Noncommutative Corrections to the Minimal Surface Areas of the Pure AdS Spacetime and Schwarzschild-AdS Black Hole
Abstract
:1. Introduction
- How to encode [14] the bulk information from the field theory on the boundary when the information seems to be non-local?
2. The Minimal Surface Area of the Pure AdS Spacetime with Noncommutativity
3. The Minimal Surface Area of the Schwarzschild-AdS Black Hole with Noncommutativity
4. Thermodynamic Property of Holographic Entanglement Entropy with Noncommutativity
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | The entanglement entropy of subsystem A is defined as the von Neumann entropy when the degrees of freedom in subsystem A’s complement, subsystem B, are traced out. It describes how the two subsystems A and B are entangled or correlated each other. |
2 | A closely related quantity is the black hole entropy which is proportional to the horizon area according to the Bekenstein–Hawking formula. One can refer to Refs. [6,7,8] for related discussions about the black hole entropy from the viewpoint of quantum field theory. The entanglement entropy computed from the RT formula is equivalent to the black hole entropy in certain cases, such as in the AdS black hole [4] and in the black hole on a brane [9]. |
3 | For instance, we can give another tetrad which will give rise to a complex noncommutative correction to minimal surface areas,
It is equivalent to Equation (4) in the commutative spacetime. |
4 | For the unphysical tetrad mentioned above in footnote 3, the corresponding takes the form
|
5 | According to the RT formula mentioned in Introduction, the undeformed holographic entanglement entropy () corresponds to the entanglement entropy of the boundary field between disk A and its complementary region B because the spacetime maintains the rotating symmetry. |
6 |
References
- Maldacena, J.M. The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999, 38, 1113. [Google Scholar] [CrossRef] [Green Version]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Takayanagi, T. Aspects of holographic entanglement entropy. J. High Energy Phys. 2006, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Fursaev, D.V. Thermal fields, entropy, and black holes. Class. Quant. Grav. 1998, 15, 2041. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L.; Uglum, J. Black hole entropy in canonical quantum gravity and superstring theory. Phys. Rev. D 1994, 50, 2700. [Google Scholar] [CrossRef] [Green Version]
- Callan, C.; Wilczek, F. On geometric entropy. Phys. Lett. B 1994, 333, 55. [Google Scholar] [CrossRef] [Green Version]
- Emparan, R. Black hole entropy as entanglement entropy: A holographic derivation. J. High Energy Phys. 2006, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Lewkowycz, A.; Maldacena, J. Generalized gravitational entropy. J. High Energy Phys. 2013, 8, 90. [Google Scholar] [CrossRef]
- Dong, X. The gravity dual of Renyi entropy. Nat. Commun. 2016, 7, 12472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casini, H.; Huerta, M.; Myers, R.C. Towards a derivation of holographic entanglement entropy. J. High Energy Phys. 2011, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Hubeny, V.E.; Rangamani, M.; Takayanagi, T. A covariant holographic entanglement entropy proposal. J. High Energy Phys. 2007, 7, 62. [Google Scholar] [CrossRef]
- Harlow, D. TASI lectures on the emergence of the bulk physics in AdS/CFT. arXiv 2017, arXiv:1802.01040. [Google Scholar]
- Dong, X. Holographic entanglement entropy for general higher derivative gravity. J. High Energy Phys. 2014, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Miao, R.-X.; Guo, W.-Z. Holographic entanglement entropy for the most general higher derivative gravity. J. High Energy Phys. 2015, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.-Y.; Myers, R.C.; Smolkin, M. On holographic entanglement entropy and higher curvature gravity. J. High Energy Phys. 2011, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Fursaev, D.V. Proof of the holographic formula for entanglement entropy. J. High Energy Phys. 2006, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- de Boer, J.; Kulaxizi, M.; Parnachev, A. Holographic entanglement entropy in Lovelock gravities. J. High Energy Phys. 2011, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A. The dS/CFT correspondence. J. High Energy Phys. 2001, 10, 034. [Google Scholar] [CrossRef]
- Narayan, K. Extremal surfaces in de Sitter spacetime. Phys. Rev. D 2015, 91, 126011. [Google Scholar] [CrossRef]
- Narayan, K. De Sitter space and extremal surfaces for spheres. Phys. Lett. B 2016, 753, 308. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Takayanagi, T. Holography and entanglement in flat spacetime. Phys. Rev. Lett. 2011, 106, 141301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulkner, T.; Lewkowycz, A.; Maldacena, J. Quantum corrections to holographic entanglement entropy. J. High Energy Phys. 2013, 11, 74. [Google Scholar] [CrossRef] [Green Version]
- Solodukhin, S.N. Entanglement entropy of black holes. Living Rev. Relativ. 2011, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Cacciatori, S.; Chamseddine, A.H.; Klemm, D.; Martucci, L.; Sabra, W.A.; Zanon, D. Noncommutative gravity in two dimensions. Class. Quant. Grav. 2002, 19, 4029. [Google Scholar] [CrossRef]
- Banados, M.; Chandia, O.; Grandi, N.E.; Schaposnik, F.A.; Silva, G.A. Three-dimensional noncommutative gravity. Phys. Rev. D 2001, 64, 084012. [Google Scholar] [CrossRef] [Green Version]
- Smailagic, A.; Spallucci, E. Feynman path integral on the noncommutative plane. J. Phys. A 2003, 36, L467. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, P. Noncommutative black holes, the final appeal to quantum gravity: A review. Int. J. Mod. Phys. A 2009, 24, 1229. [Google Scholar] [CrossRef]
- Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 2006, 32, 547. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, T.G. Noncommutative inspired black holes in extra dimensions. J. High Energy Phys. 2006, 9, 21. [Google Scholar] [CrossRef]
- Nozari, K.; Mehdipour, S.H. Hawking radiation as quantum tunneling from noncommutative Schwarzschild black hole. Class. Quant. Grav. 2008, 25, 175015. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, F.; Kuhfittig, P.K.F.; Bhui, B.C.; Rahaman, M.; Ray, S.; Mondal, U.F. BTZ black holes inspired by noncommutative geometry. Phys. Rev. D 2013, 87, 084014. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, E.; Rivelles, V.O. Noncommutative gravity. Class. Quant. Grav. 2006, 23, 7551. [Google Scholar] [CrossRef]
- Moffat, J.W. Noncommutative quantum gravity. Phys. Lett. B 2000, 491, 345. [Google Scholar] [CrossRef] [Green Version]
- Jurić, T.; Samsarov, A. Entanglement entropy renormalization for the NC scalar field coupled to classical BTZ geometry. Phys. Rev. D 2016, 93, 104033. [Google Scholar] [CrossRef] [Green Version]
- Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Phase-space noncommutative quantum cosmology. Phys. Rev. D 2008, 78, 023516. [Google Scholar] [CrossRef] [Green Version]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666. [Google Scholar] [CrossRef] [Green Version]
- Holzhey, C.; Larsen, F.; Wilczek, F. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 1994, 424, 443. [Google Scholar] [CrossRef]
- Shiba, N.; Takayanagi, T. Volume law for the entanglement entropy in non-local QFTs. J. High Energy Phys. 2014, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Fischler, W.; Kundu, A.; Kundu, S. Holographic entanglement in a noncommutative gauge theory. J. High Energy Phys. 2014, 1, 37. [Google Scholar] [CrossRef] [Green Version]
- Hertzberg, M.P. Entanglement entropy in scalar field theory. J. Phys. A 2013, 46, 015402. [Google Scholar] [CrossRef]
- Momeni, D.; Raza, M.; Myrzakulov, R. Holographic entanglement entropy for noncommutative anti-de Sitter space. Mod. Phys. Lett. A 2016, 31, 1650073. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Tureanu, A.; Zhang, R.B.; Zhang, X. Riemannian geometry of noncommutative surfaces. J. Math. Phys. 2008, 49, 073511. [Google Scholar] [CrossRef] [Green Version]
- Mbonye, M.R.; Mallett, R.L. Gravitational perturbations of a radiating spacetime. Found. Phys. 2000, 30, 747. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, L. Holographic entanglement entropies for Schwarzschild and Reisner-Nordström black holes in asymptotically Minkowski spacetimes. Phys. Rev. D 2017, 95, 086014. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Lee, J.H. Time-evolution of the holographic entanglement entropy and metric perturbations. J. Korean Phys. Soc. 2016, 69, 623. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Suh, S.J. Entanglement growth during thermalization in holographic systems. Phys. Rev. D 2014, 89, 066012. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, V.; Kraus, P. A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 1999, 208, 413. [Google Scholar] [CrossRef]
- Hartman, T.; Kruthoff, J.; Shaghoulian, E.; Tajdini, A. Holography at finite cutoff with a T2 deformation. J. High Energy Phys. 2019, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, J.; Nozaki, M.; Takayanagi, T.; Ugajin, T. Thermodynamical property of entanglement entropy for excited states. Phys. Rev. Lett. 2013, 110, 091602. [Google Scholar] [CrossRef]
- Blanco, D.D.; Casini, H.; Hung, L.-Y.; Myers, R.C. Relative entropy and holography. J. High Energy Phys. 2013, 8, 60. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.-C.; Miao, Y.-G. Noncommutative Corrections to the Minimal Surface Areas of the Pure AdS Spacetime and Schwarzschild-AdS Black Hole. Universe 2022, 8, 524. https://doi.org/10.3390/universe8100524
Liu Z-C, Miao Y-G. Noncommutative Corrections to the Minimal Surface Areas of the Pure AdS Spacetime and Schwarzschild-AdS Black Hole. Universe. 2022; 8(10):524. https://doi.org/10.3390/universe8100524
Chicago/Turabian StyleLiu, Zhang-Cheng, and Yan-Gang Miao. 2022. "Noncommutative Corrections to the Minimal Surface Areas of the Pure AdS Spacetime and Schwarzschild-AdS Black Hole" Universe 8, no. 10: 524. https://doi.org/10.3390/universe8100524
APA StyleLiu, Z. -C., & Miao, Y. -G. (2022). Noncommutative Corrections to the Minimal Surface Areas of the Pure AdS Spacetime and Schwarzschild-AdS Black Hole. Universe, 8(10), 524. https://doi.org/10.3390/universe8100524