Generalized Logotropic Models and Their Cosmological Constraints
Abstract
:1. Introduction
2. Generalized Logotropic Equation of State
3. Generalized Logotropic Cosmology
4. Particular Models
4.1. The Case
4.2. The Case
4.3. The Case
4.4. The Case
4.5. The Case
5. Evolution of the Generalized Logotropic Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Asymptotic Equation of State
Appendix B. The Two-Fluid Model
Appendix B.1. The Case n=1
Appendix B.2. The Case n=2
Appendix C. Present Proportions of Dark Matter and Dark Energy
1 | We have assumed that n is an integer. However, it can be shown that this asymptotic behavior remains valid when n is a real number. |
2 | The notation stands either for pressureless DM density or for rest-mass density. |
3 | More precisely, our model has the same number of parameters as the CDM model. In principle, these parameters should be determined from the observations for each value of n. For convenience, we shall use the values of and obtained from the CDM model taken as a reference. In that case, there is no undetermined parameter in our model except, of course, the value of n. |
4 | We can note that Equation (62) is a second degree equation in . |
5 | We recall that the logotropic model is not aimed at describing the early inflation. |
6 | Some concerns could arise regarding the procedure we use to find out the constraint on the parameter n. Indeed, we first fix the values of and by following the CDM model, and then, by evaluating the age of the Universe in the logotropic model, we conclude that models with are excluded. A better procedure would be to evaluate all the parameters of the logotropic model directly from observational data to determine the age of the Universe. However, this procedure would imply determining the values of the observables in terms of n, which is a long and arduous process. This, however, would not change the main conclusion regarding the constraint on n because the predicted values of the observables are very similar in both models (for not too large values of n). Therefore, we can use the CDM values as a reference to determine the values of the observables in the logotropic model (see footnote 3). |
7 | The speed of sound is real in the normal regime and imaginary in the phantom regime . It becomes infinite (before becoming imaginary) when we enter into the phantom regime, i.e., when . |
8 | The equivalence between the one-fluid model and the two-fluid model is lost when we consider the theory of perturbations and the formation of structures. |
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Tonry, J. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Supernova Cosmology Project. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Wright, E.L.; et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175. [Google Scholar] [CrossRef]
- Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; York, D.G. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Meinhold, P.R.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Sahni, V.; Starobinsky, A.A. The case for a positive cosmological Λ-term. Int. J. Modern Phys. D 2000, 9, 373–443. [Google Scholar] [CrossRef]
- Amendola, L.; Kunz, M.; Motta, M.; Saltas, I.D.; Sawicki, I. Observables and unobservables in dark energy cosmologies. Phys. Rev. D 2013, 87, 023501. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological Constant—The Weight of the Vacuum. Phys. Rep. 2003, 380, 235. [Google Scholar] [CrossRef]
- Steinhardt, P. Critical Problems in Physics; Fitch, V.L., Marlow, D.R., Eds.; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Moore, B.; Quinn, T.; Governato, F.; Stadel, J.; Lake, G. Cold collapse and the core catastrophe. Mon. Not. R. Astron. Soc. 1999, 310, 11471152. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann, G.; White, S.D.M.; Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 1993, 264, 201–218. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O. Where are the missing galactic satellites? Astrophys. J. 1999, 522, 82. [Google Scholar] [CrossRef]
- Kamionkowski, M.; Liddle, A.R. The dearth of halo dwarf galaxies: Is there power on short scales? Phys. Rev. Lett. 2000, 84, 4525. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. Lett. 2011, 415, L40–L44. [Google Scholar] [CrossRef]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the Λ CDM Paradigm. Ann. Rev. Astron. Astrophys. 2017, 55, 343. [Google Scholar] [CrossRef]
- Kamenshchik, A.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [Google Scholar] [CrossRef]
- Benaoum, H.B. Accelerated Universe from Modified Chaplygin Gas and Tachyonic Fluid. Universe 2022, 8, 340. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.; Moschella, U. Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 2003, 67, 063509. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Revival of the unified dark energy–dark matter model? Phys. Rev. D 2004, 70, 083519. [Google Scholar] [CrossRef] [Green Version]
- Debnath, U.; Banerjee, A.; Chakraborty, S. Role of modified Chaplygin gas in accelerated universe. Class. Quantum Grav. 2004, 21, 5609. [Google Scholar] [CrossRef]
- Benaoum, H.B. Modified Chaplygin Gas Cosmology. Adv. High Energy Phys. 2012, 2012, 357802. [Google Scholar] [CrossRef]
- Benaoum, H.B. Modified Chaplygin gas cosmology with bulk viscosity. Int. J. Mod. Phys. D 2014, 23, 1450082. [Google Scholar] [CrossRef]
- Chavanis, P.H. Models of universe with a polytropic equation of state: I. The early universe. Eur. Phys. J. Plus 2014, 129, 38. [Google Scholar] [CrossRef]
- Chavanis, P.H. Models of universe with a polytropic equation of state: II. The late universe. Eur. Phys. J. Plus 2014, 129, 222. [Google Scholar] [CrossRef]
- Chavanis, P.H. Models of universe with a polytropic equation of state: III. The phantom universe. arXiv 2012, arXiv:1208.1185. [Google Scholar]
- Chavanis, P.H. A cosmological model describing the early inflation, the intermediate decelerating expansion, and the late accelerating expansion of the universe by a quadratic equation of state. Universe 2015, 1, 357–411. [Google Scholar] [CrossRef]
- Chavanis, P.H. Is the Universe logotropic? Eur. Phys. J. Plus 2015, 130, 130. [Google Scholar] [CrossRef]
- Chavanis, P.H. The Logotropic Dark Fluid as a unification of dark matter and dark energy. Phys. Lett. B 2016, 758, 59–66. [Google Scholar] [CrossRef]
- Ferreira, V.M.C.; Avelino, P.P. New limit on logotropic unified dark energy models. Phys. Lett. B 2017, 770, 213–216. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Timoshkin, A.V.; Saridakis, E.N.; Myrzakulov, R. Cosmological fluids with logarithmic equation of state. Ann. Phys. 2018, 398, 238. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Cosmic acceleration from a single fluid description. Phys. Dark Univ. 2018, 20, 1. [Google Scholar] [CrossRef]
- Chavanis, P.H. New predictions from the logotropic model. Phys. Dark Univ. 2019, 24, 100271. [Google Scholar] [CrossRef]
- Benaoum, H.B.; Luongo, O.; Quevedo, H. Extensions of modified Chaplygin gas from Geometrothermodynamics. Eur. Phys. J. C 2019, 79, 577. [Google Scholar] [CrossRef]
- Boshkayev, K.; D’Agostino, R.; Luongo, O. Extended logotropic fluids as unified dark energy models. Eur. Phys. J. C 2019, 79, 332. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Giambò, R.; Luongo, O. Effective field description of the Anton-Schmidt cosmic fluid. Phys. Rev. D 2019, 99, 023532. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Gai, L. Astronomical bounds on the modified Chaplygin gas as a unified dark fluid model. Astron. Astrophys. 2019, 623, A28. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Kumar, S. Comparison between the Logotropic and ΛCDM models at the cosmological scale. J. Cosmol. Astropart. Phys. 2017, 1705, 018. [Google Scholar] [CrossRef]
- Mamon, A.A.; Saha, S. The logotropic dark fluid: Observational and thermodynamic constraints. Int. J. Mod. Phys. D 2020, 29, 2050097. [Google Scholar] [CrossRef]
- Boshkayev, K.; Konysbayev, T.; Luongo, O.; Muccino, M.; Pace, F. Testing generalized logotropic models with cosmic growth. Phys. Rev. D 2021, 104, 023520. [Google Scholar] [CrossRef]
- Donato, F.; Gentile, G.; Salucci, P.; Frigerio Martins, C.; Wilkinson, M.I.; Gilmore, G.; Grebel, E.K.; Koch, K.; Wyse, R. A constant dark matter halo surface density in galaxies. Mon. Not. R. Astron. Soc. 2009, 397, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Chavanis, P.H. Predictions from the logotropic model: The universal surface density of dark matter halos and the present proportions of dark matter and dark energy. Phys. Dark Univ. 2022, 37, 101098. [Google Scholar] [CrossRef]
- Chandrasekhar, S. An Introduction to the Theory of Stellar Structure; University of Chicago Press: Chicago, IL, USA, 1939. [Google Scholar]
- Chavanis, P.H. A new logotropic model based on a complex scalar field with a logarithmic potential. arXiv 2022, arXiv:2201.05908. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; John Wiley: New York, NY, USA, 2020. [Google Scholar]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weiberg, N.N. Phantom energy: Dark energy with w<−1 causes a cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar]
- Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. The little rip. Phys. Rev. D 2011, 84, 063003. [Google Scholar] [CrossRef]
- Sandvik, H.; Tegmark, M.; Zaldarriaga, M.; Waga, I. The end of unified dark matter? Phys. Rev. D 2004, 69, 123524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benaoum, H.; Chavanis, P.-H.; Quevedo, H. Generalized Logotropic Models and Their Cosmological Constraints. Universe 2022, 8, 468. https://doi.org/10.3390/universe8090468
Benaoum H, Chavanis P-H, Quevedo H. Generalized Logotropic Models and Their Cosmological Constraints. Universe. 2022; 8(9):468. https://doi.org/10.3390/universe8090468
Chicago/Turabian StyleBenaoum, Hachemi, Pierre-Henri Chavanis, and Hernando Quevedo. 2022. "Generalized Logotropic Models and Their Cosmological Constraints" Universe 8, no. 9: 468. https://doi.org/10.3390/universe8090468
APA StyleBenaoum, H., Chavanis, P. -H., & Quevedo, H. (2022). Generalized Logotropic Models and Their Cosmological Constraints. Universe, 8(9), 468. https://doi.org/10.3390/universe8090468