Molecular Gas Heating, Star Formation Rate Relations, and AGN Feedback in Infrared-Luminous Galaxy Mergers
Abstract
:1. Introduction
2. Methods
2.1. Sample Selection
2.2. Molecular Gas Data
2.3. Infrared Emission Data
- : the total rest-frame infrared (1–1000 m) luminosity, uncorrected for anisotropic AGN emission.
- , : the rest-frame infrared luminosity of the starburst, and the SFR in the starburst averaged over the starbursts age, excluding the host.
- , : the rest-frame infrared luminosity and SFR of the host galaxy, excluding the starburst.
- , : Observed and anisotropy-corrected rest-frame infrared luminosity of the AGN.
- : the initial optical depth of giant molecular clouds in the starburst, with an allowed range of .
3. Results and Discussion
3.1. Correlations with Total Infrared Luminosity
3.2. Component Luminosity Correlations
3.3. Multi-Component Fits
3.4. Star Formation Rate—Molecular Gas Scaling Relations
3.5. Starburst Efficiency
4. Conclusions
- The luminosities of the CO 1–0 and 5–4 through 13–12 lines are consistent with an origin in one or both of ongoing star formation, and heating by starlight in the host galaxy. We do not find evidence for a significant contribution to these lines from AGN activity.
- We present log–linear relations between the CO luminosities in the 1–0 and 5–4 through 13–12 transitions, and with the starburst and host galaxy luminosities. The slopes of these relations suggest an origin of the CO emission in gas heating.
- The luminosities of the CO 10–9 through 13–12 lines are consistent with an origin in one or both of the starburst and the AGN. We do not find evidence for a significant contribution from the host galaxy. The slopes of the relations between these CO line luminosities and the starburst and AGN luminosities may be sub-linear, which is consistent with a contribution to these lines from mechanical heating and shocks.
- We also present two-component linear model fits between each CO line luminosity and infrared component luminosities. For CO 9–8 and below we fit against starburst and host luminosity. For CO 10–9 and above we fit against starburst and AGN luminosity. These fits are consistent with the log–linear model fits, and give straightforward conversions that can be used in galaxy simulations.
- For the sample as a whole, we find no evidence for a relation between AGN luminosity and the , in any CO line. This suggests that a more luminous AGN does not reduce the efficiency by which the starburst heats the molecular gas. There is, however, evidence for a dependence on starburst initial optical depth (). Starbursts with low may heat the CO 5–4 transitions and above less efficiently. This is consistent with mild negative AGN feedback.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 |
References
- Rowan-Robinson, M.; Wang, L.; Farrah, D.; Rigopoulou, D.; Gruppioni, C.; Vaccari, M.; Marchetti, L.; Clements, D.L.; Pearson, W.J. Extreme submillimetre starburst galaxies. Astron. Astrophys. 2018, 619, A169. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Efstathiou, A.; Afonso, J.; Bernard-Salas, J.; Cairns, J.; Clements, D.L.; Croker, K.; Hatziminaoglou, E.; Joyce, M.; Lacy, M.; et al. Stellar and black hole assembly in z < 0.3 infrared-luminous mergers: Intermittent starbursts versus super-Eddington accretion. Mon. Not. R. Astron. Soc. 2022, 513, 4770–4786. [Google Scholar] [CrossRef]
- Murphy, T.W., Jr.; Armus, L.; Matthews, K.; Soifer, B.T.; Mazzarella, J.M.; Shupe, D.L.; Strauss, M.A.; Neugebauer, G. Visual and Near-Infrared Imaging of Ultraluminous Infrared Galaxies: The IRAS 2 Jy Sample. Astron. J. 1996, 111, 1025. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Tacconi, L.J.; Rigopoulou, D.; Lutz, D.; Tecza, M. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation? Astrophys. J. 2001, 563, 527–545. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Rowan-Robinson, M.; Oliver, S.; Serjeant, S.; Borne, K.; Lawrence, A.; Lucas, R.A.; Bushouse, H.; Colina, L. HST/WFPC2 imaging of the QDOT ultraluminous infrared galaxy sample. Mon. Not. R. Astron. Soc. 2001, 326, 1333–1352. [Google Scholar] [CrossRef]
- Bushouse, H.A.; Borne, K.D.; Colina, L.; Lucas, R.A.; Rowan-Robinson, M.; Baker, A.C.; Clements, D.L.; Lawrence, A.; Oliver, S. Ultraluminous Infrared Galaxies: Atlas of Near-Infrared Images. Astrophys. J. Suppl. 2002, 138, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Haan, S.; Surace, J.A.; Armus, L.; Evans, A.S.; Howell, J.H.; Mazzarella, J.M.; Kim, D.C.; Vavilkin, T.; Inami, H.; Sanders, D.B.; et al. The Nuclear Structure in Nearby Luminous Infrared Galaxies: Hubble Space Telescope NICMOS Imaging of the GOALS Sample. Astron. J. 2011, 141, 100. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.C.; Evans, A.S.; Vavilkin, T.; Armus, L.; Mazzarella, J.M.; Sheth, K.; Surace, J.A.; Haan, S.; Howell, J.H.; Díaz-Santos, T.; et al. Hubble Space Telescope ACS Imaging of the GOALS Sample: Quantitative Structural Properties of Nearby Luminous Infrared Galaxies with L IR > 1011.4 L⊙. Astrophys. J. 2013, 768, 102. [Google Scholar] [CrossRef] [Green Version]
- Petty, S.M.; Armus, L.; Charmandaris, V.; Evans, A.S.; Le Floc’h, E.; Bridge, C.; Díaz-Santos, T.; Howell, J.H.; Inami, H.; Psychogyios, A.; et al. The FUV to Near-IR Morphologies of Luminous Infrared Galaxies in the Goals Sample. Astron. J. 2014, 148, 111. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Lutz, D.; Sturm, E.; Egami, E.; Kunze, D.; Moorwood, A.F.M.; Rigopoulou, D.; Spoon, H.W.W.; Sternberg, A.; Tacconi-Garman, L.E.; et al. What Powers Ultraluminous IRAS Galaxies? Astrophys. J. 1998, 498, 579–605. [Google Scholar] [CrossRef]
- Farrah, D.; Afonso, J.; Efstathiou, A.; Rowan-Robinson, M.; Fox, M.; Clements, D. Starburst and AGN activity in ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc. 2003, 343, 585–607. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Surace, J.A.; Veilleux, S.; Sanders, D.B.; Vacca, W.D. Space Telescope Imaging Spectrograph Ultraviolet/Optical Spectroscopy of “Warm” Ultraluminous Infrared Galaxies. Astrophys. J. 2005, 626, 70–88. [Google Scholar] [CrossRef] [Green Version]
- Armus, L.; Charmandaris, V.; Bernard-Salas, J.; Spoon, H.W.W.; Marshall, J.A.; Higdon, S.J.U.; Desai, V.; Teplitz, H.I.; Hao, L.; Devost, D.; et al. Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. II. The IRAS Bright Galaxy Sample. Astrophys. J. 2007, 656, 148–167. [Google Scholar] [CrossRef] [Green Version]
- Nardini, E.; Risaliti, G.; Salvati, M.; Sani, E.; Watabe, Y.; Marconi, A.; Maiolino, R. Exploring the active galactic nucleus and starburst content of local ultraluminous infrared galaxies through 5-8 μm spectroscopy. Mon. Not. R. Astron. Soc. 2009, 399, 1373–1402. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Salas, J.; Spoon, H.W.W.; Charmandaris, V.; Lebouteiller, V.; Farrah, D.; Devost, D.; Brandl, B.R.; Wu, Y.; Armus, L.; Hao, L.; et al. A Spitzer High-resolution Mid-Infrared Spectral Atlas of Starburst Galaxies. Astrophys. J. Suppl. 2009, 184, 230–247. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Lebouteiller, V.; Spoon, H.W.W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H.A.; González-Alfonso, E.; Clements, D.L.; Efstathiou, A.; et al. Far-infrared Fine-structure Line Diagnostics of Ultraluminous Infrared Galaxies. Astrophys. J. 2013, 776, 38. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Baloković, M.; Stern, D.; Harris, K.; Kunimoto, M.; Walton, D.J.; Alexander, D.M.; Arévalo, P.; Ballantyne, D.R.; Bauer, F.E.; et al. The Geometry of the Infrared and X-ray Obscurer in a Dusty Hyperluminous Quasar. Astrophys. J. 2016, 831, 76. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Lamperti, I.; González-Alfonso, E.; Perna, M.; Arribas, S.; Alonso-Herrero, A.; Aalto, S.; Combes, F.; et al. Physics of ULIRGs with MUSE and ALMA: The PUMA project. II. Are local ULIRGs powered by AGN? The subkiloparsec view of the 220 GHz continuum. Astron. Astrophys. 2021, 651, A42. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Lutz, D.; Rigopoulou, D.; Baker, A.J.; Iserlohe, C.; Tecza, M. Ultraluminous Infrared Galaxies: QSOs in Formation? Astrophys. J. 2002, 580, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Lacy, M.; Priddey, R.; Borys, C.; Afonso, J. Evidence that FeLoBALs May Signify the Transition between an Ultraluminous Infrared Galaxy and a Quasar. Astrophys. J. Lett. 2007, 662, L59–L62. [Google Scholar] [CrossRef]
- Farrah, D.; Connolly, B.; Connolly, N.; Spoon, H.W.W.; Oliver, S.; Prosper, H.B.; Armus, L.; Houck, J.R.; Liddle, A.R.; Desai, V. An Evolutionary Paradigm for Dusty Active Galaxies at Low Redshift. Astrophys. J. 2009, 700, 395–416. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Verma, A.; Oliver, S.; Rowan-Robinson, M.; McMahon, R. Hubble Space Telescope Wide Field Planetary Camera 2 observations of hyperluminous infrared galaxies. Mon. Not. R. Astron. Soc. 2002, 329, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Kartaltepe, J.S.; Dickinson, M.; Alexander, D.M.; Bell, E.F.; Dahlen, T.; Elbaz, D.; Faber, S.M.; Lotz, J.; McIntosh, D.H.; Wiklind, T.; et al. GOODS-Herschel and CANDELS: The Morphologies of Ultraluminous Infrared Galaxies at z ∼ 2. Astrophys. J. 2012, 757, 23. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Petty, S.; Connolly, B.; Blain, A.; Efstathiou, A.; Lacy, M.; Stern, D.; Lake, S.; Jarrett, T.; Bridge, C.; et al. The Role of the Most Luminous Obscured AGNs in Galaxy Assembly at z ∼ 2. Astrophys. J. 2017, 844, 106. [Google Scholar] [CrossRef] [Green Version]
- Zavala, J.A.; Aretxaga, I.; Dunlop, J.S.; Michałowski, M.J.; Hughes, D.H.; Bourne, N.; Chapin, E.; Cowley, W.; Farrah, D.; Lacey, C.; et al. The SCUBA-2 Cosmology Legacy Survey: The EGS deep field—II. Morphological transformation and multiwavelength properties of faint submillimetre galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 5585–5602. [Google Scholar] [CrossRef] [Green Version]
- Gullberg, B.; Smail, I.; Swinbank, A.M.; Dudzevičiūtė, U.; Stach, S.M.; Thomson, A.P.; Almaini, O.; Chen, C.C.; Conselice, C.; Cooke, E.A.; et al. An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS field: High-resolution dust continuum morphologies and the link between sub-millimetre galaxies and spheroid formation. Mon. Not. R. Astron. Soc. 2019, 490, 4956–4974. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Serjeant, S.; Efstathiou, A.; Rowan-Robinson, M.; Verma, A. Submillimetre observations of hyperluminous infrared galaxies. Mon. Not. R. Astron. Soc. 2002, 335, 1163–1175. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.M.; Bauer, F.E.; Chapman, S.C.; Smail, I.; Blain, A.W.; Brandt, W.N.; Ivison, R.J. The X-ray Spectral Properties of SCUBA Galaxies. Astrophys. J. 2005, 632, 736–750. [Google Scholar] [CrossRef]
- Hatziminaoglou, E.; Pérez-Fournon, I.; Polletta, M.; Afonso-Luis, A.; Hernán-Caballero, A.; Montenegro-Montes, F.M.; Lonsdale, C.; Xu, C.K.; Franceschini, A.; Rowan-Robinson, M.; et al. Sloan Digital Sky Survey Quasars in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) ELAIS N1 Field: Properties and Spectral Energy Distributions. Astron. J. 2005, 129, 1198–1211. [Google Scholar] [CrossRef]
- Heinis, S.; Buat, V.; Béthermin, M.; Aussel, H.; Bock, J.; Boselli, A.; Burgarella, D.; Conley, A.; Cooray, A.; Farrah, D.; et al. HERMES: Unveiling obscured star formation—The far-infrared luminosity function of ultraviolet-selected galaxies at z ∼ 1.5. Mon. Not. R. Astron. Soc. 2013, 429, 1113–1132. [Google Scholar] [CrossRef]
- Bussmann, R.S.; Riechers, D.; Fialkov, A.; Scudder, J.; Hayward, C.C.; Cowley, W.I.; Bock, J.; Calanog, J.; Chapman, S.C.; Cooray, A.; et al. HerMES: ALMA Imaging of Herschel-selected Dusty Star-forming Galaxies. Astrophys. J. 2015, 812, 43. [Google Scholar] [CrossRef] [Green Version]
- Harris, K.; Farrah, D.; Schulz, B.; Hatziminaoglou, E.; Viero, M.; Anderson, N.; Béthermin, M.; Chapman, S.; Clements, D.L.; Cooray, A.; et al. Star formation rates in luminous quasars at 2 < z < 3. Mon. Not. R. Astron. Soc. 2016, 457, 4179–4194. [Google Scholar] [CrossRef] [Green Version]
- Pitchford, L.K.; Hatziminaoglou, E.; Feltre, A.; Farrah, D.; Clarke, C.; Harris, K.A.; Hurley, P.; Oliver, S.; Page, M.; Wang, L. Extreme star formation events in quasar hosts over 0.5 < z < 4. Mon. Not. R. Astron. Soc. 2016, 462, 4067–4077. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.M.; Smail, I.; Swinbank, A.M.; Ivison, R.J.; Dunlop, J.S.; Geach, J.E.; Almaini, O.; Arumugam, V.; Bremer, M.N.; Chen, C.C.; et al. The SCUBA-2 Cosmology Legacy Survey: Multi-wavelength Properties of ALMA-identified Submillimeter Galaxies in UKIDSS UDS. Astrophys. J. 2017, 839, 58. [Google Scholar] [CrossRef]
- Bourne, N.; Dunlop, J.S.; Merlin, E.; Parsa, S.; Schreiber, C.; Castellano, M.; Conselice, C.J.; Coppin, K.E.K.; Farrah, D.; Fontana, A.; et al. Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy Survey. Mon. Not. R. Astron. Soc. 2017, 467, 1360–1385. [Google Scholar] [CrossRef] [Green Version]
- Marrone, D.P.; Spilker, J.S.; Hayward, C.C.; Vieira, J.D.; Aravena, M.; Ashby, M.L.N.; Bayliss, M.B.; Béthermin, M.; Brodwin, M.; Bothwell, M.S.; et al. Galaxy growth in a massive halo in the first billion years of cosmic history. Nature 2018, 553, 51–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stach, S.M.; Smail, I.; Swinbank, A.M.; Simpson, J.M.; Geach, J.E.; An, F.X.; Almaini, O.; Arumugam, V.; Blain, A.W.; Chapman, S.C.; et al. An ALMA Survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS Field: Number Counts of Submillimeter Galaxies. Astrophys. J. 2018, 860, 161. [Google Scholar] [CrossRef]
- Małek, K.; Buat, V.; Roehlly, Y.; Burgarella, D.; Hurley, P.D.; Shirley, R.; Duncan, K.; Efstathiou, A.; Papadopoulos, A.; Vaccari, M.; et al. HELP: Modelling the spectral energy distributions of Herschel detected galaxies in the ELAIS N1 field. Astron. Astrophys. 2018, 620, A50. [Google Scholar] [CrossRef] [Green Version]
- Pitchford, L.K.; Farrah, D.; Alatalo, K.; Afonso, J.; Efstathiou, A.; Hatziminaoglou, E.; Lacy, M.; Urrutia, T.; Violino, G. The mid-infrared and CO gas properties of an extreme star-forming FeLoBAL quasar. Mon. Not. R. Astron. Soc. 2019, 487, 3130–3139. [Google Scholar] [CrossRef]
- Wang, L.; Gao, F.; Best, P.N.; Duncan, K.; Hardcastle, M.J.; Kondapally, R.; Małek, K.; McCheyne, I.; Sabater, J.; Shimwell, T.; et al. The bright end of the infrared luminosity functions and the abundance of hyperluminous infrared galaxies. Astron. Astrophys. 2021, 648, A8. [Google Scholar] [CrossRef]
- Gao, F.; Wang, L.; Efstathiou, A.; Małek, K.; Best, P.N.; Bonato, M.; Farrah, D.; Kondapally, R.; McCheyne, I.; Röttgering, H.J.A. The nature of hyperluminous infrared galaxies. Astron. Astrophys. 2021, 654, A117. [Google Scholar] [CrossRef]
- Efstathiou, A.; Małek, K.; Burgarella, D.; Hurley, P.; Oliver, S.; Buat, V.; Shirley, R.; Duivenvoorden, S.; Lesta, V.P.; Farrah, D.; et al. A hyperluminous obscured quasar at a redshift of z = 4.3. Mon. Not. R. Astron. Soc. 2021, 503, L11–L16. [Google Scholar] [CrossRef]
- Sanders, D.B.; Mirabel, I.F. Luminous Infrared Galaxies. Annu. Rev. Astron. Astrophys. 1996, 34, 749. [Google Scholar] [CrossRef] [Green Version]
- Blain, A.W.; Smail, I.; Ivison, R.J.; Kneib, J.P.; Frayer, D.T. Submillimeter galaxies. Phys. Rep. 2002, 369, 111–176. [Google Scholar] [CrossRef] [Green Version]
- Lonsdale, C.J.; Farrah, D.; Smith, H.E. Ultraluminous Infrared Galaxies. In Astrophysics Update 2; Mason, J.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; p. 285. [Google Scholar] [CrossRef]
- Casey, C.M.; Narayanan, D.; Cooray, A. Dusty star-forming galaxies at high redshift. Phys. Rep. 2014, 541, 45–161. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Smith, K.E.; Ardila, D.; Bradford, C.M.; Dipirro, M.; Ferkinhoff, C.; Glenn, J.; Goldsmith, P.; Leisawitz, D.; Nikola, T.; et al. Review: Far-infrared instrumentation and technological development for the next decade. J. Astron. Telesc. Instrum. Syst. 2019, 5, 020901. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Torres, M.; Mattila, S.; Alonso-Herrero, A.; Aalto, S.; Efstathiou, A. Star formation and nuclear activity in luminous infrared galaxies: An infrared through radio review. Astron. Astrophys. Rev. 2021, 29, 2. [Google Scholar] [CrossRef]
- Sajina, A.; Lacy, M.; Pope, A. The Past and Future of Mid-Infrared Studies of AGN. Universe 2022, 8, 356. [Google Scholar] [CrossRef]
- Solomon, P.M.; Vanden Bout, P.A. Molecular Gas at High Redshift. Annu. Rev. Astron. Astrophys. 2005, 43, 677–725. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Sturm, E.; Graciá-Carpio, J.; Feruglio, C.; Neri, R.; Aalto, S.; Davies, R.; Fiore, F.; Fischer, J.; et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef] [Green Version]
- George, R.D.; Ivison, R.J.; Smail, I.; Swinbank, A.M.; Hopwood, R.; Stanley, F.; Swinyard, B.M.; Valtchanov, I.; Werf, P.P.v.d. Herschel reveals a molecular outflow in a z = 2.3 ULIRG. Mon. Not. R. Astron. Soc. 2014, 442, 1877–1883. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, F.; Meléndez, M.; Veilleux, S.; Reeves, J.N.; González-Alfonso, E.; Reynolds, C.S. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 2015, 519, 436–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, W.; Fabian, A.C. What powers galactic outflows: Nuclear starbursts or AGN? Mon. Not. R. Astron. Soc. 2022, 516, 4963–4970. [Google Scholar] [CrossRef]
- Higdon, S.J.U.; Armus, L.; Higdon, J.L.; Soifer, B.T.; Spoon, H.W.W. A Spitzer Space Telescope Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultraluminous Infrared Galaxies. Astrophys. J. 2006, 648, 323–339. [Google Scholar] [CrossRef]
- Solomon, P.M.; Downes, D.; Radford, S.J.E.; Barrett, J.W. The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies. Astrophys. J. 1997, 478, 144–161. [Google Scholar] [CrossRef]
- Greve, T.R.; Bertoldi, F.; Smail, I.; Neri, R.; Chapman, S.C.; Blain, A.W.; Ivison, R.J.; Genzel, R.; Omont, A.; Cox, P.; et al. An interferometric CO survey of luminous submillimetre galaxies. Mon. Not. R. Astron. Soc. 2005, 359, 1165–1183. [Google Scholar] [CrossRef] [Green Version]
- Carilli, C.L.; Walter, F. Cool Gas in High-Redshift Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 105–161. [Google Scholar] [CrossRef] [Green Version]
- Bolatto, A.D.; Wolfire, M.; Leroy, A.K. The CO-to-H2 Conversion Factor. Annu. Rev. Astron. Astrophys. 2013, 51, 207–268. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Tacconi, L.J.; Lutz, D.; Saintonge, A.; Berta, S.; Magnelli, B.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; et al. Combined CO and Dust Scaling Relations of Depletion Time and Molecular Gas Fractions with Cosmic Time, Specific Star-formation Rate, and Stellar Mass. Astrophys. J. 2015, 800, 20. [Google Scholar] [CrossRef]
- Saintonge, A.; Catinella, B.; Tacconi, L.J.; Kauffmann, G.; Genzel, R.; Cortese, L.; Davé, R.; Fletcher, T.J.; Graciá-Carpio, J.; Kramer, C.; et al. xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies. Astrophys. J. Suppl. 2017, 233, 22. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Komugi, S.; Matsuhara, H.; Armus, L.; Inami, H.; Ueda, J.; Iono, D.; Kohno, K.; Evans, A.S.; Arimatsu, K. Cold Molecular Gas Along the Merger Sequence in Local Luminous Infrared Galaxies. Astrophys. J. 2017, 844, 96. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.; Ibar, E.; Villanueva, V.; Escala, A.; Cheng, C.; Baes, M.; Messias, H.; Yang, C.; Bauer, F.E.; van der Werf, P.; et al. VALES V: A kinematic analysis of the molecular gas content in H-ATLAS galaxies at z ∼ 0.03-0.35 using ALMA. Mon. Not. R. Astron. Soc. 2019, 482, 1499–1524. [Google Scholar] [CrossRef] [Green Version]
- Weiß, A.; Downes, D.; Neri, R.; Walter, F.; Henkel, C.; Wilner, D.J.; Wagg, J.; Wiklind, T. Highly-excited CO emission in APM 08279+5255 at z = 3.9. Astron. Astrophys. 2007, 467, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Greve, T.R.; Leonidaki, I.; Xilouris, E.M.; Weiß, A.; Zhang, Z.Y.; van der Werf, P.; Aalto, S.; Armus, L.; Díaz-Santos, T.; Evans, A.S.; et al. Star Formation Relations and CO Spectral Line Energy Distributions across the J-ladder and Redshift. Astrophys. J. 2014, 794, 142. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, M.J.F.; van der Werf, P.P.; Aalto, S.; Armus, L.; Charmandaris, V.; Díaz-Santos, T.; Evans, A.S.; Fischer, J.; Gao, Y.; González-Alfonso, E.; et al. The Herschel Comprehensive (U)LIRG Emission Survey (HERCULES): CO Ladders, Fine Structure Lines, and Neutral Gas Cooling. Astrophys. J. 2015, 801, 72. [Google Scholar] [CrossRef] [Green Version]
- Mashian, N.; Sturm, E.; Sternberg, A.; Janssen, A.; Hailey-Dunsheath, S.; Fischer, J.; Contursi, A.; González-Alfonso, E.; Graciá-Carpio, J.; Poglitsch, A.; et al. High-J CO Sleds in Nearby Infrared Bright Galaxies Observed By Herschel/PACS. Astrophys. J. 2015, 802, 81. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.; Rigopoulou, D.; Hurley, P.; Farrah, D.; Afonso, J.; Bernard-Salas, J.; Borys, C.; Clements, D.L.; Cormier, D.; Efstathiou, A.; et al. HERUS: A CO Atlas from SPIRE Spectroscopy of Local ULIRGs. Astrophys. J. Suppl. 2016, 227, 9. [Google Scholar] [CrossRef] [Green Version]
- Scott, K.S.; Lupu, R.E.; Aguirre, J.E.; Auld, R.; Aussel, H.; Baker, A.J.; Beelen, A.; Bock, J.; Bradford, C.M.; Brisbin, D.; et al. Redshift Determination and CO Line Excitation Modeling for the Multiply Lensed Galaxy HLSW-01. Astrophys. J. 2011, 733, 29. [Google Scholar] [CrossRef]
- Aravena, M.; Carilli, C.L.; Salvato, M.; Tanaka, M.; Lentati, L.; Schinnerer, E.; Walter, F.; Riechers, D.; Smolcić, V.; Capak, P.; et al. Deep observations of CO line emission from star-forming galaxies in a cluster candidate at z = 1.5. Mon. Not. R. Astron. Soc. 2012, 426, 258–275. [Google Scholar] [CrossRef]
- van der Tak, F.F.S.; Black, J.H.; Schöier, F.L.; Jansen, D.J.; van Dishoeck, E.F. A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios. Astron. Astrophys. 2007, 468, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Kamenetzky, J.; Privon, G.C.; Narayanan, D. Recovering the Physical Properties of Molecular Gas in Galaxies from CO SLED Modeling. Astrophys. J. 2018, 859, 9. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, A.; Farrah, D.; Afonso, J.; Clements, D.L.; González-Alfonso, E.; Lacy, M.; Oliver, S.; Papadopoulou Lesta, V.; Pearson, C.; Rigopoulou, D.; et al. A new look at local ultraluminous infrared galaxies: The atlas and radiative transfer models of their complex physics. Mon. Not. R. Astron. Soc. 2022, 512, 5183–5213. [Google Scholar] [CrossRef]
- Spoon, H.W.W.; Farrah, D.; Lebouteiller, V.; González-Alfonso, E.; Bernard-Salas, J.; Urrutia, T.; Rigopoulou, D.; Westmoquette, M.S.; Smith, H.A.; Afonso, J.; et al. Diagnostics of AGN-Driven Molecular Outflows in ULIRGs from Herschel-PACS Observations of OH at 119 μm. Astrophys. J. 2013, 775, 127. [Google Scholar] [CrossRef] [Green Version]
- Clements, D.L.; Pearson, C.; Farrah, D.; Greenslade, J.; Bernard-Salas, J.; González-Alfonso, E.; Afonso, J.; Efstathiou, A.; Rigopoulou, D.; Lebouteiller, V.; et al. HERUS: The far-IR/submm spectral energy distributions of local ULIRGs and photometric atlas. Mon. Not. R. Astron. Soc. 2018, 475, 2097–2121. [Google Scholar] [CrossRef] [Green Version]
- Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P.R.; Conley, A. LCO/LFIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive. Astrophys. J. 2016, 829, 93. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.B.; Scoville, N.Z.; Zensus, A.; Soifer, B.T.; Wilson, T.L.; Zylka, R.; Steppe, H. Detection of CO (1–>0) emission from infrared quasars and luminous Seyfert galaxies. Astron. Astrophys. 1989, 213, L5–L8. [Google Scholar]
- Mirabel, I.F.; Booth, R.S.; Garay, G.; Johansson, L.E.B.; Sanders, D.B. CO(1-0) emission from luminous infrared galaxies in the southern hemisphere. Astron. Astrophys. 1990, 236, 327–332. [Google Scholar]
- Downes, D.; Solomon, P.M.; Radford, S.J.E. Molecular Gas Mass and Far-Infrared Emission from Distant Luminous Galaxies. Astrophys. J. Lett. 1993, 414, L13. [Google Scholar] [CrossRef]
- Baan, W.A.; Henkel, C.; Loenen, A.F.; Baudry, A.; Wiklind, T. Dense gas in luminous infrared galaxies. Astron. Astrophys. 2008, 477, 747–762. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.; Narayanan, G.; Yun, M.S.; Heyer, M.; Erickson, N.R. The Redshift Search Receiver Observations of 12CO J = 1 → 0 in 29 Ultraluminous Infrared Galaxies. Astron. J. 2009, 138, 858–872. [Google Scholar] [CrossRef] [Green Version]
- Greve, T.R.; Papadopoulos, P.P.; Gao, Y.; Radford, S.J.E. Molecular Gas in Extreme Star-Forming Environments: The Starbursts Arp 220 and NGC 6240 as Case Studies. Astrophys. J. 2009, 692, 1432–1446. [Google Scholar] [CrossRef]
- Braun, R.; Popping, A.; Brooks, K.; Combes, F. Molecular gas in intermediate-redshift ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc. 2011, 416, 2600–2606. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, P.P.; van der Werf, P.P.; Xilouris, E.M.; Isaak, K.G.; Gao, Y.; Mühle, S. The molecular gas in luminous infrared galaxies—I. CO lines, extreme physical conditions and their drivers. Mon. Not. R. Astron. Soc. 2012, 426, 2601–2629. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.Y.; Gao, Y.; Hao, C.N.; Tan, Q.H.; Mao, S.; Omont, A.; Flaquer, B.O.; Leon, S.; Cox, P. Molecular Gas in Infrared Ultraluminous QSO Hosts. Astrophys. J. 2012, 750, 92. [Google Scholar] [CrossRef] [Green Version]
- Meijerink, R.; Kristensen, L.E.; Weiß, A.; van der Werf, P.P.; Walter, F.; Spaans, M.; Loenen, A.F.; Fischer, J.; Israel, F.P.; Isaak, K.; et al. Evidence for CO Shock Excitation in NGC 6240 from Herschel SPIRE Spectroscopy. Astrophys. J. Lett. 2013, 762, L16. [Google Scholar] [CrossRef] [Green Version]
- Ueda, J.; Iono, D.; Yun, M.S.; Crocker, A.F.; Narayanan, D.; Komugi, S.; Espada, D.; Hatsukade, B.; Kaneko, H.; Matsuda, Y.; et al. Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas Disks. Astrophys. J. Suppl. 2014, 214, 1. [Google Scholar] [CrossRef] [Green Version]
- Sliwa, K.; Wilson, C.D.; Aalto, S.; Privon, G.C. Extreme CO Isotopic Abundances in the ULIRG IRAS 13120-5453: An Extremely Young Starburst or Top-heavy Initial Mass Function. Astrophys. J. Lett. 2017, 840, L11. [Google Scholar] [CrossRef] [Green Version]
- Gowardhan, A.; Spoon, H.; Riechers, D.A.; González-Alfonso, E.; Farrah, D.; Fischer, J.; Darling, J.; Fergulio, C.; Afonso, J.; Bizzocchi, L. The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows. Astrophys. J. 2018, 859, 35. [Google Scholar] [CrossRef] [Green Version]
- Ruffa, I.; Vignali, C.; Mignano, A.; Paladino, R.; Iwasawa, K. The role of molecular gas in the nuclear regions of IRAS 00183-7111. ALMA and X-ray investigations of an ultraluminous infrared galaxy. Astron. Astrophys. 2018, 616, A127. [Google Scholar] [CrossRef]
- Brown, T.; Wilson, C.D. Extreme CO Isotopologue Line Ratios in ULIRGS: Evidence for a Top-heavy IMF. Astrophys. J. 2019, 879, 17. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Illana, R.; Privon, G.C.; Evans, A.S.; Díaz-Santos, T.; Pérez-Torres, M.Á.; U, V.; Alberdi, A.; Iwasawa, K.; Armus, L.; Aalto, S.; et al. Molecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey. Astron. Astrophys. 2019, 628, A71. [Google Scholar] [CrossRef]
- Fotopoulou, C.M.; Dasyra, K.M.; Combes, F.; Salomé, P.; Papachristou, M. Complex molecular gas kinematics in the inner 5 kpc of 4C12.50 as seen by ALMA. Astron. Astrophys. 2019, 629, A30. [Google Scholar] [CrossRef]
- Tan, Q.H.; Gao, Y.; Daddi, E.; Xia, X.Y.; Hao, C.N.; Omont, A.; Kohno, K. Deep Observations of CO and Free-Free Emission in Ultraluminous Infrared QSO IRAS F07599+6508. Astrophys. J. 2021, 913, 82. [Google Scholar] [CrossRef]
- Efstathiou, A.; Siebenmorgen, R. Starburst and cirrus models for submillimeter galaxies. Astron. Astrophys. 2009, 502, 541–548. [Google Scholar] [CrossRef]
- Efstathiou, A.; Rowan-Robinson, M. Dusty discs in active galactic nuclei. Mon. Not. R. Astron. Soc. 1995, 273, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, A.; Hough, J.H.; Young, S. A model for the infrared continuum spectrum of NGC 1068. Mon. Not. R. Astron. Soc. 1995, 277, 1134–1144. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, A.; Christopher, N.; Verma, A.; Siebenmorgen, R. Active galactic nucleus torus models and the puzzling infrared spectrum of IRAS F10214+4724. Mon. Not. R. Astron. Soc. 2013, 436, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Boggs, P.T.; Byrd, R.H.; Schnabel, R.B. A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 1987, 8, 1052–1078. [Google Scholar] [CrossRef]
- Esposito, F.; Vallini, L.; Pozzi, F.; Casasola, V.; Mingozzi, M.; Vignali, C.; Gruppioni, C.; Salvestrini, F. AGN impact on the molecular gas in galactic centres as probed by CO lines. Mon. Not. R. Astron. Soc. 2022, 512, 686–711. [Google Scholar] [CrossRef]
- Hunt, L.K.; Tortora, C.; Ginolfi, M.; Schneider, R. Scaling relations and baryonic cycling in local star-forming galaxies. II. Gas content and star-formation efficiency. Astron. Astrophys. 2020, 643, A180. [Google Scholar] [CrossRef]
- Sánchez-García, M.; Pereira-Santaella, M.; García-Burillo, S.; Colina, L.; Alonso-Herrero, A.; Villar-Martín, M.; Saito, T.; Díaz-Santos, T.; Piqueras López, J.; Arribas, S.; et al. Duality in spatially resolved star formation relations in local LIRGs. Astron. Astrophys. 2022, 659, A102. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2020, 58, 157–203. [Google Scholar] [CrossRef]
- Saintonge, A.; Catinella, B. The Cold Interstellar Medium of Galaxies in the Local Universe. Annu. Rev. Astron. Astrophys. 2022, 60, 319–361. [Google Scholar] [CrossRef]
- Lada, C.J.; Forbrich, J.; Lombardi, M.; Alves, J.F. Star Formation Rates in Molecular Clouds and the Nature of the Extragalactic Scaling Relations. Astrophys. J. 2012, 745, 190. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, J.; Ho, L.C.; Bauer, F.E.; Wang, R.; Treister, E. AGN Feedback and Star Formation of Quasar Host Galaxies: Insights from the Molecular Gas. Astrophys. J. 2020, 899, 112. [Google Scholar] [CrossRef]
- Zhuang, M.Y.; Ho, L.C.; Shangguan, J. Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies. Astrophys. J. 2021, 906, 38. [Google Scholar] [CrossRef]
- Valentino, F.; Daddi, E.; Puglisi, A.; Magdis, G.E.; Kokorev, V.; Liu, D.; Madden, S.C.; Gómez-Guijarro, C.; Lee, M.Y.; Cortzen, I.; et al. The effect of active galactic nuclei on the cold interstellar medium in distant star-forming galaxies. Astron. Astrophys. 2021, 654, A165. [Google Scholar] [CrossRef]
- McKinney, J.; Armus, L.; Pope, A.; Díaz-Santos, T.; Charmandaris, V.; Inami, H.; Song, Y.; Evans, A.S. Regulating Star Formation in Nearby Dusty Galaxies: Low Photoelectric Efficiencies in the Most Compact Systems. Astrophys. J. 2021, 908, 238. [Google Scholar] [CrossRef]
- Thorp, M.D.; Ellison, S.L.; Pan, H.A.; Lin, L.; Patton, D.R.; Bluck, A.F.L.; Walters, D.; Scudder, J.M. The ALMaQUEST Survey X: What powers merger induced star formation? Mon. Not. R. Astron. Soc. 2022, 516, 1462–1480. [Google Scholar] [CrossRef]
- Song, Y.; Linden, S.T.; Evans, A.S.; Barcos-Muñoz, L.; Privon, G.C.; Yoon, I.; Murphy, E.J.; Larson, K.L.; Díaz-Santos, T.; Armus, L.; et al. A Comparison between Nuclear Ring Star Formation in LIRGs and in Normal Galaxies with the Very Large Array. Astrophys. J. 2021, 916, 73. [Google Scholar] [CrossRef]
- Westmoquette, M.S.; Clements, D.L.; Bendo, G.J.; Khan, S.A. Spatially resolved observations of warm ionized gas and feedback in local ULIRGs. Mon. Not. R. Astron. Soc. 2012, 424, 416–456. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Urrutia, T.; Lacy, M.; Efstathiou, A.; Afonso, J.; Coppin, K.; Hall, P.B.; Lonsdale, C.; Jarrett, T.; Bridge, C.; et al. Direct Evidence for Termination of Obscured Star Formation by Radiatively Driven Outflows in Reddened QSOs. Astrophys. J. 2012, 745, 178. [Google Scholar] [CrossRef]
- Bridge, C.R.; Blain, A.; Borys, C.J.K.; Petty, S.; Benford, D.; Eisenhardt, P.; Farrah, D.; Griffith, R.L.; Jarrett, T.; Lonsdale, C.; et al. A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act? Astrophys. J. 2013, 769, 91. [Google Scholar] [CrossRef] [Green Version]
- Baron, D.; Netzer, H.; Poznanski, D.; Prochaska, J.X.; Förster Schreiber, N.M. Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy. Mon. Not. R. Astron. Soc. 2017, 470, 1687–1702. [Google Scholar] [CrossRef] [Green Version]
- González-Alfonso, E.; Fischer, J.; Spoon, H.W.W.; Stewart, K.P.; Ashby, M.L.N.; Veilleux, S.; Smith, H.A.; Sturm, E.; Farrah, D.; Falstad, N.; et al. Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis. Astrophys. J. 2017, 836, 11. [Google Scholar] [CrossRef]
- Longinotti, A.L.; Vega, O.; Krongold, Y.; Aretxaga, I.; Yun, M.; Chavushyan, V.; Feruglio, C.; Gómez-Ruiz, A.; Montaña, A.; León-Tavares, J.; et al. Early Science with the Large Millimeter Telescope: An Energy-driven Wind Revealed by Massive Molecular and Fast X-ray Outflows in the Seyfert Galaxy IRAS 17020+4544. Astrophys. J. Lett. 2018, 867, L11. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wagner, A.Y.; Bicknell, G.V.; Morganti, R.; Oosterloo, T.; Nesvadba, N.; Sutherland, R.S. The jet-ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 2018, 476, 80–95. [Google Scholar] [CrossRef]
- Mackey, J.; Walch, S.; Seifried, D.; Glover, S.C.O.; Wünsch, R.; Aharonian, F. Non-equilibrium chemistry and destruction of CO by X-ray flares. Mon. Not. R. Astron. Soc. 2019, 486, 1094–1122. [Google Scholar] [CrossRef]
- García-Bernete, I.; Rigopoulou, D.; Aalto, S.; Spoon, H.W.W.; Hernán-Caballero, A.; Efstathiou, A.; Roche, P.F.; König, S. A technique to select the most obscured galaxy nuclei. Astron. Astrophys. 2022, 663, A46. [Google Scholar] [CrossRef]
Name | 1–0 | 5–4 | 6–5 | 7–6 | 8–7 | 9–8 | 10–9 | 11–10 | 12–11 | 13–12 |
---|---|---|---|---|---|---|---|---|---|---|
IRAS 00188-0856 | — | |||||||||
IRAS 00397-1312 | — | — | ||||||||
IRAS 01003-2238 | — | — | ||||||||
IRAS 03158+4227 | — | — | — | |||||||
IRAS 03521+0028 | — | |||||||||
IRAS 05189-2524 | ||||||||||
IRAS 06035-7102 | ||||||||||
IRAS 06206-6315 | — | |||||||||
IRAS 07598+6508 | — | |||||||||
IRAS 08311-2459 | — | |||||||||
IRAS 08572+3915 | — | |||||||||
IRAS 09022-3615 | — | |||||||||
IRAS 10378+1109 | — | |||||||||
IRAS 10565+2448 | ||||||||||
IRAS 11095-0238 | ||||||||||
IRAS 12071-0444 | — | — | — | |||||||
IRAS 13120-5453 | ||||||||||
IRAS 13451+1232 | — | |||||||||
IRAS 14348-1447 | — | |||||||||
IRAS 14378-3651 | ||||||||||
IRAS 15250+3609 | — | — | ||||||||
IRAS 15462-0450 | — | |||||||||
IRAS 16090-0139 | ||||||||||
IRAS 17208-0014 | ||||||||||
IRAS 19254-7245 | — | |||||||||
IRAS 19297-0406 | ||||||||||
IRAS 20087-0308 | ||||||||||
IRAS 20100-4156 | — | |||||||||
IRAS 20414-1651 | ||||||||||
IRAS 20551-4250 | ||||||||||
IRAS 22491-1808 | ||||||||||
IRAS 23128-5919 | ||||||||||
IRAS 23230-6926 | — | |||||||||
IRAS 23253-5415 | — | |||||||||
IRAS 23365+3604 | ||||||||||
UGC 5101 | ||||||||||
Mrk 231 | ||||||||||
Mrk 273 | ||||||||||
Mrk 463 | — | |||||||||
Arp 220 | ||||||||||
NGC 6240 | ||||||||||
Mrk 1014 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrah, D.; Efstathiou, A.; Afonso, J.; Clements, D.L.; Croker, K.; Hatziminaoglou, E.; Joyce, M.; Lebouteiller, V.; Lee, A.; Lonsdale, C.; et al. Molecular Gas Heating, Star Formation Rate Relations, and AGN Feedback in Infrared-Luminous Galaxy Mergers. Universe 2023, 9, 3. https://doi.org/10.3390/universe9010003
Farrah D, Efstathiou A, Afonso J, Clements DL, Croker K, Hatziminaoglou E, Joyce M, Lebouteiller V, Lee A, Lonsdale C, et al. Molecular Gas Heating, Star Formation Rate Relations, and AGN Feedback in Infrared-Luminous Galaxy Mergers. Universe. 2023; 9(1):3. https://doi.org/10.3390/universe9010003
Chicago/Turabian StyleFarrah, Duncan, Andreas Efstathiou, Jose Afonso, David L. Clements, Kevin Croker, Evanthia Hatziminaoglou, Maya Joyce, Vianney Lebouteiller, Aláine Lee, Carol Lonsdale, and et al. 2023. "Molecular Gas Heating, Star Formation Rate Relations, and AGN Feedback in Infrared-Luminous Galaxy Mergers" Universe 9, no. 1: 3. https://doi.org/10.3390/universe9010003
APA StyleFarrah, D., Efstathiou, A., Afonso, J., Clements, D. L., Croker, K., Hatziminaoglou, E., Joyce, M., Lebouteiller, V., Lee, A., Lonsdale, C., Pearson, C., Petty, S., Pitchford, L. K., Rigopoulou, D., Verma, A., & Wang, L. (2023). Molecular Gas Heating, Star Formation Rate Relations, and AGN Feedback in Infrared-Luminous Galaxy Mergers. Universe, 9(1), 3. https://doi.org/10.3390/universe9010003