Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects
Abstract
:1. Introduction
2. Continuum Model Description of Electronic Excitations in Monolayer Atomic Crystals with a Disclination
3. Self-Adjointness and Choice of Boundary Conditions
4. Quantum Effects in the Ground State of Electronic Excitations in Nanocones
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abrikosov, A.A. On the Magnetic Properties of Superconductors of the Second Group. J. Exp. Theor. Phys. 1957, 5, 1174–1182. [Google Scholar]
- Nielsen, H.B.; Olesen, P. Vortex-line models for dual strings. Nucl. Phys. B 1973, 61, 45–61. [Google Scholar] [CrossRef]
- Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and Other Topological Defects; Cambridge University Press: Cambridge, UK, 2000; p. 517. [Google Scholar]
- Hindmarsh, M.B.; Kibble, T.W.B. Cosmic strings. Rep. Prog. Phys. 1995, 58, 477–562. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Nat. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and One-Dimensinonal Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [PubMed]
- Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Adv. Phys. 2014, 63, 1–76. [Google Scholar] [CrossRef]
- Battye, R.A.; Garbrecht, B.; Moss, A.; Stoica, H. Constraints on Brane Inflation and Cosmic Strings. J. Cosmol. Astropart. Phys. 2008, 2008, 020. [Google Scholar] [CrossRef]
- Heiberg-Andersen, H. Carbon nanonones. In Handbook of Theoretical and Computational Nanotechnology; Rieth, M., Schommers, W., Eds.; American Scientific Publishers: Valencia, CA, USA, 2006; Volume 8, pp. 507–517. [Google Scholar]
- Sitenko, Y.A.; Vlasii, N.D. Electronic properties of graphene with a topological defect. Nucl. Phys. B 2007, 787, 241–259. [Google Scholar] [CrossRef]
- Sitenko, Y.A.; Vlasii, N.D. Vacuum polarization effects on graphitic nanocones. J. Phys. Conf. Ser. 2008, 129, 012008. [Google Scholar] [CrossRef]
- Sitenko, Y.A.; Vlasii, N.D. Vacuum polarization in graphene with a topological defect. Low Temp. Phys. 2008, 34, 826–833. [Google Scholar] [CrossRef]
- Neumann, J.V. Mathematische Grundlagen der Quantummechanik; Springer: Berlin, Germany, 1932. [Google Scholar]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness; Academic Press: Cambridge, MA, USA, 1975; p. 361. [Google Scholar]
- Johnson, K. The M.I.T. Bag Model. Acta Phys. Pol. B 1975, 6, 865–919. [Google Scholar]
- Vozmediano, M.A.H.; Katsnelson, M.I.; Guinea, F. Gauge fields in grahene. Phys. Rep. 2010, 496, 109–148. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitenko, Y.A.; Gorkavenko, V.M. Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects. Universe 2018, 4, 23. https://doi.org/10.3390/universe4020023
Sitenko YA, Gorkavenko VM. Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects. Universe. 2018; 4(2):23. https://doi.org/10.3390/universe4020023
Chicago/Turabian StyleSitenko, Yurii A., and Volodymyr M. Gorkavenko. 2018. "Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects" Universe 4, no. 2: 23. https://doi.org/10.3390/universe4020023
APA StyleSitenko, Y. A., & Gorkavenko, V. M. (2018). Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects. Universe, 4(2), 23. https://doi.org/10.3390/universe4020023