Generalized Helical Hypersurfaces Having Time-like Axis in Minkowski Spacetime
Abstract
:1. Introduction
2. Preliminaries
2.1. Hypersurfaces of Minkowski Space
2.2. Rotational Hypersurfaces
3. -th Curvatures
4. Generalized Helical Hypersurfaces Having Time-like Axis
- i.
- When (respectively, , the curve γ (respectively, the hypersurface ) is called space-like;
- ii.
- When (respectively, , the curve γ (respectively, the hypersurface ) is called time-like;
- iii.
- When (respectively, , the curve γ (respectively, the hypersurface ) is called light-like (or null).
5. The Umbilical Hypersurfaces in Minkowski Four-Space
6. Generalized Helical Hypersurface Having Time-like Axis Satisfying in
7. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340. [Google Scholar] [CrossRef]
- Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [Google Scholar] [CrossRef]
- Chern, S.S.; Do Carmo, M.P.; Kobayashi, S. Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length, Functional Analysis and Related Fields; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Cheng, S.Y.; Yau, S.T. Hypersurfaces with constant scalar curvature. Math. Ann. 1977, 225, 195–204. [Google Scholar] [CrossRef]
- Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.: Wilmington, DE, USA, 1980. [Google Scholar]
- Chen, B.Y. On submanifolds of finite type. Soochow J. Math. 1983, 9, 65–81. [Google Scholar]
- Chen, B.Y. Total Mean Curvature and Submanifolds of Finite Type; World Scientific: Singapore, 1984. [Google Scholar]
- Chen, B.Y. Finite Type Submanifolds and Generalizations; University of Rome: Rome, Italy, 1985. [Google Scholar]
- Chen, B.Y. Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Math. J. 1985, 8, 358–374. [Google Scholar] [CrossRef]
- Barros, M.; Chen, B.Y. Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Jpn. 1987, 39, 627–648. [Google Scholar] [CrossRef]
- Barros, M.; Garay, O.J. 2-type surfaces in S3. Geom. Dedicata 1987, 24, 329–336. [Google Scholar] [CrossRef]
- Garay, O.J. An extension of Takahashi’s theorem. Geom. Dedicata 1990, 34, 105–112. [Google Scholar] [CrossRef]
- Chen, B.Y.; Piccinni, P. Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 1987, 35, 161–186. [Google Scholar] [CrossRef]
- Bour, E. Theorie de la deformation des surfaces. J. Ecole Imp. Polytech. 1862, 22, 1–148. [Google Scholar]
- Do Carmo, M.P.; Dajczer, M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982, 34, 351–367. [Google Scholar] [CrossRef]
- Ferrandez, A.; Garay, O.J.; Lucas, P. On a certain class of conformally at Euclidean hypersurfaces. In Global Analysis and Global Differential Geometry; Springer: Berlin/Heidelberg, Germany, 1990; pp. 48–54. [Google Scholar]
- Choi, M.; Kim, Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2001, 38, 753–761. [Google Scholar]
- Garay, O.J. On a certain class of finite type surfaces of revolution. Kodai Math. J. 1988, 11, 25–31. [Google Scholar] [CrossRef]
- Dillen, F.; Pas, J.; Verstraelen, L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990, 13, 10–21. [Google Scholar] [CrossRef]
- Stamatakis, S.; Zoubi, H. Surfaces of revolution satisfying ΔIIIx=Ax. J. Geom. Graph. 2010, 14, 181–186. [Google Scholar]
- Senoussi, B.; Bekkar, M. Helicoidal surfaces with ΔJr=Ar in 3-dimensional Euclidean space. Stud. Univ. Babeş-Bolyai Math. 2015, 60, 437–448. [Google Scholar]
- Kim, D.S.; Kim, J.R.; Kim, Y.H. Cheng–Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 2016, 39, 1319–1327. [Google Scholar] [CrossRef]
- Beneki, C.C.; Kaimakamis, G.; Papantoniou, B.J. Helicoidal surfaces in three-dimensional Minkowski space. J. Math. Anal. Appl. 2002, 275, 586–614. [Google Scholar] [CrossRef]
- Güler, E.; Turgut Vanlı, A. Bour’s theorem in Minkowski 3-space. J. Math. Kyoto Univ. 2006, 46, 47–63. [Google Scholar] [CrossRef]
- Güler, E. Bour’s theorem and lightlike profile curve. Yokohama Math. J. 2007, 54, 55–77. [Google Scholar]
- Mira, P.; Pastor, J.A. Helicoidal maximal surfaces in Lorentz-Minkowski space. Monatsh. Math. 2003, 140, 315–334. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.W. Classification of ruled surfaces in Minkowski 3-spaces. J. Geom. Phys. 2004, 49, 89–100. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.W. Classifications of rotation surfaces in pseudo-Euclidean space. J. Korean Math. Soc. 2004, 41, 379–396. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.W. On the Gauss map of ruled surfaces in Minkowski space. Rocky Mountain J. Math. 2005, 35, 1555–1581. [Google Scholar] [CrossRef]
- Ji, F.; Kim, Y.H. Mean curvatures and Gauss maps of a pair of isometric helicoidal and rotation surfaces in Minkowski 3-space. J. Math. Anal. Appl. 2010, 368, 623–635. [Google Scholar] [CrossRef]
- Ji, F.; Kim, Y.H. Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space. Appl. Math. Comput. 2013, 220, 1–11. [Google Scholar] [CrossRef]
- Moore, C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919, 21, 81–93. [Google Scholar] [CrossRef]
- Moore, C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Am. Math. Soc. 1920, 26, 454–460. [Google Scholar] [CrossRef]
- Hasanis, T.; Vlachos, T. Hypersurfaces in E4 with harmonic mean curvature vector field. Math. Nachr. 1995, 172, 145–169. [Google Scholar] [CrossRef]
- Cheng, Q.M.; Wan, Q.R. Complete hypersurfaces of R4 with constant mean curvature. Monatsh. Math. 1994, 118, 171–204. [Google Scholar] [CrossRef]
- Arslan, K.; Bayram, B.K.; Bulca, B.; Kim, Y.H.; Murathan, C.; Öztürk, G. Vranceanu surface in E4 with pointwise 1-type Gauss map. Indian J. Pure Appl. Math. 2011, 42, 41–51. [Google Scholar] [CrossRef]
- Arslan, K.; Bayram, B.K.; Bulca, B.; Öztürk, G. Generalized rotation surfaces in E4. Results Math. 2012, 61, 315–327. [Google Scholar] [CrossRef]
- Magid, M.; Scharlach, C.; Vrancken, L. Affine umbilical surfaces in R4. Manuscripta Math. 1995, 88, 275–289. [Google Scholar] [CrossRef]
- Scharlach, C. Affine Geometry of Surfaces and Hypersurfaces in R4. In Symposium on the Differential Geometry of Submanifolds; Dillen, F., Simon, U., Vrancken, L.O., Eds.; Un. Valenciennes: Valenciennes, France, 2007; Volume 124, pp. 251–256.R4. [Google Scholar]
- Arslan, K.; Deszcz, R.; Yaprak, Ş. On Weyl pseudosymmetric hypersurfaces. Colloq. Math. 1997, 72, 353–361. [Google Scholar] [CrossRef]
- Arslan, K.; Bulca, B.; Milousheva, V. Meridian surfaces in E4 with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2014, 51, 911–922. [Google Scholar] [CrossRef]
- Yoon, D.W. Rotation surfaces with finite type Gauss map in E4. Indian J. Pure Appl. Math. 2001, 32, 1803–1808. [Google Scholar]
- Güler, E.; Magid, M.; Yaylı, Y. Laplace–Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symmetry Phys. 2016, 41, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Güler, E.; Hacısalihoğlu, H.H.; Kim, Y.H. The Gauss map and the third Laplace–Beltrami operator of the rotational hypersurface in 4-space. Symmetry 2018, 10, 398. [Google Scholar] [CrossRef]
- Güler, E. Rotational hypersurfaces satisfying ΔIR=AR in the four-dimensional Euclidean space. J. Polytech. 2021, 24, 517–520. [Google Scholar]
- Güler, E. Fundamental form IV and curvature formulas of the hypersphere. Malaya J. Mat. 2020, 8, 2008–2011. [Google Scholar] [CrossRef]
- Ganchev, G.; Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turk. J. Math. 2014, 38, 883–895. [Google Scholar] [CrossRef]
- Arvanitoyeorgos, A.; Kaimakamis, G.; Magid, M. Lorentz hypersurfaces in satisfying ΔH=αH. Illinois J. Math. 2009, 53, 581–590. [Google Scholar] [CrossRef]
- Arslan, K.; Milousheva, V. Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwan. J. Math. 2016, 20, 311–332. [Google Scholar] [CrossRef]
- Güler, E. Helical hypersurfaces in Minkowski geometry . Symmetry 2020, 12, 1206. [Google Scholar] [CrossRef]
- Iliadis, L. Fuzzy algebraic modelling of spatiotemporal timeseries’ paradoxes in cosmic scale kinematics. Mathematics 2022, 10, 622. [Google Scholar] [CrossRef]
- Leuenberger, G. Emergence of Minkowski spacetime by simple deterministic graph rewriting. Universe 2022, 8, 149. [Google Scholar] [CrossRef]
- Levi-Civita, T. Famiglie di superficie isoparametriche nellordinario spacio euclideo. Rend. Acad. Lincei 1937, 26, 355–362. [Google Scholar]
- Alias, L.J.; Gürbüz, N. An extension of Takashi theorem for the linearized operators of the highest order mean curvatures. Geom. Dedicata 2006, 121, 113–127. [Google Scholar] [CrossRef]
- Kühnel, W. Differential Geometry, Curves-Surfaces-Manifolds, 3rd ed.; Translated from the 2013 German ed.; AMS: Providence, RI, USA, 2015. [Google Scholar]
- Do Carmo, M.P.; Dajczer, M. Rotation hypersurfaces in spaces of constant curvature. Trans. Am. Math. Soc. 1983, 277, 685–709. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güler, E. Generalized Helical Hypersurfaces Having Time-like Axis in Minkowski Spacetime. Universe 2022, 8, 469. https://doi.org/10.3390/universe8090469
Güler E. Generalized Helical Hypersurfaces Having Time-like Axis in Minkowski Spacetime. Universe. 2022; 8(9):469. https://doi.org/10.3390/universe8090469
Chicago/Turabian StyleGüler, Erhan. 2022. "Generalized Helical Hypersurfaces Having Time-like Axis in Minkowski Spacetime" Universe 8, no. 9: 469. https://doi.org/10.3390/universe8090469
APA StyleGüler, E. (2022). Generalized Helical Hypersurfaces Having Time-like Axis in Minkowski Spacetime. Universe, 8(9), 469. https://doi.org/10.3390/universe8090469