liquid urine bioassays used for the quantitative analysis of urinary creatinine concentrations. Bioanalysis 2014, 6, 2803–2814. [Google Scholar] [CrossRef] [PubMed]
- Frati, E.R.; Martinelli, M.; Fasoli, E.; Colzani, D.; Bianchi, S.; Binda, S.; Olivani, P.; Tanzi, E. HPV testing from dried urine spots as a tool for cervical cancer screening in low-income countries. BioMed. Res. Int. 2015, 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Michopoulos, F.; Theodoridis, G.; Smith, C.J.; Wilson, I.D. Metabolite profiles from dried biofluid spots for metabonomic studies using uplc combined with oatof-ms. J. Proteom. Res. 2010, 9, 3328–3334. [Google Scholar] [CrossRef] [PubMed]
- Issaq, H.J.; Veenstra, T.D. New trends in sample preparation for global metabolomics. In Proteomic and Metabolomic Approaches to Biomarker Discovery, 1st ed.; Elsevier: Amsterdam, Netherlands, 2013; p. 488. [Google Scholar]
- Tolstikov, V.; Nikolayev, A.; Dong, S.; Zhao, G.; Kuo, M.-S. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Gacias, M.; Gaspari, S.; Santos, P.M.; Tamburini, S.; Andrade, M.; Zhang, F.; Shen, N.; Tolstikov, V.; Kiebish, M.A.; Dupree, J.L.; et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLife 2016, 5, e13442. [Google Scholar] [CrossRef] [PubMed]
- Hodson, R. Precision medicine. Nature 2016, 537, S49. [Google Scholar] [CrossRef] [PubMed]
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Tolstikov, V.; Akmaev, V.R.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A. Clinical metabolomics: A pivotal tool for companion diagnostic development and precision medicine. Expert Rev. Mol. Diagn. 2017, 17, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Tolstikov, V. Metabolomics: Bridging the gap between pharmaceutical development and population health. Metabolites 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Metabolomic data processing, analysis, and interpretation using metaboanalyst. Curr. Protoc. Bioinform. 2011. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drolet, J.; Tolstikov, V.; Williams, B.A.; Greenwood, B.P.; Hill, C.; Vishnudas, V.K.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A. Integrated Metabolomics Assessment of Human Dried Blood Spots and Urine Strips. Metabolites 2017, 7, 35. https://doi.org/10.3390/metabo7030035
Drolet J, Tolstikov V, Williams BA, Greenwood BP, Hill C, Vishnudas VK, Sarangarajan R, Narain NR, Kiebish MA. Integrated Metabolomics Assessment of Human Dried Blood Spots and Urine Strips. Metabolites. 2017; 7(3):35. https://doi.org/10.3390/metabo7030035
Chicago/Turabian StyleDrolet, Jeremy, Vladimir Tolstikov, Brian A. Williams, Bennett P. Greenwood, Collin Hill, Vivek K. Vishnudas, Rangaprasad Sarangarajan, Niven R. Narain, and Michael A. Kiebish. 2017. "Integrated Metabolomics Assessment of Human Dried Blood Spots and Urine Strips" Metabolites 7, no. 3: 35. https://doi.org/10.3390/metabo7030035
APA StyleDrolet, J., Tolstikov, V., Williams, B. A., Greenwood, B. P., Hill, C., Vishnudas, V. K., Sarangarajan, R., Narain, N. R., & Kiebish, M. A. (2017). Integrated Metabolomics Assessment of Human Dried Blood Spots and Urine Strips. Metabolites, 7(3), 35. https://doi.org/10.3390/metabo7030035