The Geometric Proca–Weyl Field as a Candidate for Dark Matter
Abstract
:1. Introduction
2. The Weyl Unified Theory
3. The Weyl Invariant Gravity Theory
3.1. The Field Equations
3.2. The Original Proca’s Theory
4. The Geometric Proca–Weyl Field as a Candidate for Dark Matter
5. A Particular Solution: The Bose–Einstein Condensate
6. The Energy–Momentum Tensor for the Particular Solution
- Energy density of the fluid:
- Isotropic pressure of the fluid: where
- Energy-flux vector:
- Anisotropic pressure and stress tensor:
6.1. The Energy Density
6.2. The Isotropic Pressure
6.3. The Energy Flux, the Shear Stress and the Anisotropic Pressure
6.4. Mass and Abundance of the Proca–Weyl Particles
7. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDM | Cold Dark Matter |
WIMPS | Weakly Interacting Massive Particles |
FRW | Friedmann–Lemaître–Robertson–Walker (cosmological model) |
WKB | Wentzel–Kramers–Brillouin (approximation) |
CMB | Cosmic Microwave Background |
References
- Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 1936, 7, 347–353. [Google Scholar] [CrossRef]
- Greiner, W.; Reinhardt, J. Field Quantization; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Griffiths, D.J. Introduction to Elementary Particles, 1st ed.; Wiley-VCH: Hoboken, NJ, USA, 1987; ISBN 978-0471603863. [Google Scholar]
- Carroll, S. Dark Matter, Dark Energy: The Dark Side of the Universe; The Teaching Company, LLC: Chantilly, VA, USA, 2007; ISBN 978-1598033519. [Google Scholar]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Burikham, P.; Harko, T.; Pimsamarn, K.; Shahidi, S. Dark Matter as a Weyl Geometric Effect. Phys. Rev. D 2023, 107, 064008. [Google Scholar] [CrossRef]
- Cuzinatto, R.R.; de Morais, E.M.; Medeiros, L.G.; Naldoni de Souza, C.; Pimentel, B.M. De Broglie-Proca and Bopp-Podolsky Massive Photon Gases in Cosmology. Europhys. Lett. 2017, 118, 19001. [Google Scholar] [CrossRef]
- Gómez, L.G.; Rodríguez, Y. Coupled Multi-Proca Vector Dark Energy. Phys. Dark Universe 2021, 31, 100759. [Google Scholar] [CrossRef]
- Jockel, C.; Sagunski, L. Fermion Proca Stars: Vector-Dark-Matter-Admixed Neutron Stars. Particles 2024, 7, 52–79. [Google Scholar] [CrossRef]
- Brito, R.; Cardoso, V.; Herdeiro, C.A.R.; Radu, E. Proca Stars: Gravitating Bose–Einstein Condensates of Massive Spin 1 Particles. Phys. Lett. B 2016, 752, 291–295. [Google Scholar] [CrossRef]
- Loeb, A.; Weiner, N. Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Phys. Rev. Lett. 2011, 106, 171–302. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.W.; Wang, C. An Einstein-Proca-fluid Model for Dark Matter Gravitational Interactions. Nucl. Phys. Proceed. Suppl. 1997, 57, 259–262. [Google Scholar] [CrossRef]
- Barker, W.; Zell, S. Einstein-Proca Theory from the Einstein-Cartan Formulation. Phys. Rev. D 2024, 109, 024007. [Google Scholar] [CrossRef]
- Holdom, B. Two U(1)’s and Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Fayet, P. Extra U(1)’s and New Forces. Nucl. Phys. B 1990, 347, 743–768. [Google Scholar] [CrossRef]
- Fabbrichesi, M.; Gabrielli, E.; Lanfranchi, G. The Physics of the Dark Photon: A Primer; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Graham, P.W.; Mardon, J.; Rajendran, S. Vector Dark Matter from Inflationary Fluctuations. Phys. Rev. D 2016, 93, 103520. [Google Scholar] [CrossRef]
- Agrawal, P.; Kitajima, N.; Reece, M.; Sekiguchi, T.; Takahashi, F. Relic Abundance of Dark Photon Dark Matter. Phys. Lett. B 2020, 801, 135136. [Google Scholar] [CrossRef]
- Sanomiya, T.A.T.; Lobo, I.P.; Formiga, J.B.; Dahia, F.; Romero, C. Invariant Approach to Weyl’s Unified Field Theory. Phys. Rev. D 2020, 102, 124031. [Google Scholar] [CrossRef]
- Tauber, G.E. Proca Field in Curved Spacetime. J. Math. Phys. 1968, 10, 633. [Google Scholar] [CrossRef]
- Changsheng, S.; Liu, Z. Quantum Proca Fields in Expanding Universes. Int. J. Theor. Phys. 2005, 44, 303. [Google Scholar]
- Ford, L.H. Inflation Driven by a Vector Field. Phys. Rev. D 1989, 40, 967. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.; Dahia, F.; Romero, C. On the Propagation of Gravitational Waves in the Weyl Invariant Theory of Gravity. Universe 2024, 10, 361. [Google Scholar] [CrossRef]
- Weyl, H. Gravitation und Elektrizität. In Sitzungsberichte der Preussischen Akademie der Wissenschaften; Springer Spektrum: Berlin/Heidelberg, Germany, 1918; p. 465. [Google Scholar]
- O’Raifeartaigh, L. The Dawning of Gauge Theories; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Adler, R.; Bazin, M.; Schiffer, M. Introduction to General Relativity; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Romero, C.; Lima, R.G.; Sanomiya, T.A.T. One Hundred Years of Weyl’s (Unfinished) Unified Field Theory. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 2019, 66, 180–185. [Google Scholar] [CrossRef]
- Lobo, I.P.; Romero, C. Experimental Constraints on the Second Clock Effect. Phys. Lett. B 2018, 783, 306–310. [Google Scholar] [CrossRef]
- Álvarez, E.; González-Martín, S. Weyl gravity revisited. J. Cosmology Astropart. Phys. 2017, 2017, 011. [Google Scholar] [CrossRef]
- Gomes, C.; Bertolami, O. Nonminimally Coupled Weyl Gravity. Class. Quant. Grav. 2019, 36, 235016. [Google Scholar] [CrossRef]
- Kouniatalis, G.; Saridakis, E.N. Modified Gravity from Weyl Connection and the f(R,A) Extension. arXiv 2024, arXiv:2411.14380. [Google Scholar]
- Mohammedi, N. A Note on Weyl Gauge Symmetry in Gravity. Class. Quant. Grav. 2024, 41, 19. [Google Scholar] [CrossRef]
- Gilbert, G.; Aspect, A.; Fabre, C. Introduction to Quantum Optics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, M.; Dahia, F.; Romero, C. The Geometric Proca–Weyl Field as a Candidate for Dark Matter. Universe 2025, 11, 34. https://doi.org/10.3390/universe11020034
Duarte M, Dahia F, Romero C. The Geometric Proca–Weyl Field as a Candidate for Dark Matter. Universe. 2025; 11(2):34. https://doi.org/10.3390/universe11020034
Chicago/Turabian StyleDuarte, Mauro, Fábio Dahia, and Carlos Romero. 2025. "The Geometric Proca–Weyl Field as a Candidate for Dark Matter" Universe 11, no. 2: 34. https://doi.org/10.3390/universe11020034
APA StyleDuarte, M., Dahia, F., & Romero, C. (2025). The Geometric Proca–Weyl Field as a Candidate for Dark Matter. Universe, 11(2), 34. https://doi.org/10.3390/universe11020034