Geometric Aspects and Some Uses of Deformed Models of Thermostatistics
Abstract
:1. Introduction
2. Deformed Oscillators (DOs) and the Structure Function of Deformation
3. Two and -Particle Correlations in Some Deformed Bose Gas Models
4. Distributions and Correlations in -Bose Gas Model: Exact Results
5. Thermodynamics of -Bose Gas Model
6. Geometric Approach to -Bose Gas Model Thermodynamics
7. Application for Modeling Dark Matter
- (1)
- In the case of -BGM, the quantum–statistics interaction between -bosons is attractive and, moreover, the deformation enhances it relative to usual bosons. This stems e.g., from the difference of the second virial coefficients of -BGM [37] and the Bose one that reads: We see the enhanced quantum attraction, i.e., -bosons are even “more bosonic” than just bosons. This enforces the status of strongly coupled system of (quasi) particles composing dark matter, a property whose role was emphasized in [46]. Moreover, we have at our disposal the deformation parameter as the control parameter.
- (2)
- Though unlimited growth of the parameter (expressing the strength of quantum-statistical attraction) could cause a collapse of the system under study, it is possible to find certain bound for the set of values of , which prevents [14] negative pressure and allows avoiding the danger of collapse.
- (3)
- Using dimensionless factor (with the s-wave scattering length a, , and gravit. constant G), we have the relations for total mass of DM halo and its “radius”:
8. Composite Bosons (Quasi-Bosons) as Deformed Oscillators
Intra-Quasibosonic Entanglement and Deformed Oscillators
9. Two-Particle Correlation Function Intercept in -DBGM
Confronting the Latter Result in -DBGM with Experimental Data
10. Discussion
Acknowledgments
Conflicts of Interest
References
- Martin-Delgado, M.A. Planck distribution for a q-boson gas. J. Phys. A Math. Gen. 1991, 24, L1285–L1292. [Google Scholar] [CrossRef]
- Manko, V.I.; Marmo, G.; Solimeno, S.; Zaccaria, F. Correlation functions of quantum q-oscillators. Phys. Lett. A 1993, 176, 173–175. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Felipe, M.; Gonzalez, R.; Montonen, C. Statistics of q-oscillators, quons and relations to fractional statistics. J. Phys. A Math. Gen. 1993, 26, 4017–4033. [Google Scholar] [CrossRef]
- Song, H.S.; Ding, S.X.; An, I. Statistical-mechanical properties of the q-oscillator system. J. Phys. A Math. Gen. 1993, 26, 5197–5205. [Google Scholar] [CrossRef]
- Su, G.; Ge, M.L. Thermodynamic characteristics of the q-deformed ideal Bose gas. Phys. Lett. A 1993, 173, 17–20. [Google Scholar]
- Tuszyński, J.A.; Rubin, J.L.; Meyer, J.; Kibler, M. Statistical mechanics of a q-deformed boson gas. Phys. Lett. A 1993, 175, 173–177. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M. Statistical mechanics of qp-bosons in D-dimensions. Phys. Lett. A 1995, 206, 13–17. [Google Scholar] [CrossRef]
- Rego-Monteiro, M.; Rodrigues, L.M.C.S.; Wulck, S. q-deformation and instability of the phonon spectrum in 4He. Phys. A 1998, 259, 245–260. [Google Scholar] [CrossRef]
- Zeng, Q.; Cheng, Z.; Yuan, J. Thermostatistical properties of a q-deformed bosonic exciton gas. Eur. Phys. J. B 2011, 81, 275–281. [Google Scholar] [CrossRef]
- Strominger, A. Black hole statistics. Phys. Rev. Lett. 1993, 71, 3397–3399. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.J. Holographic foam, dark energy and infinite statistics. Phys. Lett. B 2007, 657, 10–14. [Google Scholar] [CrossRef]
- Ebadi, Z.; Mirza, B.; Mohammadzadeh, V. Infinite statistics condensate as a model of dark matter. J. Cosmol. Astropart. Phys. 2013, 2013, 57. [Google Scholar] [CrossRef]
- Dil, E. Cosmology of q-deformed dark matter and dark energy. Phys. Dark Univ. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Kachurik, I.I.; Khelashvili, M.V.; Nazarenko, A.V. The use of μ-Bose gas model for effective modeling of dark matter. arXiv, 2007; arXiv:1709.05931. [Google Scholar]
- Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. Pion interferometry in Au+Au and Cu+Cu collisions at = 62.4 and 200 GeV. Phys. Rev. C 2009, 80, 024905. [Google Scholar] [CrossRef]
- Anchishkin, D.V.; Gavrilik, A.M.; Iorgov, N.Z. Two-particle correlations from the q-Boson viewpoint. Eur. J. Phys. A 2000, 7, 229–238. [Google Scholar] [CrossRef]
- Anchishkin, D.V.; Gavrilik, A.M.; Iorgov, N.Z. q-Boson approach to multiparticle correlations. Mod. Phys. Lett. A 2000, 15, 1637–1646. [Google Scholar] [CrossRef]
- Gavrilik, A.M. Quantum algebras in phenomenological description of particle properties. Nucl. Phys. B Proc. Suppl. 2001, 102–103, 298–305. [Google Scholar] [CrossRef]
- Adamska, L.V.; Gavrilik, A.M. Multi-particle correlations in q, p-Bose gas model. J. Phys. A 2004, 37, 4787–4796. [Google Scholar] [CrossRef]
- Anchishkin, D.V.; Gavrilik, A.M.; Panitkin, S.Y. Transverse Momentum Dependence of Intercept Parameter λ of Two-Pion (-Kaon) Correlation Functions in q-Bose Gas Model. Ukr. Phys. J. 2004, 49, 935–939. [Google Scholar]
- Zhang, Q.; Padula, S. Q-boson interferometry and generalized Wigner function. Phys. Rev. C 2004, 69, 024907. [Google Scholar] [CrossRef]
- Gavrilik, A.M. Combined analysis of two-and three-particle correlations in q, p-Bose gas model. Symmetry Integrabil. Geom. Methods Appl. 2006, 2, 074. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Mishchenko, Y.A. Correlation function intercepts for , q-deformed Bose gas model implying effective accounting for interaction and compositeness of particles. Nucl. Phys. B 2015, 891, 466–481. [Google Scholar] [CrossRef]
- Arik, M.; Coon, D.D. Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 1976, 17, 524–527. [Google Scholar] [CrossRef]
- Biedenharn, L.C. The quantum group SUq(2) and a q-analogue of the boson operators. J. Phys. A Math. Gen. 1989, 22, L873–L878. [Google Scholar] [CrossRef]
- Macfarlane, A.J. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. Phys. A Math. Gen. 1989, 22, 4581–4588. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Rebesh, A.P. Plethora of q-oscillators possessing pairwise energy level degeneracy. Mod. Phys. Lett. A 2008, 23, 921–932. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Rebesh, A.P. Polynomially deformed oscillators as k-bonacci oscillators. J. Phys. A Math. Theor. 2010, 43, 095203. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Kachurik, I.I.; Rebesh, A.P. Quasi-Fibonacci oscillators. J. Phys. A Math. Theor. 2010, 43, 245204. [Google Scholar] [CrossRef]
- Jannussis, A. New deformed Heisenberg oscillator. J. Phys. A Math. Theor. 1993, 26, L233–L238. [Google Scholar] [CrossRef]
- Bonatsos, D.; Daskaloyannis, C. Generalized deformed oscillator for the pairing correlations in a single-j shell. Phys. Lett. B 1992, 278, 1–6. [Google Scholar] [CrossRef]
- Chapman, S.; Heinz, U. HBT correlators-current formalism vs. Wigner function formulation. Phys. Lett. B 1994, 340, 250–253. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Rebesh, A.P. Intercepts of the momentum correlation functions in the μ-Bose gas model and their asymptotics. Eur. Phys. J. A 2011, 47, 55. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Mishchenko, Y.A. Exact expressions for the intercepts of r-particle momentum correlation functions in μ-Bose gas model. Phys. Lett. A 2012, 376, 2484–2489. [Google Scholar] [CrossRef]
- Bateman, H.; Erdelyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume I, p. 27. [Google Scholar]
- Rebesh, A.P.; Gavrilik, A.M.; Kachurik, I.I. Elements of μ-calculus and thermodynamics of μ-Bose gas model. Ukr. J. Phys. 2013, 58, 1182–1191. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Rebesh, A.P. Deformed gas of p, q-dosons: Virial expansion and virial coefficients. Mod. Phys. Lett. B 2012, 25, 1150030. [Google Scholar] [CrossRef]
- Algin, A. Bose-Einstein condensation in a gas of Fibonacci oscillators. J. Stat. Mech. Theory Exp. 2008, 2008, P10009. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Narayana Swamy, P.J. An interacting particles system revisited in the framework of the q-deformed algebra. J. Phys. A 2008, 41, 275211. [Google Scholar] [CrossRef]
- Ruppeiner, M. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608–1613. [Google Scholar] [CrossRef]
- Janyszek, H.; Mrugala, R. Geometrical structure of the state space in classical statistical and phenomenological thermodynamics. Rep. Math. Phys. 1989, 27, 145–159. [Google Scholar] [CrossRef]
- Ubriaco, M. Scalar curvature of systems with fractal distribution functions. Phys. Lett. A 2012, 376, 2899–2902. [Google Scholar] [CrossRef]
- Sin, S.J. Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D 1994, 50, 3650–3655. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T. Can dark matter be a Bose-Einstein condensate? J. Cosmol. Astropart. Phys. 2007, 2007, 025. [Google Scholar] [CrossRef]
- Harko, T. Bose-Einstein condensation of dark matter solves the core/cusp problem. J. Cosmol. Astropart. Phys. 2011, 2011, 022. [Google Scholar]
- Suarez, A.; Robles, V.H.; Matos, T. A review on the scalar field/Bose-Einstein condensate dark matter model. Astrophys. Space Sci. Proc. 2013, 38, 107–142. [Google Scholar]
- Guzman, S.F.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J. Stability of BEC galactic dark matter halos. J. Cosmol. Astropart. Phys. 2013, 2013, 034. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Mishchenko, Y.A. Entanglement in composite bosons realized by deformed oscillators. Phys. Lett. A 2012, 376, 1596–1600. [Google Scholar] [CrossRef]
- Avancini, S.S.; Krein, G. Many-body problems with composite particles and q-Heisenberg algebras. J. Phys. A Math. Gen. 1995, 28, 685–692. [Google Scholar] [CrossRef]
- Gavrilik, A.M.; Kachurik, I.I.; Mishchenko, Y.A. Quasibosons composed of two q-fermions: Realization by deformed oscillators. J. Phys. A Math. Theor. 2011, 44, 475303. [Google Scholar] [CrossRef]
- Adare, A.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Al-Ta’ani, H.; Angerami, A.; Aoki, K.; et al. Lévy-stable two-pion Bose-Einstein correlations in = 200 GeV Au+Au collisions. arXiv, 2017; arXiv:1709.05649. [Google Scholar]
- Csanád, M. Lévy femtoscopy with PHENIX at RHIC. arXiv, 2017; arXiv:1711.0557. [Google Scholar]
Case | Intercept | Asympt. at |
---|---|---|
AC | ||
BM | , | |
TD |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilik, A. Geometric Aspects and Some Uses of Deformed Models of Thermostatistics. Universe 2018, 4, 33. https://doi.org/10.3390/universe4020033
Gavrilik A. Geometric Aspects and Some Uses of Deformed Models of Thermostatistics. Universe. 2018; 4(2):33. https://doi.org/10.3390/universe4020033
Chicago/Turabian StyleGavrilik, Alexandre. 2018. "Geometric Aspects and Some Uses of Deformed Models of Thermostatistics" Universe 4, no. 2: 33. https://doi.org/10.3390/universe4020033
APA StyleGavrilik, A. (2018). Geometric Aspects and Some Uses of Deformed Models of Thermostatistics. Universe, 4(2), 33. https://doi.org/10.3390/universe4020033