Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Metabolic Profiling of D. officinale Leaves and Stems
2.2. Quantitative Metabolic Profiling of D. officinale Leaves and Stems
2.3. Differentially Accumulated Metabolites between Leaves and Stems in D. officinale
3. Materials and Methods
3.1. Plant Material
3.2. Metabolic Profiling
3.2.1. Sample Preparation and Extraction
3.2.2. HPLC Conditions
3.2.3. ESI-Q TRAP-MS/MS
3.3. Metabolite Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teixeira da Silva, J.A.; Ng, T.B. The medicinal and pharmaceutical importance of Dendrobium species. Appl. Microbiol. Biotechnol. 2017, 101, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Liu, J.; Wong, J.H.; Ye, X.; Sze, S.C.W.; Tong, Y.; Zhang, K.Y. Review of research on Dendrobium, a prized folk medicine. Appl. Microbiol. Biotechnol. 2012, 93, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Song, J.I.; Kang, Y.J.; Yong, H.Y.; Kim, Y.C.; Moon, A. Denbinobin, a phenanthrene from Dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncol. Rep. 2012, 27, 813–818. [Google Scholar] [PubMed]
- Li, M.M.; Zhang, B.X.; He, S.B.; Zheng, R.; Zhang, Y.L.; Wang, Y. Elucidating hypoglycemic mechanism of Dendrobium nobile through auxiliary elucidation system for traditional Chinese medicine mechanism. China J. Chin. Mater. Med. 2015, 40, 3709–3712. [Google Scholar]
- Wei, W.; Li, Z.-P.; Zhu, T.; Fung, H.-Y.; Wong, T.-L.; Wen, X.; Ma, D.-L.; Leung, C.-H.; Han, Q.-B. Anti-fatigue effects of the unique polysaccharide marker of Dendrobium officinale on BALB/c Mice. Molecules 2017, 22, 155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, H.-W.; Gao, H.; Han, H.-Y.; Wang, N.-L.; Wu, H.-M.; Yao, X.-S.; Wang, Z. Nine new sesquiterpenes from Dendrobium nobile. Helv. Chim. Acta 2007, 90, 2386–2394. [Google Scholar] [CrossRef]
- Lu, T.L.; Han, C.K.; Chang, Y.S.; Lu, T.J.; Huang, H.C.; Bao, B.Y.; Wu, H.Y.; Huang, C.H.; Li, C.Y.; Wu, T.S. Denbinobin, a phenanthrene from Dendrobium nobile, impairs prostate cancer migration by inhibiting Rac1 activity. Am. J. Chin. Med. 2014, 42, 1539–1554. [Google Scholar] [CrossRef]
- Xu, J.; Guan, J.; Chen, X.J.; Zhao, J.; Li, S.P. Comparison of contents of polysaccharides and alkaloids in Dendrobium from different harvest time. West China J. Pharm. Sci. 2014, 29, 288–291. [Google Scholar]
- Wei, W.; Feng, L.; Bao, W.R.; Ma, C.H.; Nie, S.P.; Han, Q.B. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J. Agric. Food Chem. 2016, 64, 881–889. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Wu, K.; Teixeira da Silva, J.A.; Zeng, S.; Zhang, X.; Yu, Z.; Xia, H.; Duan, J. Transcriptome analysis of Dendrobium officinale and its application to the identification of genes associated with polysaccharide synthesis. Front. Plant Sci. 2016, 7, 5. [Google Scholar] [CrossRef]
- Onaka, T.; Kamata, S.; Maeda, T.; Kawazoe, Y.; Natsume, M.; Okamoto, T.; Uchimaru, F.; Shimizu, M. The structure of dendrobine. Chem. Pharm. Bull. 1964, 4, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Ren, J.W. The progress of study on dendrobine. J. Shandong Agric. Univ. 2015, 46. [Google Scholar]
- Guo, X.; Li, Y.; Li, C.; Luo, H.; Wang, L.; Qian, J.; Luo, X.; Xiang, L.; Song, J.; Sun, C.; et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene 2013, 527, 131–138. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhang, J.; Liu, X.; Zeng, S.; Wu, K.; Yu, Z.; Wang, X.; Teixeira da Silva, J.A.; Lin, Z.; Duan, J. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol. Biol. 2015, 88, 219–231. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, D.; Xue, J.; Lu, J.; Feng, S.; Shen, C.; Wang, H. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci. Rep. 2016, 6, 18864. [Google Scholar] [CrossRef]
- Shen, C.; Guo, H.; Chen, H.; Shi, Y.; Meng, Y.; Lu, J.; Feng, S.; Wang, H. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci. Rep. 2017, 7, 187. [Google Scholar] [CrossRef]
- Li, Q.; Ding, G.; Li, B.; Guo, S.X. Transcriptome analysis of genes involved in dendrobine biosynthesis in Dendrobium nobile Lindl. infected with Mycorrhizal fungus MF23 (Mycena sp.). Sci. Rep. 2017, 7, 316. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Lyu, P.; Chen, L.; Shen, C.; Sun, C. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. J. Plant Res. 2019, 132, 419–429. [Google Scholar] [CrossRef]
- Jin, Q.; Jiao, C.; Sun, S.; Song, C.; Cai, Y.; Lin, Y.; Fan, H.; Zhu, Y. Metabolic analysis of medicinal Dendrobium officinale and Dendrobium huoshanense during different growth years. PLoS ONE 2016, 11, e0146607. [Google Scholar] [CrossRef]
- Kamisoglu, K.; Acevedo, A.; Almon, R.R.; Coyle, S.; Corbett, S.; Dubois, D.C.; Nguyen, T.T.; Jusko, W.J.; Androulakis, I.P. Understanding physiology in the continuum: Integration of information from multiple-omics levels. Front. Pharm. 2017, 8, 91. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Liu, J.; Liang, J.; Si, J.; Wu, S. Dendrobium officinale leaves as a new antioxidant source. J. Funct. Foods 2017, 37, 400–415. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al. Rewiring of the fruit metabolome in tomato breeding. Cell 2018, 172, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ying, H.; Pingcuo, G.; Wang, S.; Zhao, F.; Cui, Y.; Shi, J.; Zeng, H.; Zeng, X. Identification of potential metabolites mediating bird’s selective feeding on Prunus mira flowers. Biomed Res. Int. 2019, 2019, 1395480. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zeng, X.; Yang, Q.; Xu, Q.; Wang, Y.; Jabu, D.; Sang, Z.; Tashi, N. Gene coexpression network analysis combined with metabonomics reveals the resistance responses to powdery mildew in Tibetan hulless barley. Sci. Rep. 2018, 8, 14928. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zeng, X.; Shi, J.; Xu, Q.; Wang, Y.; Jabu, D.; Sang, Z.; Nyima, T. Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetan hulless barley. Biomed Res. Int. 2018, 2018, 9415409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, X.; Xu, Q.; Mei, X.; Yuan, H.; Jiabu, D.; Sang, Z.; Nyima, T. Metabolite profiling in two contrasting Tibetan hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers. Aob Plants 2019, 11, plz021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhao, W.M.; Qian, Z.M.; Guan, J.; Li, S.P. Fast determination of five components of coumarin, alkaloids and bibenzyls in Dendrobium spp. using pressurized liquid extraction and ultra-performance liquid chromatography. J. Sep. Sci. 2010, 33, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, Q.B.; Li, S.L.; Chen, X.J.; Wang, X.N.; Zhao, Z.Z.; Chen, H.B. Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem. Rev. 2013, 12, 341–367. [Google Scholar] [CrossRef]
- Dresler, S.; Szymczak, G.; Wojcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017, 55, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.-Y.; Zhang, J.-Y.; Huang, Y.-C.; Zhou, C.-J.; Wang, Y.-W.; Zhou, C.-H.; Xing, S.-P.; Shun, Q.-S.; Xu, Y.-X.; Wei, G. Identification of flavonoids in Dendrobium huoshanense and comparison with those in allied species of Dendrobium by TLC, HPLC and HPLC coupled with electrospray ionization multi©\stage tandem MS analyses. J. Sep. Sci. 2019, 42, 1088–1104. [Google Scholar] [CrossRef]
- Zhang, X.; Si, J.; Wu, L.; Guo, Y.; Yu, J.; Wang, L. Field experiment of F_1 generation and superior families selection of Dendrobium officinale. China J. Chin. Mater. Med. 2013, 38, 3861–3865. [Google Scholar]
- Liu, Z.; Guo, Y.; Liu, J.; Si, J.; Wu, L.; Zhang, X. Effect of strains and parts on amino acids of Dendrobium officinale. China J. Chin. Mater. Med. 2015, 40, 1468–1472. [Google Scholar]
- Dixon, R.A.; Strack, D. Phytochemistry meets genome analysis, and beyond. Phytochemistry 2003, 62, 815–816. [Google Scholar] [CrossRef]
- Osorio, S.; Vallarino, J.G. Metabolite profiling in plants. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2017. [Google Scholar]
- Jones, O.A.H.; Hugel, H.M. Bridging the gap: basic metabolomics methods for natural product chemistry. In Metabolomics Tools for Natural Product Discovery. Methods in Molecular Biology (Methods and Protocols); Roessner, U., Dias, D., Eds.; Humana Press: Totowa, NJ, USA, 2013; Volume 1055. [Google Scholar]
- Kurita, K.L.; Glassey, E.; Linington, R.G. Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc. Natl. Acad. Sci. USA 2015, 112, 11999–12004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nothias, L.F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Chen, J.; Wang, C.; Zou, L.; Chen, S.; Shi, J.; Mei, Y.; Wei, L.; Liu, X. Quality evaluation of Ophiopogonis radix from two different producing areas. Molecules 2019, 24, 3220. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Chen, H.; Chen, S.; Liu, Y. Analysis of flavonoid metabolites in citrus peels (Citrus reticulata “Dahongpao”) using UPLC-ESI-MS/MS. Molecules 2019, 24, 2680. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, C.; Xu, C.; Sun, J.; Grierson, D.; Zhang, B.; Chen, K. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules 2019, 24, 2564. [Google Scholar] [CrossRef]
- Cai, G.X.; Li, J.; Li, S.X.; Huang, D.; Zhao, X.B. Applications of Dendrobium officinale in ancient and modern times. J. Tradit. Chin. Med. Univ. Hunan 2011, 31, 77–81. [Google Scholar]
- Tang, H.; Zhao, T.; Sheng, Y.; Zheng, T.; Fu, L.; Zhang, Y. Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evid. Based Complement. Altern. Med. 2017, 2017, 7436259. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef] [PubMed]
- Hoefgen, R.; Nikiforova, V.J. Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol. Plant. 2007, 132, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Cho, K.-S.; Sohn, H.; Ha, I.J.; Hong, S.; Lee, H.; Kim, Y.; Nam, M.H. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J. Exp. Bot. 2016, 67, 1519–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedelsheimer, C.; Lisec, J.; Czedik-Eysenberg, A.; Sulpice, R.; Flis, A.; Grieder, C.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 8872–8877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Number of Compounds | Class | Number of Compounds |
---|---|---|---|
Organic Acids | 72 | Benzoic acid derivatives | 15 |
Amino Acid Derivatives | 65 | Quinates and their derivatives | 14 |
Nucleotides and Their Derivates | 56 | Coumarins | 12 |
Flavones | 46 | Indole derivatives | 11 |
Hydroxycinnamoyl Derivatives | 37 | Catechin derivatives | 8 |
Lipids_Glycerophospholipids | 33 | Alcohols and polyols | 7 |
Amino Acids | 30 | Alkaloids | 7 |
Flavone C-Glycosides | 30 | Anthocyanins | 7 |
Others | 30 | Cholines | 7 |
Flavonols | 24 | Isoflavones | 7 |
Lipids_Fatty Acids | 22 | Tryptamine derivatives | 7 |
Carbohydrates | 20 | Nicotinic acid derivatives | 4 |
Phenolamides | 19 | Pyridine derivatives | 3 |
Lipids_Glycerolipids | 18 | Flavonolignans | 2 |
Vitamins | 17 | Terpenoids | 2 |
Flavanones | 16 | Proanthocyanidins | 1 |
Compounds | Class | Leaves (Ion Abundance) | Stems (Ion Abundance) | Fold Change (FC) | Log2 FC | Up/Down |
---|---|---|---|---|---|---|
Dl-2-Aminooctanoic Acid | Organic acids | 6.17 × 104 | 5.42 × 105 | 8.77 | 3.13 | up |
Cyanidin O-malonyl-malonylhexoside | Anthocyanins | 3.77 × 103 | 2.99 × 104 | 7.93 | 2.99 | up |
Methylglutaric Acid | Organic acids | 8.88 × 103 | 6.93 × 104 | 7.80 | 2.96 | up |
2-Hydroxy-2-methyl butyric Acid | Organic acids | 2.48 × 104 | 1.79 × 105 | 7.20 | 2.85 | up |
5-Aminolevulinate | Organic acids | 9.40 × 105 | 6.25 × 106 | 6.66 | 2.73 | up |
Phenylacetyl-l-glutamine | Amino acid derivatives | 2.54 × 104 | 1.57 × 105 | 6.20 | 2.63 | up |
4-Aminoindole | Indole derivatives | 1.34 × 105 | 8.24 × 105 | 6.13 | 2.62 | up |
l-Glutamine | Amino acids | 1.20 × 106 | 7.34 × 106 | 6.12 | 2.61 | up |
8-Methyl-2-oxo-4-phenyl-2H-chromen-7-yl 4-(hexyloxy)benzoate | Benzoic acid derivatives | 2.58 × 106 | 1.43 × 107 | 5.55 | 2.47 | up |
5-methoxyindole-3-carbaldehyde | Indole derivatives | 2.92 × 104 | 1.61 × 105 | 5.52 | 2.46 | up |
Biochanin A | Isoflavones | 5.63 × 104 | 6.97 × 103 | 1.24 × 10−1 | −3.01 | down |
Spermidine | Phenolamides | 2.20 × 107 | 2.65 × 106 | 1.20 × 10−1 | −3.06 | down |
Neochlorogenic acid (5-O-Caffeoylquinic acid) | Quinates and their derivatives | 2.40 × 105 | 2.71 × 104 | 1.13 × 10−1 | −3.14 | down |
MGMG (18:2) isomer2 | Lipids_Glycerolipids | 2.82 × 105 | 3.11 × 104 | 1.10 × 10−1 | −3.18 | down |
Naringenin chalcone | Flavanones | 5.53 × 105 | 4.31 × 104 | 7.80 × 10−2 | −3.68 | down |
l-Asparagine | Amino acids | 1.96 × 107 | 1.52 × 106 | 7.74 × 10−2 | −3.69 | down |
Butin | Flavones | 5.64 × 105 | 3.93 × 104 | 6.97 × 10−2 | −3.84 | down |
l(+)-Ornithine | Amino acids | 2.28 × 107 | 1.54 × 106 | 6.75 × 10−2 | −3.89 | down |
Eriodictyol O-malonylhexoside | Flavanones | 1.55 × 105 | 9.13 × 103 | 5.90 × 10−2 | −4.08 | down |
2’-Deoxyinosine-5’-monophosphate | Nucleotides and their derivates | 1.11 × 107 | 1.26 × 105 | 1.14 × 10−2 | −6.45 | down |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Ji, Y.; Li, S.; Lu, L.; Tian, M.; Yang, W.; Li, H. Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo. Metabolites 2019, 9, 215. https://doi.org/10.3390/metabo9100215
Cao H, Ji Y, Li S, Lu L, Tian M, Yang W, Li H. Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo. Metabolites. 2019; 9(10):215. https://doi.org/10.3390/metabo9100215
Chicago/Turabian StyleCao, Hua, Yulu Ji, Shenchong Li, Lin Lu, Min Tian, Wei Yang, and Han Li. 2019. "Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo" Metabolites 9, no. 10: 215. https://doi.org/10.3390/metabo9100215
APA StyleCao, H., Ji, Y., Li, S., Lu, L., Tian, M., Yang, W., & Li, H. (2019). Extensive Metabolic Profiles of Leaves and Stems from the Medicinal Plant Dendrobium officinale Kimura et Migo. Metabolites, 9(10), 215. https://doi.org/10.3390/metabo9100215